Klickhit des Jahres 2024 im Fach Astronomie

Orientierung am Sternenhimmel als Unterrichtserlebnis

Sternenhimmel
Klickhit des Jahres 2024 im Fach Astronomie

Orientierung am Sternenhimmel als Unterrichtserlebnis

Entdecken Sie unseren Klickhit des Jahres 2024 im Fach Astronomie! In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler mithilfe einer didaktischen App fünf Sternbilder kennen.

Tipp der Redaktion

Relativitätstheorie: Gravitationswellen

Gravitationswellen
Tipp der Redaktion

Relativitätstheorie: Gravitationswellen

Die Einheit behandelt den ersten direkten Nachweis von Gravitationswellen im Jahr 1974 durch Messung der Umlaufdauer eines Pulsars in einem Binärsystem.

Tipp der Redaktion

Satelliten: Bilder aus dem All

Bild der esa: Satellit im All, Fernerkundung
Tipp der Redaktion

Satelliten: Bilder aus dem All

Dieses Video gibt eine Einführung in Satelliten und erläutert ihre vielfältigen Funktionen und Einsatzbereiche in der Fernerkundung.

  • Lehrplanthema
  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Materialtyp 11
    zurücksetzen
  • Quelle 4
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Bau deinen eigenen Elektrolyseur

Kopiervorlage

Ein selbst gebauter Elektrolyseur macht Chemie greifbar: Begeistern Sie Ihre Schülerinnen und Schüler mit praktischem Experimentieren und fördern Sie ihr Verständnis für nachhaltige Energien! In diesem praxisorientierten Projekt bauen die Teilnehmerinnen und Teilnehmer ihren eigenen Elektrolyseur und führen spannende Experimente durch, um die Wasserelektrolyse hautnah zu erleben. Der Fokus liegt dabei auf der praktischen Wissensvermittlung zur Elektrolyse als nachhaltiger Energietechnologie und dem sicheren Umgang mit dem Energieträger Wasserstoff . Das Projekt beginnt mit einer übersichtlichen Materialliste und hilfreichen Hinweisen zur einfachen Beschaffung der erforderlichen Komponenten. Eine ausführlich bebilderte Schritt-für-Schritt-Anleitung ermöglicht es den Teilnehmerinnen und Teilnehmern, den Bauprozess eigenständig und in ihrem eigenen Tempo erfolgreich zu durchlaufen. Ergänzend dazu gibt es einen umfassenden Sicherheitshinweis, der potenzielle Risiken beim Umgang mit Wasserstoff aufzeigt und konkrete Maßnahmen beschreibt, um Gefahren zu vermeiden. Für Teilnehmerinnen und Teilnehmer, die ihr Wissen vertiefen möchten, steht ein kompakter Theorieteil zur Verfügung. Dieser bietet eine verständliche Einführung in die grundlegenden Prinzipien der Wasserelektrolyse und vermittelt einen Überblick über das Element Wasserstoff mit seiner spannenden Geschichte und seinen einzigartigen Eigenschaften. Insgesamt kombiniert das Projekt praktisches Lernen mit Sicherheitsbewusstsein und schafft ein fundiertes Verständnis für diese zukunftsweisende Technologie. Es ist für den Einsatz in den Fächern Technik, Chemie, Physik und Elektrochemie rund ums Thema Umwelt- und Klimaschutz geeignet. Fachkompetenz Die Schülerinnen und Schüler kennen den chemischen Prozess der Elektrolyse. erlernen den Umgang mit Netzgeräten (Spannung, Stromstärke). kennen Risiken von Wasserstoff. Sozialkompetenz Die Schülerinnen und Schüler beweisen Teamfähigkeit. arbeiten sorgfältig und genau. zeigen Verantwortungsbewusstsein.

  • Chemie / Natur & Umwelt / Technik / Sache & Technik / Physik / Astronomie
  • Sekundarstufe II, Berufliche Bildung, Hochschule

Physik des Fliegens – von der Steuerung bis zum Triebwerk

Unterrichtseinheit

Der Beitrag zeigt zunächst, wie es durch eine elektronische Steuerung möglich wird, ein Flugzeug wie den Airbus A 380 mit größter Präzision zu steuern. Dabei werden die Eingaben der Piloten in elektrische Signale umgewandelt und an entsprechende Flugsteuerungscomputer gesendet. Im Weiteren wird das Rolls-Royce Trent 970 Triebwerk – ein hochmodernes Turbofan-Triebwerk – besprochen, das speziell für den A 380 entwickelt wurde. Die Faszination des Fliegens reicht tief in die menschliche Natur und Kultur hinein. Sie verbindet technische, emotionale und philosophische Aspekte, die das Fliegen zu einer einzigartigen Erfahrung und einer Besonderheit machen. Seit der Antike zeugen Mythen wie die von Ikarus oder Daedalus von der Sehnsucht der Menschen, wie Vögel frei durch die Lüfte zu gleiten. Erst durch das Fliegen in der Neuzeit wurde es möglich, in weit entfernte Länder in relativer kurzer Zeit zu gelangen, um deren Kulturen zu entdecken, bis dahin war dies nur mit Schiffen über extrem lange Zeiträume und verbunden mit großen Gefahren möglich. Dieser Unterrichtseinheit geht die Einheit "Physik des Fliegens – vom Auftrieb bis zum Gleitflug" voran. Physik des Fliegens – von der Steuerung bis zum Triebwerk Sowohl Steuerung als auch Triebwerk des A-380 sind Meisterwerke der Ingenieurkunst . So interpretieren Flugsteuerungscomputer die Eingaben der Piloten und berechnen damit die optimale Position aller Steuerflächen. Das Triebwerk zeichnet sich aus durch hohe Leistung, Treibstoffeffizienz und Zuverlässigkeit. Vorkenntnisse Vorkenntnisse sind aufgrund der bekannten physikalischen Zusammenhänge bei den – vermutlich – meisten Lernenden vorhanden. Die zugehörigen Gesetze beinhalten keine komplizierten Zusammenhänge. Didaktische Analyse Bei der Besprechung des Themas "Fliegen" sollten neben den technischen und naturwissenschaftlichen Aspekten in der Diskussion mit den Schülerinnen und Schülern auch ökologische und ethische Perspektiven berücksichtigt werden. Es bietet sich die Möglichkeit, neben der Vermittlung von Wissen auch gesellschaftliche und globale Herausforderungen anzusprechen. So lässt sich eine Balance zwischen Faszination und kritischer Auseinandersetzung für ein differenziertes Herangehen an das Thema ermöglichen. Methodische Analyse Die Thematik "Fliegen" lässt sich gut verständlich und nachvollziehbar vermitteln. Ohne die technischen Möglichkeiten wäre es schier unmöglich, Menschen und Fracht in den heutigen Größenordnungen zu transportieren. Moderne Flugzeugtriebwerke führen den Luftstrom zum größten Teil um das Triebwerk herum, sodass der Schub effizienter wird und gleichzeitig der Lärm reduziert wird. Fachkompetenz Die Schülerinnen und Schüler können beschreiben und erläutern, welche Kräfte auf ein Flugzeug beim Kurvenflug wirken. kennen die Funktionsweise moderner Triebwerke und wissen um deren Bedeutung für verantwortungsvolles Fliegen. können anspruchsvolle Übungsaufgaben lösen und damit auch Belastungen für Passagier in Verkehrsflugzeugen, aber auch Extremsituationen für Piloten in Militärjets näher verstehen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freunden etc. wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Physik des Fliegens – vom Auftrieb bis zum Gleitflug

