Im Mathematikunterricht hilft Software dabei, Aufgaben zu lösen, die man auf dem Papier nur schwer lösen kann oder um Lösungswege anschaulicher darzustellen. Lernende können dadurch einen anderen Blickwinkel auf Fragestellungen erhalten. GeoGebra eignet sich hervorragend für den Einsatz in der Geometrie, denn die Software bietet viele Möglichkeiten mit interaktiven Materialien Inhalte zu erarbeiten.
Lernende gehen mit unterschiedlichen Voraussetzungen an den Umgang mit einem Rechner. Durch die sehr einfachen GeoGebra-Aufgaben, die hier genutzt werden, werden viele Schülerinnen und Schüler beim Erarbeiten der Lösungen selten Hilfe benötigen – falls doch, steht unter anderem ein Begleittext mit detaillierten Hinweisen zur Verfügung. Durch die entstandenen Dokumente und der Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Während der Zeit, in der viele Lernende selbständig arbeiten, können diese auch bei einfachen Fragestellungen unterstützt werden, sodass jeder und jedemm der Einstieg in den Umgang mit GeoGebra einfach und auf dem eigenen Niveau ermöglicht wird.
Das Arbeitsblatt ist in vier Teile unterteilt.
Im ersten Teil des Arbeitsblattes wird der Begriff der Kongruenz vorgestellt. Im zweiten Teil wird thematisiert, welche Möglichkeiten es gibt, kongruente Flächen entstehen zu lassen. Im dritten Teil werden dann die Achsenspiegelung, die Punktspiegelung und die Verschiebung mit interaktiven Experimentierdateien entdeckt. Diese unterstützen und veranschaulichen das Verständnis der Schülerinnen und Schüler im Umgang mit Kongruenzabbildungen und motivieren, selbst zu konstruieren. Außerdem wird das Konstruieren mit "Zirkel und Lineal" vorgestellt.
Im letzten Abschnitt befinden sich Übungsaufgaben zum Konstruieren mit GeoGebra. Die Lernenden konstruieren dazu in der GeoGebra Software allein mit den Hilfsmitteln Zirkel und Lineal und dann mit allen Möglichkeiten, die die Software zur Verfügung stellt.
Ziel des Arbeitsblattes ist es, Kongruenzabbildungen eines Kreises, eines Sterns und eines Dreiecks mithilfe der Achsenspiegelung, der Punktspiegelung und der Verschiebung zu konstruieren.
Kleinschrittig konzipierte Aufgaben und Arbeitsblätter ermöglichen es den Lernenden, selbstständig oder in Paararbeit die Inhalte zu erarbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten auftreten, können die Musterlösungen als Begleitung verwendet werden. Zu jeder Aufgabe gibt es fertige Lösungen als Download.