Materialsammlung Analysis
Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier.
- Mathematik / Rechnen & Logik
- Sekundarstufe I, Sekundarstufe II
- variabel
- Internetressource
Differenzialrechnung
- Vom Differenzen- zum Differenzialquotient
In dieser Unterrichtseinheit zum Thema Differenzialquotient wird die erste Ableitung mithilfe eines Java-Applets eingeführt. Die Verknüpfung zwischen grafischer Anschauung und Rechnung führt…
- Differentialgleichungen mit Ableitungsübungen für den Mathe-Unterricht
In der Einheit "Differentialgleichungen" betrachten und interpretieren die Lernenden die Zusammenhänge zwischen Werten und deren Veränderungen in Gleichungen. Bei den aufzustellenden…
- Tangenten und Normalen mit GeoGebra-Unterstützung
In dieser Unterrichtseinheit zum Thema Tangenten und Normalen werden die Berechnungen mithilfe der Mathematik-Software "GeoGebra" überprüft und analysiert, denn sie ermöglicht eine vertiefte…
Integralrechnung
- Bestimmte Integrale beGREIFEN
In diesem Fachartikel zum Thema "Bestimmte Integrale beGREIFEN" wird eine Möglichkeit zur enaktiven Veranschaulichung des bestimmten Integrals im Sinne der Montessori-Pädagogik vorgestellt,…
- Das bestimmte Integral als Flächenbilanz
Dieses Arbeitsmaterial unterstützt die Entwicklung der Flächeninhaltsgrundvorstellung vom bestimmten Integral, indem das Prinzip der orientierten Flächenmessung gezielt ins Zentrum der…
- Flächenberechnung mit TurboPlot
Die Schülerinnen und Schüler entdecken in einer Doppelstunde am Beispiel der Berechnung von Blumenbeetgrößen den Zusammenhang zwischen Flächengrößen und dem Verfahren der Integration. Da die…
Komplexere Probleme der Differenzialrechnung
- Analysis: Videos zu Steckbriefaufgaben
Dieser Videokurs für den Mathematik-Unterricht der Oberstufe zeigt, wie anhand der Eigenschaften eines Funktionsgraphen auf den zugehörigen Funktionsterm geschlossen werden kann.
- Einführung der Eulerschen Zahl
In dieser Unterrichtseinheit zur Einführung der Eulerschen Zahl bestimmen und begründen die Schülerinnen und Schüler mithilfe eines Java-Applets und rechnerischer Umformungen die Ableitung der…
Begabte fördern
- Ein(-)Blick ins Chaos – nichtlineare dynamische Systeme
Warum kann man eine Sonnenfinsternis vorausberechnen, die Lottozahlen aber nicht? Gibt es den Wetterbericht für nächstes Jahr? Wann kommt die nächste Heuschreckenplage? Ist alles schon…