Unterrichtseinheit

Der Beitrag zeigt, wie es mithilfe von physikalischen Grundprinzipien wie dem Auftrieb und den Strömungseigenschaften der Luft, also den Gesetzen der Aerodynamik, der Mechanik und der Thermodynamik, Flugzeugen ermöglicht wird, sich durch die Luft bis hinauf in große Höhen zu bewegen und über viele Stunden hinweg Menschen und Fracht über Tausende von Kilometern in nahezu alle Gegenden unserer Welt zu transportieren. Die Faszination des Fliegens reicht tief in die menschliche Natur und Kultur hinein. Sie verbindet technische, emotionale und philosophische Aspekte, die das Fliegen zu einer einzigartigen Erfahrung und einer Besonderheit machen. Seit der Antike zeugen Mythen wie die von Ikarus oder Daedalus von der Sehnsucht der Menschen, wie Vögel frei durch die Lüfte zu gleiten. Erst durch das Fliegen in der Neuzeit wurde es möglich, in weit entfernte Länder in relativer kurzer Zeit zu gelangen, um deren Kulturen zu entdecken, bis dahin war dies nur mit Schiffen über extrem lange Zeiträume und verbunden mit großen Gefahren möglich. Im Anschluss an diese Unterrichtseinheit können Sie nahtlos die Einheit "Physik des Fliegens – von der Steuerung bis zum Triebwerk" anschließen. Das Thema behandelt den Weg vom Auftrieb bis hin zum Gleitflug, etwa bei Segelflugzeugen. Im Gegensatz zum Auftrieb bei Start und Horizontalflug, für den eine Antriebskraft nötig ist, nutzt der Gleitflug eine leichte Abwärtsneigung, bei der ein Teil der potentiellen Höhenenergie in Bewegungsenergie umgewandelt wird und damit die Vorwärtsbewegung ohne eigene Antriebskraft ermöglicht. Diesen relativ einfachen und leicht darstellbaren Zusammenhang können Schülerinnen und Schüler gut nachvollziehen und somit auch das allen bekannte Segelfliegen verstehen. Vorkenntnisse Vorkenntnisse sind aufgrund der bekannten physikalischen Zusammenhänge bei den – vermutlich – meisten Lernenden vorhanden. Die zugehörigen Gesetze beinhalten keine komplizierten Zusammenhänge. Didaktische Analyse Bei der Besprechung des Themas "Fliegen" sollten neben den technischen und naturwissenschaftlichen Aspekten in der Diskussion mit den Schülerinnen und Schülern auch ökologische und ethische Perspektiven berücksichtigt werden. Es bietet sich die Möglichkeit, neben der Vermittlung von Wissen auch gesellschaftliche und globale Herausforderungen anzusprechen. So lässt sich eine Balance zwischen Faszination und kritischer Auseinandersetzung für ein differenziertes Herangehen an das Thema ermöglichen. Methodische Analyse Die Thematik "Fliegen" lässt sich gut verständlich und nachvollziehbar vermitteln. Zudem ist es möglich, anhand einfachster Modelle wie etwa selbst gefaltete Papierflieger oder auch anderer einfacher Flugmodelle die Funktionsweise, wie ein Flugzeug prinzipiell zum Fliegen kommt, zu verstehen. Fachkompetenz Die Schülerinnen und Schüler wissen um die entscheidende Bedeutung von Auftrieb und Strömung für das Fliegen. können die verschiedenen Kräfte, die auf ein Flugzeug in den unterschiedlichsten Flugsituationen wirken, beschreiben und ihr Ineinandergreifen genau zuordnen. können anspruchsvolle Übungsaufgaben lösen und damit auch Belastungen für Passagier in Verkehrsflugzeugen, aber auch Extremsituationen für Piloten in Militärjets näher verstehen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partnerarbeit und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit unter anderem anderen Lernenden, Eltern, Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Das Rastertunnelmikroskop – eine Anwendung des Tunneleffekts

Unterrichtseinheit

Ein Rastertunnelmikroskop (RTM) oder Scanning Tunneling Microscope (STM) ist ein leistungsstarkes Werkzeug zur Betrachtung und näheren Untersuchung von Oberflächen auf der Ebene von atomaren Strukturen. Aufgrund seiner Fähigkeit, Oberflächen auf atomarer Ebene untersuchen zu können, ist das RTM auf vielen Forschungsfeldern unverzichtbar geworden. Dazu gehören unter anderem die Oberflächenanalyse, Materialforschung, Nanotechnologie sowie die Elektronik und Quantenphysik. Das RTM funktioniert nach dem Prinzip des Quantentunneleffektes, wobei es eine extrem feine Spitze von wenigen Nanometern Durchmesser (oft nur so breit wie ein Atom ) verwendet. Anhand aussagekräftiger Grafiken, Animationen und Videos werden die Lernenden an die Funktionsweise eines RTM hingeführt. Die bereits bekannten Gesetzmäßigkeiten zum Tunneleffekt finden beim RTM ihre Anwendung und dienen dazu, Berechnungen zum groben Verständnis des komplexen Gerätes anzustellen. Das Rastertunnelmikroskop – eine Anwendung des Tunneleffektes Die Besprechung der Funktionsweise eines Rastertunnelmikroskops dient dazu, den Tunneleffekt in seiner praktischen Anwendung den Lernenden näherzubringen. Mit einem RTM kann ein präzises Relief einer Materialoberfläche sichtbar gemacht werden. Mit dem möglichen Auflösungsvermögen können klassische Lichtmikroskope um das Tausendfache übertroffen werden, sodass selbst einzelne Atome eines Materials sichtbar gemacht werden können. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können vorausgesetzt werden, wenn der zugrundeliegende Tunneleffekt im Unterricht besprochen wurde. Damit lassen sich einfache Übungsaufgaben lösen, die einen Einblick in die Möglichkeiten des RTM bieten. Didaktische Analyse Die Behandlung des interessanten Themas mithilfe von computergenerierten Mikroskopbildern, die teilweise faszinierende Landschaften von eigener Ästhetik zeigen, kann durchaus dazu dienen, den Schülerinnen und Schülern ein Bild von der Besonderheit naturwissenschaftlicher Forschung näherzubringen. Methodische Analyse Das Thema RTM sowie der zugrundeliegende Tunneleffekt in der Quantenphysik sind schwierige Themen. Dennoch ist es möglich, durch vielfältiges Bildmaterial und entsprechend nachvollziehbare Gesetzmäßigkeiten den Lernenden zu zeigen, dass solche Themen trotzdem in ihrer prinzipiellen Form verstanden werden können. Fachkompetenz Die Schülerinnen und Schüler können die Funktionsweise eines RTM beschreiben und erläutern. wissen um die Bedeutung solcher Präzisionsgeräte für die naturwissenschaftliche Forschung. können ergänzende Übungsaufgaben berechnen und damit die Zusammenhänge bei der Funktionsweise eines RTM besser verstehen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden etc. diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Wärmetauscher

