Materialsammlung Kernphysik
Auf dieser Seite haben wir Unterrichtsmaterialien zum Thema Kernphysik zusammengestellt. Zu den vier Unterthemen "Kernaufbau und Kerneigenschaften", "Natürliche und künstliche Radioaktivität", "Kernreaktionen" und "Kernspaltung und Kernfusion" finden Sie jeweils kurze Beschreibungstexte sowie passgenaue Unterrichtsvorschläge.
- Physik / Astronomie
- Sekundarstufe II
- variabel
Kernphysik ist der Zweig der Physik, der Aufbau, Struktur und auftretende Wechselwirkungen von und in Atomkernen beschreibt. Sie unterscheidet sich von der Atomphysik, die sich mit den vielfältigen Abläufen in der Atomhülle und den darin enthaltenen (negativ geladenen) Elektronen beschäftigt. Einteilen kann man die Kernphysik in die Teilbereiche Kernaufbau und Kerneigenschaften, Radioaktivität, Kernreaktionen sowie Kernspaltung und Kernfusion.
Kernaufbau und Kerneigenschaften
Die mit energiereichen α-Teilchen durchgeführten Streuversuche des neuseeländischen Physikers Ernest Rutherford (1871–1937) brachten im Jahr 1911 zutage, dass Atome keine homogenen und unteilbaren Massekugeln sind, sondern aus einem positiv geladenen Atomkern (Durchmesser je nach Teilchenzahl in der Größenordnung von 10-15 m) und einer negativ geladenen Atomhülle (Größenordnung von 10-10 m) bestehen.
Dieser Atomkern setzt sich aus Protonen und Neutronen zusammen, die man als Nukleonen bezeichnet. Deren Massen liegen in der Größenordnung von 10-27 kg; die Protonen tragen eine positive elektrische Ladung, während die Neutronen keine elektrische Ladung besitzen.
Experimente in den 60er Jahren des 20. Jahrhunderts mit Teilchenbeschleunigern zeigten, dass Protonen und Neutronen jeweils aus zwei noch kleineren Teilchen aufgebaut sind – den sogenannten Quarks, die ihrerseits nach Up-Quarks und Down-Quarks unterschieden werden. So besteht ein Proton aus zwei Up-Quarks und einem Down-Quark, während ein Neutron aus einem Up-Quark und zwei Down-Quarks besteht.
Mithilfe von Kernmodellen wie dem Potentialtopfmodell, Tröpfchenmodell und dem Schalenmodell werden die Abläufe im Atomkern unter Einbeziehung der Quantenphysik beschrieben.
Unterrichtsmaterialien zu Kernaufbau und Kerneigenschaften
- Eine quantenmechanische Beschreibung des Wasserstoffatoms
Mit der Unterrichtseinheit zur quantenmechanischen Beschreibung des Wasserstoffatoms findet der Zyklus zur modellhaften Erklärung der Vorgänge in einem Atom seinen Abschluss. Ausgehend vom…
- Quantenphysik multimedial: Rutherford-Streuung
Das Video zeigt die Streu-Experimente von Rutherford, die zur Entdeckung des Atomkerns geführt haben.
Natürliche und künstliche Radioaktivität
Ein weites Feld bei der Beschreibung der Vorgänge im Atomkern nimmt die Radioaktivität ein. Die naturgegebene Radioaktivität tritt als radioaktive Strahlung – bis auf wenige Ausnahmen wie Kohlenstoff C-14 – bei schweren Atomkernen auf und kann vom Menschen nicht beeinflusst werden.
Im Gegensatz dazu ist es aber auch möglich Radionuklide (Atome gleicher Protonenzahl, aber unterschiedlicher Neutronenzahl) durch Bestrahlung von Atomkernen mit Protonen, Neutronen oder Alphateilchen zu erzeugen – dann spricht man von künstlicher Radioaktivität.
Radioaktivität tritt auf in Form von Alpha-, Beta- und Gamma-Strahlung und folgt dem radioaktiven Zerfallsgesetz. Mithilfe dieser Gesetzmäßigkeit können sowohl Altersbestimmungen nach der C-14 Methode oder der Uran-Blei-Methode als auch die Messung der Durchdringungsfähigkeit radioaktiver Strahlen durchgeführt werden.