Unterrichtseinheit

In dieser Unterrichtseinheit für den Physikunterricht der Sekundarstufe I lernen die Schülerinnen und Schüler das Prinzip des Wärmetauschers im Kontext des Sanitär-Heizung-Klima-Handwerks (SHK) kennen. Dabei werden die grundlegenden thermodynamischen Fachbegriffe und Sätze wiederholt. Die Unterrichtseinheit bearbeitet das Thema "Wärmetauscher" und knüpft dabei im Kontext Sanitär, Heizung und Klima an die Erfahrungswelt der Schülerinnen und Schüler an. Die Unterrichtseinheit kann in vier Einzelstunden oder alternativ in zwei Doppelstunden bearbeitet werden. Zunächst wird über die Raumtemperatur im eigenen Zuhause an die Alltagserfahrung der Schülerinnen und Schüler angeknüpft. In diesem Kontext wird auf die Übertragung von Wärme übergeleitet, welche die Schülerinnen und Schüler in einem Experiment zum Temperaturausgleich untersuchen. Dabei werden grundlegende Kompetenzen, wie das Formulieren von Hypothesen und das Entwickeln einer Versuchsskizze geübt. Für leistungsstarke Schülerinnen und Schüler werden Differenzierungen angeboten. Bei der Auswertung des Experimentes wird an die Hauptsätze der Thermodynamik angeknüpft. Zum Abschluss der Stunde wird der Bezug zum SHK-Handwerk hergestellt. Dies kann optional als Hausaufgabe ausgelagert werden. In der zweiten Stunde erarbeiten sich die Schülerinnen und Schüler mit Hilfe einer Animation die Funktionsweise eines Wärmetauschers. Für besonders leistungsstarke Schülerinnen und Schüler wird eine Zusatzaufgabe angeboten. Für leistungsschwächere Schülerinnen und Schüler steht eine Wiederholung zu grundlegenden thermodynamischen Fachbegriffen und Sätzen bereit. Als Stundenabschluss erfolgt wieder die Anknüpfung an den Heizungs-Kontext. In der dritten Stunde lernen die SchülerInnen und Schüler verschiedene Arten und Anwendungen von Wärmetauschern in einem Gruppenpuzzle kennen. Dabei wird das sach-, situations- und adressatenbezogene Präsentieren von Ergebnissen geübt. In der vierten Stunde besucht die Klasse den Heizungsraum der Schule. Dort haben die Schülerinnen und Schüler die Möglichkeit, die in der Unterrichtseinheit erarbeiteten Inhalte im konkreten Anwendungskontext wiederzuentdecken und zu festigen. Wenn kein Heizungsraum in der Schule verfügbar ist, können Schülerinnen und Schüler alternativ einen virtuellen Heizungsraum im Internet recherchieren und analysieren. Dazu können frei zugängliche Bilder, Videos oder virtuelle Rundgänge genutzt werden, die die Funktionsweise und den Aufbau einer Heizungsanlage anschaulich darstellen. Um das Thema "Wärmetauscher" fachlich fundiert einführen zu können, sind Vorkenntnisse zu den thermodynamischen Fachbegriffen Wärme, Energie und Temperatur notwendig. Diese können im Rahmen der Unterrichtseinheit noch einmal aufgegriffen und vertieft werden. Die in der Unterrichtseinheit hergestellten Bezüge zur Heizungs- und Klimatechnik sind den Schülerinnen und Schülern aus persönlichen Alltagserfahrungen bekannt. Dadurch kann die Unterrichtseinheit das Interesse der Schülerinnen und Schüler wecken, da sie ihnen ermöglicht, physikalische Phänomene in ihrem täglichen Leben zu erkennen und besser zu verstehen. Die erlernten physikalischen Zusammenhänge können auch im späteren beruflichen Kontext eine Rolle spielen, so beispielsweise im Bereich des Sanitär-Heizung-Klima-Handwerks . Um das komplexe Thema "Wärmetauscher" für alle Lernenden verständlich zu machen, wurden die Inhalte didaktisch reduziert. So werden lediglich drei wesentliche Bauarten des Wärmetauschers unterschieden und deren Aufbau nur schematisch behandelt. Auch die verschiedenen Heiztechniken, welche im Zuge der Unterrichtseinheit benannt werden, werden nicht vertieft behandelt. Für leistungsschwächere Schülerinnen und Schüler steht außerdem eine Wiederholung zu grundlegenden thermodynamischen Fachbegriffen und Sätzen bereit. Leistungsstarke Schülerinnen und Schüler erhalten hingegen an verschiedenen Stellen die Möglichkeit, über zusätzliche Aufgaben und Denkanstöße Inhalte zu erarbeiten, die eine Transferleistung erfordern. Auch das verstärkte Arbeiten in Gruppen ermöglicht es den Schülerinnen und Schülern in dieser Unterrichtseinheit, entsprechend ihrer Stärken und Schwächen zu lernen und zu interagieren. So können leistungsstärkere Schülerinnen und Schüler schwächere unterstützen. Im Bereich der Kommunikation üben die Schülerinnen und Schüler außerdem das Erschließen und Aufbereiten von Informationen. Auf naturwissenschaftliche Methoden der Erkenntnisgewinnung wie das Entwickeln und Bearbeiten physikalischer Fragen und das experimentelle Arbeiten wird ein besonderer Fokus gesetzt. Fachkompetenz Die Schülerinnen und Schüler beschreiben thermische Systeme und ihre Komponenten. erklären den Temperaturausgleich unterschiedlich temperierter Körper. beschreiben Komponenten technischer Geräte und anderer Objekte. kennen den Zusammenhang zwischen thermischer Energie und Wärme. Kommunikationskompetenz Die Schülerinnen und Schüler üben, naturwissenschaftliche Fragen zu formulieren. üben, grafische Darstellungen zu beschreiben. üben, sach-, situations- und adressatenbezogen Untersuchungsmethoden und Ergebnisse zu präsentieren. Medienkompetenz Die Schülerinnen und Schüler üben, digitale Werkzeuge bedarfsgerecht einzusetzen. üben, Informationen aus einem Text aufgabengeleitet zu entnehmen und wiederzugeben.

  • Physik / Astronomie
  • Sekundarstufe I

Der Tunneleffekt – ein Phänomen der Quantenphysik

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler der Sekundarstufe II den Tunneleffekt kennen. Dieser ist ein Phänomen der Quantenphysik, bei dem ein Quantenobjekt – wie etwa ein Elektron oder ein Alphateilchen – eine Potentialbarriere mit einer bestimmten Wahrscheinlichkeit durchqueren (durchtunneln) kann, die es nach den physikalischen Gesetzen der klassischen Physik nicht überwinden könnte. Dieser sogenannte Tunneleffekt spielt zum Beispiel eine entscheidende Rolle beim Alphazerfall, einem typischen Phänomen der Kernphysik. Ausgehend von bereits erworbenen Kenntnissen zum wellenhaften Verhalten von Quantenobjekten werden Schülerinnen und Schüler durch einfache Versuche mit Wasserwellen an das Phänomen "Tunneleffekt" herangeführt. Übertragen auf Elektronen oder Alphateilchen beschreibt deren Wellenfunktion die Wahrscheinlichkeit, wo sie sich befinden. Diese Wellenfunktion erstreckt sich nicht nur auf den Bereich der Potentialbarriere, sondern auf beiden Seiten auch darüber hinaus. Dies bedeutet, dass es eine gewisse berechenbare Wahrscheinlichkeit gibt, die Quantenobjekte außerhalb der Potentialbarriere zu finden – ohne eine theoretisch benötigte klassische Energie haben zu müssen. Für die entsprechende Wahrscheinlichkeit gilt, dass sie von der Breite und Höhe der Potentialbarriere abhängt: Eine dünnere oder niedrigere Barriere erhöht die Wahrscheinlichkeit des Tunnelns deutlich! Betrachtet man die Verhältnisse im Atomkern, so wird dieser durch die Kernkraft stabil gehalten. Ein α-Teilchen im Inneren des Kerns müsste demzufolge durch die Coulombbarriere vom Austritt aus dem Kern abgehalten werden beziehungsweise es müsste eine sehr hohe Energie haben, um die Barriere zu überwinden – diese hat sie aber nicht! Nach klassischer Sicht wäre das Alphateilchen also für immer im Kern gefangen. Für den Unterricht sollten Lehrkräfte gut vorbereitet sein, um dieses klassisch nicht erklärbare Phänomen mithilfe der Besonderheiten der Quantenphysik verständlich zu machen. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können vorausgesetzt werden, wenn im Rahmen der Kursphase in der Sek II vorher das Verhalten von Wahrscheinlichkeitswellen bis hin zur Schrödingergleichung einschließlich entsprechender Berechnungen unterrichtet wurde. Didaktische Analyse Die Behandlung des schwierigen Stoffes zur quantenphysikalischen Erklärung des mit der klassischen Physik nicht beschreibbaren Verhaltens von Quantenobjekten führt die Schülerinnen und Schüler in eine Welt des Allerkleinsten ein, die sich dem logischen Verständnis des menschlichen Vorstellungsvermögens weitgehend entzieht – aber sehr hilfreich ist in Hinblick auf das Verständnis für die Komplexität unserer Natur! Methodische Analyse Das Thema Tunneleffekt dürfte bei den interessierten Lernenden durchaus auf hohes Interesse stoßen; durch ein großes Angebot an Medien mit entsprechendem anschaulichen Material ist es vorstellbar, bei entsprechender Freude an nicht immer einfachen mathematischen Herleitungen sich in das Thema zu vertiefen. Fachkompetenz Die Schülerinnen und Schüler können die Grundgedanken, die zum Tunneleffekt führen, beschreiben und erläutern. wissen um die Bedeutung des Tunneleffektes als besonderes Phänomen der Quantenphysik. können Berechnungen anstellen und die Ergebnisse erläutern. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, im Freundeskreis diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Käfer aus dem All sehen? Waldschäden durch Satelliten erfassen

Video

Dieses Video geht der Frage nach, ob Satelliten sogar kleine Objekte wie Käfer beobachten können. Dabei wird die Rolle von Wäldern in den Blick genommen, die nicht nur eine entscheidende Rolle als Lebensraum für zahlreiche Tier- und Pflanzenarten spielen, sondern sind auch von großer ökologischer Bedeutung für unser Klimasystem. Doch zunehmende Dürren, der Befall durch invasive Arten und Veränderungen in der Landnutzung beeinträchtigen die Vitalität der Wälder und führen teilweise sogar zu ihrem Absterben. Dieses Video ist im Rahmen des European Space Education Resource Office (ESERO) entstanden. ESERO ist ein gemeinsames Projekt der European Space Agency (ESA) und des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit dem Ziel, Schülerinnen und Schüler für MINT-Themen zu begeistern. Themen der Raumfahrt werden hierzu spannend und innovativ in den Schulunterricht integriert und die Kompetenzen der Schülerinnen und Schüler in den Fächern Mathematik, Informatik, Naturwissenschaften und Technik (MINT-Fächer) gefördert. Satelliten ermöglichen uns einen Blick auf die Erde, der mit bloßem Auge verborgen bleibt. Durch hochauflösende Satellitenbilder ist es möglich, kleine Veränderungen auf der Erdoberfläche wahrzunehmen. Kann man durch Satellitenbilder auch kleine Objekte wie Käfer erkennen? Das Erklärvideo beantwortet diese und weitere Fragen zu Satellitenaufnahmen. Satelliten eröffnen uns eine Perspektive auf die Erde, die mit bloßem Auge nicht sichtbar ist. Dank hochauflösender Bilder können selbst kleinste Veränderungen auf der Erdoberfläche erkannt werden. Aber ist es auch möglich, so kleine Objekte wie Käfer mit Satellitenbildern zu entdecken? Dieses Erklärvideo geht auf diese und weitere spannende Fragen zu Satellitenaufnahmen ein.