Die große Gefahr der radioaktiven Strahlung durch lebensbedrohliche Strahlungsdosen auf den Menschen ist in erster Linie der künstlichen radioaktiven Strahlung geschuldet – wie etwa durch Austritt von Radioaktivität bei Unfällen in Kernreaktoren (Tschernobyl 1986, Fukushima 2011) oder durch den Abwurf von Kernspaltungsbomben (im 2. Weltkrieg 1945 auf Hiroshima und Nagasaki) sowie ebenfalls zu Versuchszwecken bereits erfolgte Abwürfe von Wasserstoff-Fusionsbomben (zum Beispiel 1962 auf der russischen Insel Nowaja Semlja oder dem Bikini-Atoll etwa 3000 km nordöstlich von Neuguinea).
Gleichzeitig macht die Nuklearmedizin mit verfeinerten und für den Patienten zusehens besser zu vertragenden Diagnose- und Therapiemethoden in Hinblick auf Anwendung radioaktiver Substanzen und kernphysikalischer Verfahren immer größere Fortschritte. So verfügt die nuklearmedizinische Diagnostik mit der Positronen-Emissions-Tomographie (PET) sowie der Szintigrafie über Verfahren, die einen sehr präzisen Einblick in den menschlichen Körper erlauben.
Zudem können in der Strahlenbehandlung von Krebspatienten – etwa durch die Protonen- und Schwerionentherapie – mittlerweile punktgenaue Strahlendosen auf den entarteten Tumor abgegeben werden, die das den Tumor umgebende Gewebe weitgehend verschonen können.
Unterrichtsmaterialien zu natürlicher und künstlicher Radioaktivität
- Das radioaktive Zerfallsgesetz
In dieser Unterrichtseinheit zum Thema Radioaktivität werden die Abläufe des radioaktiven Zerfalls anhand von Versuchen dargestellt, ausgewertet und zu einer aussagekräftigen Formel…
- Absorption radioaktiver Strahlung
In dieser Unterrichtseinheit zum Thema Radioaktivität werden die Vorgänge beim Durchgang radioaktiver Strahlung durch Materie am Beispiel der Gamma-Strahlung exemplarisch dargestellt. Bei…
- Radioaktive Altersbestimmung
In dieser Unterrichtseinheit zum Thema Radioaktivität werden die C-14-Methode und Uran-Blei-Methode zur Bestimmung des Alters verschiedener Stoffe mithilfe der Radioaktivität gezeigt. Dabei…
- Radioaktivität: natürliche Strahlenquellen
In dieser Unterrichtseinheit geht es um die beiden natürlichen Strahlenquellen, denen der Mensch permanent ausgesetzt ist. Natürliche Strahlenbelastungen entstehen aus den Folgeprodukten der…
- Radioaktiver Niederschlag: Ablauf und Folgen eines Reaktorunfalls
In dieser Unterrichtseinheit zum Thema "Radioaktiver Fallout und die Folgen" werden anhand der Katastrophe von Tschernobyl die Abläufe und Folgen eines schwerwiegenden Nuklearunfalles…
- Nuklearmedizinische Diagnostik
In dieser Unterrichtseinheit zum Thema "Nuklearmedizinische Diagnostik" werden die heutigen Möglichkeiten und Verfahren wie etwa die Szintigraphie und die Positronen-Emissions-Tomographie…
- Strahlentherapie in der Krebsmedizin
Diese Unterrichtseinheit beschäftigt sich mit der Strahlentherapie in der Krebsmedizin - einem immer wichtiger werdenden Bereich der modernen Tumortherapie neben der Operation und der…
- Neutrinos – die Geister des Herrn Pauli
In dieser Unterrichtseinheit zum Thema Neutrinos erarbeiten die Schülerinnen und Schüler grundlegende physikalische Eigenschaften des Betazerfalls, erfahren, welche Rolle das Neutrino dabei…
Kernreaktionen
Unter einer Kernreaktion versteht man einen physikalischen Prozess, bei dem ein Atomkern durch den Zusammenstoß mit einem anderen Atomkern oder einem freien Teilchen – wie etwa einem Neutron – entweder in mindestens ein neues Atom oder in freie Nukleonen umgewandelt wird. Dabei ändern Atomkerne durch Aufnahme oder Abgabe von Teilchen ihre atomare Zusammensetzung, wobei die Gesamtzahl der an der Reaktion beteiligten Nukleonen stets erhalten bleibt.