  • Physik / Astronomie
  • Sekundarstufe I

Die Schrödingergleichung – ein Grundbaustein der Quantenphysik

Unterrichtseinheit

Die Schrödingergleichung gehört zu den wichtigsten Gleichungen der Quantenphysik und bildet die Grundlage zum Verständnis von quantenmechanischen Zusammenhängen. Sie benutzt für die Beschreibung quantenmechanischer Abläufe die sogenannte Wellenfunktion, mit der sich zum einen die Aufenthaltswahrscheinlichkeit, zum anderen die Energieniveaus eines Teilchens in einem Atom berechnen lassen. Sie findet in vielen Bereichen der Physik ihre Anwendung wie etwa in der Atomphysik, der Molekülphysik, der Festkörperphysik und über die Physik hinaus auch in der Quantenchemie. Die Schrödingergleichung ist in ihrer vollen mathematischen Ausprägung sehr anspruchsvoll, kann aber durch geeignete vereinfachende Möglichkeiten wie etwa die Anwendung von Potentialtöpfen als Näherung an die tatsächlichen Vorgänge im Atom anschaulich und altersgerecht vorgestellt werden. Für das einfachste Atom – das Wasserstoffatom – wird es somit mit nachvollziehbaren mathematischen Gleichungen möglich, physikalische Formeln abzuleiten und entsprechende Ergebnisse zu berechnen. Dabei besteht die Grundidee darin, das Coulomb-Potential des Wasserstoffatoms durch einen geeigneten Potentialtopf mit unendlich hohen Wänden anzunähern und Wahrscheinlichkeiten sowie Energieniveaus zu berechnen. In dieser Unterrichtseinheit, die ausschließlich für das Kurssystem der gymnasialen Oberstufe gedacht ist, soll nach Herleitung der zeitunabhängigen und damit leichter zu verstehenden der beiden Schrödingergleichungen eine Methode vorgestellt werden, mit der sich verschiedene Abläufe im Wasserstoffatom mit Näherungslösungen darstellen und berechnen lassen. Für den Unterricht sollten Lehrkräfte gut präpariert sein, um auf kritische Fragen sachkompetent eingehen und antworten zu können. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden können nur vorausgesetzt werden, wenn in der Sekundarstufe das Thema Quantenphysik – ausgehend vom Fotoeffekt bis hin zu Wahrscheinlichkeitswellen – bereits ausführlich behandelt wurde. Didaktische Analyse Die Beschäftigung mit "komplizierten" physikalischen Gesetzmäßigkeiten, zu der in erster Linie die Schrödingergleichung gehört, liefert einen tiefen Einblick in eine Physik, die einen Blick eröffnet in eine für die meisten Menschen unbekannte Welt. So kann ein vertieftes Verständnis für die Schrödingergleichung und ihre Bedeutung in der Quantenphysik aufgebaut werden. Methodische Analyse Für interessierte und mathematisch versierte Schülerinnen und Schüler dürften die Herleitungen hin zur Schrödingergleichung zwar anspruchsvoll sein, durch die vielen Möglichkeiten mit entsprechenden Animationen, Näherungen und Vereinfachungen aber gut nachvollziehbar sein. Ablauf der Unterrichtseinheit Ein Vorschlag für einen möglichen zeitlichen Unterrichtsverlauf ist aufgrund des thematischen Umfangs und der aufwendigen mathematischen Herleitungen kaum möglich. Im Rahmen der Gegebenheiten in der gymnasialen Oberstufe mit unterschiedlichen Kursangeboten werden sich Unterrichtsabläufe ergeben, die sich in Abhängigkeit von den jeweiligen Lehrplänen sehr unterscheiden werden. Deshalb soll hier auf einen vorgegeben Unterrichtsablauf verzichtet werden. Vielmehr sollte die jeweilige Lehrkraft für sich entscheiden, welche Inhalte priorisiert werden sollen und wie diese dann in dem zur Verfügung stehenden Zeitrahmen unterrichtet werden können. Fachkompetenz Die Schülerinnen und Schüler können die Grundgedanken der Schrödingergleichung mithilfe des bisher schon Gelernten nachvollziehen und beschreiben. sind in der Lage, mit den entsprechenden mathematischen Gesetzmäßigkeiten die Schrödingergleichung herzuleiten, anzuwenden und Berechnungen anzustellen. können die aus dem linearen Potentialtopf abgeleiteten Formeln auf das Wasserstoffatom in guter Näherung übertragen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Aggregatzustände und Aggregatzustandsänderungen

Unterrichtseinheit

In dieser Unterrichtseinheit für den Physikunterricht der Sekundarstufe I lernen die Schülerinnen und Schüler die Temperatur als physikalische Größe kennen. Sie führen Temperaturmessungen durch und untersuchen die Auswirkungen von Temperaturänderungen bei den drei Aggregatzuständen. Dabei werden Bezüge zum Sanitär-, Heizungs- und Klimahandwerk hergestellt. Die Unterrichtseinheit bearbeitet entsprechend des Hessischen Lehrplans für das Fach Physik das Thema “Aggregatzustände und Aggregatzustandsänderungen“. Konkret sind die behandelten Inhalte im Themenfeld “Wärmelehre“ verankert. Die Unterrichtseinheit bettet Beispiele und Anwendungen aus dem Sanitär-, Heizungs-, Klimahandwerk in das physikalische Themenfeld der Thermodynamik ein. In der ersten Doppelstunde wird zunächst anhand eines Experiments zum subjektiven Temperaturempfinden das Thermometer als Instrument zur Temperaturmessung eingeführt. Die Schülerinnen und Schüler lernen verschiedene Thermometer und Temperaturskalen kennen und üben den Umgang mit dem Thermometer im Experiment. Die Auswertung des Experimentes erfolgt angeleitet in Form eines Temperatur-Zeit-Diagramms. Anknüpfend an das Sanitär-, Heizungs-, Klimahandwerk wenden die Schülerinnen und Schüler ihr in der ersten Doppelstunde erworbenes Wissen an, indem sie Thermometer und Temperaturmessungen an der heimischen Heizungsanlage entdecken und beschreiben. In der zweiten Doppelstunde lernen die Schülerinnen und Schüler die drei Aggregatzustände anhand eines Videos kennen. Sie beschreiben diese mit Hilfe des Teilchenmodells und wiederholen dabei den Modellbegriff. In der letzten Doppelstunde wird anhand verschiedener Freihand-Experimente das Verhalten verschiedener Körper bei Wärmezufuhr zunächst experimentell untersucht und anhand dessen wesentliche Kenntnisse zur Volumenänderung von festen Körpern, Flüssigkeiten und Gasen bei Temperaturänderungen erworben und formuliert. Die im Experiment erworbenen Kenntnisse werden anschließend auf verschiedene Beispiele aus dem Heizungsbereich angewendet. Die in der Unterrichtseinheit enthaltenen Themenbereiche Wärme, Temperatur, Temperaturmessungen und Aggregatzustände begegnen den Schülerinnen und Schülern in ihrem Alltag. Physikalische Inhalte werden in einen für die Lernenden sinnvollen Kontext, in diesem Fall schwerpunktmäßig aus dem Sanitär-, Heizungs- und Klimabereich, eingebettet. Dadurch kann die Unterrichtseinheit das Interesse der Schülerinnen und Schüler wecken, da sie ihnen ermöglicht, physikalische Phänomene in ihrem täglichen Leben zu erkennen und besser zu verstehen. Vorkenntnisse zum Modellbegriff sind für die in der zweiten Doppelstunde vorgesehene Erarbeitung des Teilchenmodells von Vorteil. Wissenslücken in diesem Bereich können jedoch im Rahmen der Unterrichtseinheit optional wiederholt beziehungsweise nachgearbeitet werden. Dadurch können auch leistungsschwächere Lernende unterstützt werden. Leistungsstarke Schülerinnen und Schüler erhalten an verschiedenen Stellen hingegen die Möglichkeit, über zusätzliche Aufgaben und Denkanstöße Inhalte zu erarbeiten, die eine Transferleistung erfordern. Im Bereich der Temperaturmessung in der ersten Doppelstunde ist es außerdem denkbar, besonders interessierte oder leistungsstarke Schülerinnen und Schüler als Referat oder Zusatzleistung das Thema “Kalibrierung eines Flüssigkeitsthermometers“ selbstständig vorbereiten zu lassen. In der Unterrichtseinheit werden verschiedene Methoden der Wissensvermittlung wie beispielsweise Einzel- und Gruppenarbeit und die Arbeit im Plenum angewandt, um eine Aktivierung aller Lerntypen zu erreichen. Das experimentelle Arbeiten als besondere naturwissenschaftliche Methode wird in dieser Einheit verstärkt angewandt und geübt. Im Bereich der Kommunikation üben die Schülerinnen und Schüler das Erschließen und Aufbereiten von Informationen. Fachkompetenz Die Schülerinnen und Schüler unterscheiden zwischen Wärmeempfinden und Temperatur kennen das Thermometer als Instrument zur Temperaturmessung beschreiben die Aggregatzustände und Phasenumwandlungen mit Hilfe des Teilchenmodells beschreiben die Auswirkungen von Temperaturänderungen auf Festkörper, Flüssigkeiten und Gase Medienkompetenz Die Schülerinnen und Schüler entnehmen Informationen aus einem Video zu Aggregatzuständen und Phasenübergängen nutzen vorgegebene Internetquellen für die Recherche weiterführender Informationen können digitale Werkzeuge bedarfsgerecht einsetzen können Informationen aus einem Text aufgabengeleitet entnehmen und wiedergeben Sozialkompetenz Die Schülerinnen und Schüler verbessern ihre Fähigkeiten ihre Erkenntnisse adressatengerecht zu präsentieren verbessern durch verschiedene Formen der Gruppenarbeit ihre Teamkompetenzen

  • Physik
  • Sekundarstufe I

Wahrscheinlichkeiten in der Quantenphysik mit der Zeigerdarstellung berechnen

Unterrichtseinheit

Wahrscheinlichkeiten sind in der Quantenphysik für die Beschreibung und Berechnung vieler Abläufe von entscheidender Bedeutung. Dabei wird die sogenannte Zeigerdarstellung für Schülerinnen und Schüler zu einem sehr gut nachvollziehbaren Instrument, mit dem man auf relativ einfache Art und Weise Wahrscheinlichkeiten für das Auffinden eines Quantenobjektes an einem gegebenen Ort durch Konstruktion und Abmessen der jeweiligen Zeigerlänge bestimmen kann. Ausgehend von Kenntnissen zur Vektoraddition werden die Lernenden damit vertraut gemacht, wie man in Abhängigkeit der Phasendifferenzen von sich an einer bestimmten Stelle überlagernden Quantenobjekt durch Zeigerkonstruktion eine resultierende Wahrscheinlichkeitsamplitude erstellen kann. Durch das bereits bekannte Quadrieren dieser Größe lassen sich relative Wahrscheinlichkeiten für bestimmte Orte ermitteln, die aber, trotz der Einfachheit der Bestimmung, sehr aussagekräftig sind. Wahrscheinlichkeiten in der Quantenphysik mit der Zeigerdarstellung berechnen Mithilfe der Zeigerdarstellung wird die Berechnung von Wahrscheinlichkeiten in der Quantenphysik für die Lernenden anschaulicher und nachvollziehbarer. Der abstrakte Wellenbegriff, der bei Quantenobjekten (QO) beim Durchgang durch Mehrfachspalte zur Anwendung kommt, wird durch die wellenförmige Zeigerbewegung geometrisch so dargestellt, dass sie mit bereits aus anderen Teilbereichen der Physik bekannten Gesetzmäßigkeiten gut verstanden werden kann. Vorkenntnisse Physikalische Vorkenntnisse sind dahingehend gegeben, dass die vektorielle Addition – etwa von Kräften – hinreichend bekannt ist. Die Umsetzung auf QO in der Quantenphysik sollte deshalb keine zu großen Schwierigkeiten machen. Didaktische Analyse Mit dem Thema "Zeigerdarstellung in der Quantenphysik" kann ein nur schwer zu verstehender Bereich der Physik – zumindest bei der Vermittlung der wichtigsten Grundlagen – gut erläutert werden und damit sehr hilfreich sein. Methodische Analyse Die "Zeigerdarstellung in der Quantenphysik" stellt für die Lernenden eine sehr gute Möglichkeit dar, ein insgesamt sehr komplexes und schwieriges Thema mit einem einfachen und gleichzeitig aber sehr anschaulichen "Hilfsmittel" gut verstehen zu können. Fachkompetenz Die Schülerinnen und Schüler können das wellenförmige Verhalten von Quantenobjekten mit der Zeigerdarstellung beschreiben und einfache Berechnungen ausführen. wissen um die Bedeutung der Zeigerdarstellung für das Verständnis der grundlegenden Gesetzmäßigkeiten der Quantenphysik. bekommen mithilfe der Zeigerdarstellung eine konkrete Vorstellung für die Bedeutung der Wellenfunktion in der Quantenphysik. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden etc. diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Hybridmotoren – das Beste aus beiden Welten