Der radioaktive Zerfall zählt nicht zu den Kernreaktionen, weil in diesen Fällen die Reaktion nicht durch einen Zusammenstoß ausgelöst wird, sondern spontan – also nicht vorhersehbar – erfolgt.
Unterrichtsmaterialien zu Kernreaktionen
- E=mc² – Äquivalenz von Masse und Energie
Die Unterrichtseinheit zum Thema "Äquivalenz von Masse und Energie" beschäftigt sich mit der vielleicht bedeutendsten Entdeckung von Albert Einstein im Jahr 1905. Im Rahmen seiner Herleitungen…
- Atomphysik – Kernumwandlungen
Mithilfe von interaktiven Arbeitsblättern und Animationen setzen sich Schülerinnen und Schüler mit dem Lernbereich "Kernumwandlungen – Nutzen und Gefahren" in Einzel- oder Partnerarbeit…
Kernspaltung und Kernfusion
Zu den Kernreaktionen zählen sowohl der durch langsame Neutronen ausgelöste Prozess der Kernspaltung als auch der seit Jahrmilliarden in der Sonne bei Temperaturen von etwa 15 Millionen Grad ständig stattfindende Ablauf der Kernfusion. Bei beiden Formen tritt gemäß der Einsteinschen Masse-Energie-Äquivalenz ein sogenannter Massendefekt auf, der dazu führt, dass bei jedem der beiden Prozesse Energie freigesetzt werden kann.
Während die im Jahr 1939 von Otto Hahn (1879–1968) und seinen Mitarbeitern entdeckte Kernspaltung in Deutschland bereits seit 1960 durch Kernreaktoren Energie liefert, befindet sich die Kernfusionstechnik auch im Jahr 2021 nach wie vor im Forschungsstadium.
Im Gegensatz zur militärischen Forschung, die mit der Wasserstoffbombe (H-Bombe) schon Mitte des 20. Jahrhunderts eine vernichtende Fusionsbombe entwickelt hatte, ist es trotz der immens aufwendigen Forschungsreaktoren ITER, JET und Wendelstein bis heute noch nicht gelungen, die für die Fusion in einem Reaktor notwendigen Bedingungen bei Temperaturen von 100 bis 150 Millionen Grad für einen kommerziellen Reaktor zu realisieren.
Unterrichtsmaterialien zu Kernspaltung und Kernfusion
- Wie funktioniert eine Kernspaltung?
Die Unterrichtseinheit zum Thema Kernspaltung gibt den Schülerinnen und Schülern ausgehend von ihrer Entdeckung bis zur großtechnischen Nutzung bei der Energieerzeugung einen Einblick in die…
- Wie funktionieren Nuklearwaffen?
In dieser Unterrichtseinheit zum Thema Nuklearwaffen lernen die Schülerinnen und Schüler die Funktionsweise von Kernspaltungs- und Wasserstoffbomben kennen. Ausgehend von der Darlegung der…
- Übungsaufgaben und Fragen rund um die Kernenergie
Mithilfe dieses Arbeitsmaterials werden spezielle Übungsaufgaben detailliert gelöst sowie Fragen beantwortet, die sich im Zusammenhang mit der Kernenergie stellen. Dabei geht es zum einen um…
- Die Reaktorkatastrophe von Tschernobyl und die Folgen bis heute
Der 26. April 1986 wird für immer als einer der schwärzesten Tage der Energieerzeugung durch Kernkraftwerke gelten. An diesem Tag kam es bis dahin zum schwersten Unfall in der Geschichte der…