Unterrichtseinheit

In dieser Unterrichtseinheit für die Sekundarstufe I für den Physikunterricht setzen sich Lernende mit den Besonderheiten des Hybridantriebs auseinander. Von unterschiedlichen Antriebsarten und deren Funktionsweise über verschiedene Arten der Energieumwandlung und Energieerhaltung lernen die Schülerinnen und Schüler physikalische Konzepte mit Sachbezug zum Kfz-Gewerbe kennen. Was bedeutet es, Vorteile aus zwei Motorenarten zu kombinieren, um Vorteile für technische Entwicklungen zu erzielen? Wie kann man verschiedene physikalische Prozesse gleichzeitig nutzen, um die Effizienz zu steigern? Mit diesen und verwandten Fragen beschäftigen sich die Schülerinnen und Schüler anhand von drei Arbeitsblättern in dieser Unterrichtseinheit. Es geht darum, sich mit dem Hybridantrieb auseinanderzusetzen und herauszufinden, warum er das Beste aus zwei Welten vereint. Ziel der Unterrichtseinheit ist es, diese Antriebsart kennenzulernen und mit anderen Antriebsarten zu vergleichen. Es ist sinnvoll, die Unterrichtseinheiten zum Verbrennungsmotor und zum Elektromotor vorzuschalten. In der ersten Stunde nähern sich die Schülerinnen und Schüler der Frage, welche beiden Antriebsarten im Hybridauto vereint sind. Sie erarbeiten, welche Technik welche Funktion erfüllt und lernen dabei, zwischen Energiespeicher und Energiewandler zu unterscheiden. Anschließend bestimmen sie anhand vorgegebener Kriterien Merkmale von Verbrenner-, Elektro-, und Hybridautos. Die Lernenden recherchieren selbstständig ein Hybridmodell, überprüfen die erarbeiteten Merkmale des Hybridfahrzeugs und nehmen eine Einordnung und Unterteilung vor. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise eines Hybridantriebs kennen. Die Lernenden setzen sich mit den Antriebskomponenten auseinander, indem sie einen Lückentext ausfüllen. Anhand von zwei Abbildungen erarbeiten sie die Unterschiede zwischen Elektro- und Hybridantrieb. Mit diesem Wissen erarbeiten die Lernenden anhand einer Animation zum Energiefluss eines Hybridautos die Vorgänge in den verschiedenen Betriebsphasen. Sie erarbeiten, welcher Motor in welcher Betriebsphase zum Einsatz kommt und warum und wie die Energieumwandlung funktioniert. Optional wird eine Zusatzaufgabe angeboten. Die Lernenden werden aufgefordert, die Infrastruktur für Elektro- und Hybridfahrzeuge aktiv wahrzunehmen. Dazu recherchieren sie in ihrem schulischen Umfeld Tankstellen, Ladesäulen und Werkstätten, die auf Elektro- und Hybridfahrzeuge spezialisiert sind und lernen verschiedene Recherchemöglichkeiten kennen. Die Lernenden vertiefen zudem ihr erworbenes Wissen über Energieumwandlung und Energieerhaltung. Dazu lesen sie einen kurzen Informationstext über die physikalischen Grundlagen, die verschiedenen Energieformen und die Energieumwandlung in einem Hybridauto. Das erworbene Wissen fassen sie zusammen, indem sie Beispiele zur Energieumwandlung sammeln. Die Schülerinnen und Schüler lernen die Energierückgewinnung durch Rekuperation kennen und erarbeiten die Funktionsweise anhand eines Videos, das den Vorgang zielgruppengerecht veranschaulicht. Es folgt ein Quiz zum Hybridantrieb, das die wichtigsten Inhalte spielerisch abfragt. Das Quiz kann in Kahoot erstellt werden, um den Spaßfaktor, die Motivation und die Interaktivität zu erhöhen. Die Einheit endet mit einem Rollenspiel, in dem die Lernenden ein Beratungsgespräch simulieren. Indem die Lernenden einem fiktiven Kunden/einer fiktiven Kundin die Funktionsweise des Hybridfahrzeugs, den Unterschied zwischen den Antriebsarten und den Vergleich zum Elektroauto erklären und die Vor- und Nachteile des Hybrids erläutern, übertragen sie das erworbene Wissen auf eine konkrete Situation. Die Aufgabe verdeutlicht das vielfältige Wissen, das für ein solches Beratungsgespräch im Kfz-Gewerbe erforderlich ist. Die Reflexion des Gelernten, der Unsicherheiten und Herausforderungen während des Rollenspiels kann als Ausgangspunkt für die Wiederholung und Vertiefung der Inhalte mit der Lerngruppe dienen. Verschiedene Autos mit unterschiedlichen Antriebsarten sehen die Schülerinnen und Schüler jeden Tag, beispielsweise auf dem Weg zur Schule. Dabei nehmen sie von außen oft keine offensichtlichen Unterschiede wahr. Die Unterrichtseinheit zum Hybridantrieb ist darauf ausgelegt, dieses alltägliche Phänomen zu durchleuchten und den Lernenden ein tiefergehendes Verständnis für die Antriebsart (Hybrid) zu vermitteln. Vor dieser Unterrichtseinheit sollten die Grundlagen des Verbrennungsmotors und des Elektromotors sowie deren Funktionsweise und Aufbau behandelt worden sein. Sie richtet sich an Lernende, die ein grundlegendes Verständnis dieser Antriebsarten mitbringen. Von Vorteil ist ebenfalls Grundlagenwissen über Energiearten, Energieumwandlung und Energiespeicherung. Diese Vorkenntnisse bilden die Basis für das Verständnis der Vorteile eines Hybridantriebs, der als Synthese der besten Eigenschaften beider Welten gilt. Um die komplexen Vorgänge des Hybridantriebs verständlich zu machen, wurden die Inhalte didaktisch reduziert aufbereitet. Beispielsweise wurden lediglich die wesentlichen Energiewandlungsprozesse eingeführt. Hierbei spielen vor allem die Begriffe "mechanische", "elektrische" und "chemische" Energie eine zentrale Rolle. Unterkategorien wie "kinetische Energie" und "potenzielle Energie" werden zwar erwähnt, aber nur oberflächlich behandelt, insbesondere die Lageenergie (potenzielle Energie) wird nicht detailliert vertieft. Komplexe Vorgänge werden stets durch eine Abbildung, eine Animation oder ein Video veranschaulicht, um das Thema auf verschiedenen Wahrnehmungsebenen zugänglich zu machen und das Verständnis zu unterstützen. Differenzierte Aufgabenstellungen mit variierenden Schwierigkeitsgraden ermöglichen es allen Schülerinnen und Schülern, die Inhalte auf ihrem individuellen Niveau zu erschließen. Hilfestellungen wie Tipp-Boxen und veranschaulichende Grafiken unterstützen dabei das Lernen und Verstehen, während Wort-Kästen das Leseverständnis fördern und bei der Erschließung unbekannter Begriffe helfen. Die Unterrichtseinheit bedient sich einer Vielfalt an Medienformaten wie Videos, interaktiven Karten und Texten mit Vorlesefunktion, um unterschiedliche Lerntypen anzusprechen. Diese multimediale Herangehensweise ermöglicht es den Lernenden, die Informationen auf vielfältige Weise aufzunehmen und zu verarbeiten. Sie fördert individuelles Lernen und eine vertiefte Auseinandersetzung mit den Lehrinhalten. Ein Schwerpunkt der Unterrichtseinheit ist das forschend-entdeckende Lernen. Neben der Vermittlung theoretischer Grundlagen bieten Erkundungsaufgaben direkte Anknüpfungspunkte an die Lebenswelt der Schülerinnen und Schüler. Die Erforschung der Infrastruktur für Hybridfahrzeuge in ihrer eigenen Region schafft einen konkreten Realitätsbezug. Durch den konkreten Bezug zum Kfz-Gewerbe wird ein Bewusstsein für die eigene Umwelt geschaffen. Die praxisnahen Aufgaben stärken die Selbstständigkeit und das kritische Denken der Lernenden. Die Unterrichtseinheit bietet zahlreiche gesellschaftswissenschaftliche Bezüge. Die Analyse des Schadstoffausstoßes verschiedener Fahrzeugtypen ermöglicht Diskussionen über aktuelle Gesetzgebungen, den Ausbau der Infrastruktur und Bemühungen zur Schadstoffreduktion im Kfz-Gewerbe. Eine vertiefende Einheit zur Nachhaltigkeit im Verkehrssektor kann fachübergreifende Zusammenhänge verdeutlichen. Durch Gruppen- und Paararbeit wird die Zusammenarbeit unter den Schülerinnen und Schülern gefördert. Sie können ihr Wissen austauschen, sich gegenseitig unterstützen und gemeinsam Aufgaben erarbeiten. Diese kooperativen Lernformen stärken soziale Kompetenzen und fördern die Teamarbeit der Lerngruppe. Ein abschließendes Rollenspiel stellt einen praktischen Anwendungsbezug her, indem die Lernenden als Beraterinnen und Berater in einem fiktiven Beratungsgespräch die Funktionsweise und Vorteile eines Hybridfahrzeugs erläutern. Die Reflexion über ihre Erfahrungen während des Rollenspiels dient als Ausgangspunkt für eine vertiefte Wiederholung und Festigung der erlernten Inhalte. Fachkompetenz Die Schülerinnen und Schüler lernen Aufbau und Funktionsweise eines Hybridantriebs kennen. unterscheiden zwischen Energiespeichern und Energiewandlern. verstehen, warum Hybridmotoren effizient sind. lernen die verschiedenen Arten der Energieumwandlung mit Sachbezug zum Hybridauto kennen. beziehen die verschiedenen Energiearten (elektrische, chemische und thermische Energie) auf den Energiefluss und die Energieumwandlung im Hybridfahrzeug. lernen die Rekuperation im Zusammenhang mit dem Elektroantrieb kennen. vergleichen die verschiedenen Antriebsarten (Verbrennungsmotor, Elektroantrieb, Hybridantrieb) hinsichtlich der physikalischen Vorgänge. Medienkompetenz Die Schülerinnen und Schüler gewinnen Informationen aus verschiedenen Medien wie Text, Video, Webseiten und interaktiven Grafiken. recherchieren selbstständig im Internet nach genannten Kriterien und Informationen und lernen, die recherchierten Informationen zu selektieren. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler hören zu und erkennen relevante Informationen zu einer bestimmten Fragestellung. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. führen eine Pro-und-Contra-Diskussion und lernen, eigene Standpunkte zu vertreten sowie fremde Standpunkte zu akzeptieren. übertragen die gesammelten Informationen in ein Rollenspiel und lernen, Informationen zielgruppengerecht zu vermitteln. setzen sich im Zusammenhang mit dem Thema aktiv mit ihrer Umgebung auseinander.

  • Physik
  • Sekundarstufe I

Statik an Stationen

Kopiervorlage

Die Unterrichtsmaterialien zum Thema Statik sind darauf ausgelegt, zentrale Fachinhalte wie Belastungen, Kräfte, stabile Dreiecke und den Schwerpunkt auf spannende und praxisnahe Weise zu vermitteln. Dabei steht der handlungsorientierte Ansatz im Vordergrund, um den Lernenden ein grundlegendes Verständnis für die Materie zu ermöglichen. Die Unterrichtsmaterialien umfassen fünf verschiedene Stationen, die jeweils technische Experimente zur Statik beinhalten. Diese Experimente verdeutlichen anschaulich die theoretischen Prinzipien und deren Anwendung in der realen Technik. Durch die praktische Auseinandersetzung mit den Modellen und Materialien wird ein direkter Bezug zur technischen Praxis hergestellt, was das Lernen interessanter und nachhaltiger macht. Der Aufbau der Stationsarbeit fördert zudem ein differenziertes Arbeiten, indem er den Schülerinnen und Schülern die Möglichkeit bietet, individuell oder in Kleingruppen zu arbeiten und sich mit den spezifischen Aspekten der Thematik auseinanderzusetzen. Die Ausarbeitung enthält fünf Stationen: 1. Kräfte an Bauwerken: Diese Station beleuchtet die verschiedenen Kräfte, die auf Bauwerke einwirken. Dabei wird thematisiert, wie äußere Einflüsse und innere Spannungen die Stabilität und Sicherheit von Bauwerken beeinflussen. 2. Belastungen eines Trägers: Hier wird konkretisiert, wie Druck- und Zugkräfte auf einen einzelnen Träger wirken. Die Lernenden untersuchen, wie diese Belastungen die Struktur und Belastbarkeit des Trägers beeinflussen. 3. Dreiecksverbund: In dieser Station wird die Bedeutung stabiler Dreiecke für Konstruktionen hervorgehoben. Die Lernenden erfahren, wie durch den Dreiecksverbund feste Verbindungen hergestellt werden können und vergleichen experimentell Dreieck und Viereck. Abschließend wird die Frage geklärt, warum Dreiecke stabil sind. 4. Profile: Die Station zeigt, wie Profile zur Stabilisierung von Strukturen beitragen und gleichzeitig Material einsparen können. Es wird untersucht, wie verschiedene Profilformen die Festigkeit und Effizienz von Bauteilen beeinflussen. Die Lernenden stellen mit den Materialien verschiedene Profile her und untersuchen deren Stabilität. Abschließend suchen sie nach Anwendungen von Profilen in der Umgebung. 5. Schwerpunkt: Hier wird die Bedeutung des Schwerpunkts für die Statik von Artefakten behandelt. Die Schülerinnen und Schüler lernen, den Schwerpunkt von Gegenständen zu bestimmen und erarbeiten, wie die Lage des Schwerpunkts die Stabilität und das Gleichgewicht von Bauwerken bestimmt. Die Bearbeitung dieser Stationen ist gut geeignet, um ein fachliches Fundament für ein anschließendes größeres technisches Projekt zu legen. Ein solches könnte beispielsweise der Bau einer Modellbrücke sein, bei dem die erworbenen Kenntnisse und Fähigkeiten praxisnah angewendet und vertieft werden. Durch diese strukturierte Vorgehensweise wird den Lernenden ein Verständnis der statischen Prinzipien vermittelt, welches sie in zukünftigen Aufgaben anwenden können. Eine Materialliste kann im Downloadbereich heruntergeladen werden. Fachkompetenz Die Schülerinnen und Schüler verstehen Grundprinzipien der Statik. finden hierzu Anwendungen in der realen Technik. verstehen technische Probleme und deren Lösungen. Medienkompetenz Die Schülerinnen und Schüler suchen relevante Informationen im Internet. experimentieren mit Modellen und Materialien. dokumentieren und bewerten die Experimente. Sozialkompetenz Die Schülerinnen und Schüler arbeiten gemeinsam in Kleingruppen. experimentieren weitestgehend selbstständig und eigenverantwortlich.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Unterrichtsmaterial und News für das Fach Astronomie

Hier finden Lehrkräfte der Sekundarstufen I und II kostenlose und kostenpflichtige Arbeitsblätter, Kopiervorlagen, Unterrichtsmaterialien und interaktive Übungen mit Lösungsvorschlägen zum Download und für den direkten Einsatz im Astronomie-Unterricht oder in Vertretungsstunden. Ob Materialien zu Astrophysik, Kosmologie, Sterne, Galaxien, Planeten oder Sonnensysteme: Dieses Fachportal bietet Lehrerinnen und Lehrern jede Menge lehrplanorientierte Unterrichtsideen, Bildungsnachrichten sowie Tipps zu Apps und Tools für ihren Astronomieunterricht an Gymnasien, Gesamt-, Real-, Haupt- und Mittelschulen. 

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.

ANZEIGE
Premium-Banner