• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Unendliche Geschichten

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Unendliche Geschichten" zeigt, wie man selbst eine Fortsetzungsgeschichte initiieren kann. Manchmal trifft man beim Surfen im Internet auf "unendliche Geschichten", an denen mehrere gemeinsam schreiben können. Der besondere Reiz dieser Geschichten liegt in der Vielfalt der Ideen, die den Verlauf einer Geschichte prägen und interessante Wendungen enthalten.Ein Autor beginnt eine neue Geschichte, die er an einer Stelle seiner Wahl enden lässt. Andere lesen den Beginn und schreiben, wenn sie eine Idee haben, daran weiter. Es hört sich einfacher an als es ist, denn zumindest im Grundschulbereich ist Lesekompetenz der Schlüssel, um die angefangenen Geschichten fortzusetzen. Je länger eine Geschichte wird, umso mehr muss gelesen, verstanden und behalten werden, um sie logisch fortsetzen zu können. Kinder im Grundschulalter schreiben gerne Geschichten, besonders dann, wenn sie nicht an ein vorgegebenes Thema gebunden sind. Nach einer kurzen Einführung zu dieser Art des Geschichtenschreibens im Sprachunterricht muss noch der Umgang mit dem Medium eingeübt werden. Dann kann mit dem Verfassen unendlicher Geschichten begonnen werden.Zum Schreiben solcher Geschichten ist ein Skript notwendig, das folgende Anforderungen erfüllen muss: Mehrere Geschichten müssen parallel geschrieben werden können Das Schreiben von nur einer Geschichte würde die Schreibmotivation erheblich einschränken, da eigene Ideen für neue Geschichten nicht umgesetzt werden könnten. Die Gefahr, dass bei mehreren begonnen Geschichten keine Geschichte fertig geschrieben wird, ist natürlich gegeben. Die Erfahrung wird hier zeigen, ob die Anzahl der begonnenen Geschichten beschränkt werden muss. Einzelne Kapitel sollten zu einer Geschichte zusammengefügt werden Bei Gästebüchern oder in Foren muss man immer ein neues Fenster öffnen, um den Kommentar oder Eintrag auf einen Beitrag sehen zu können. Dies ist bei einer unendlichen Geschichte nicht wünschenswert. Der Text soll hier automatisch als komplette Einheit zur Verfügung stehen. Das hat mehrere Vorteile: Die Geschichte kann, wenn ein neues Kapitel angefügt werden soll, in der Gesamtheit gelesen werden. So stellen die Schülerinnen und Schüler leichter den Bezug her. Die Geschichten, die Kinder in der Grundschule schreiben, werden ebenfalls fortlaufend geschrieben, so dass hier kein Bruch gegeben ist. Die Bedienung soll einfach sein Komplizierte Bedienung erfordert eine intensive und zeitintensive Einführung und Hilfe. Hinzu kommt, dass komplizierte Bedienbarkeit immer wieder zu Fehlern führt und damit Grundschüler unnötig verunsichert. Ein einfach zu bedienendes Skript schließt das weitgehend aus und sorgt so für einen reibungslosen Ablauf beim Geschichtenschreiben. Alle Mitschreiber sollen genannt werden, aber nicht in jedem Abschnitt Die Namensnennung der Autorinnen und Autoren in jedem geschriebenen Abschnitt ist nicht gewünscht. Der direkte Vergleich der Schülerinnen und Schüler soll ausgeschlossen werden. Die Nennung der beteiligten Kinder im Kopf der Geschichte ist wichtig, da sie hier als Autoren auf das Produkt verweisen und sich inhaltlich identifizieren können. Sicherheit hat Vorrang Das Skript sollte so konfiguriert werden können, dass die Kinder geschützt sind. Aus diesem Grund soll das Einsehen der E-Mail-Adresse verhindert werden, um die Kinder so vor SPAM-Mails und ähnlichen unerfreulichen Dingen zu schützen. Skript in deutscher Sprache Viele Skripte, die im Internet zur Verfügung gestellt werden, sind in englischer Sprache verfasst. Die Nutzung hätte zur Folge, dass Grundschulkinder Schwierigkeiten bei der Bedienung hätten. Um dies auszuschließen, muss das Skript in deutscher Sprache sein oder mit geringem Aufwand ins Deutsche übertragbar sein. Wenn mehrere Personen Inhalte auf einer Webseite veröffentlichen können, ist es unerlässlich, dass es Verantwortliche gibt, die sich um das Projekt kümmern und missbräuchliche Nutzung verhindern. Das Editieren von Beiträgen muss möglich sein Da bei einem offenen System Missbrauch nicht auszuschließen ist, muss der Administrator die Beiträge ändern oder löschen können. Ohne Anmeldung geht gar nichts Eine kleine Hürde ist die Nutzeranmeldung. Zuerst müssen die aufgestellten Regeln für das Schreiben akzeptiert werden bevor es zur eigentlichen Anmeldung mit Abfrage der Benutzerdaten geht. Wichtig ist, dass die Kinder bei der Eingabe der E-Mail-Adresse die Option "nicht zeigen" wählen, um, wie bereits beschrieben, geschützt zu sein. Das Mitloggen der IP-Adresse bei der Anmeldung ermöglicht die Rückverfolgung zum Computernutzer. Bei Bedarf soll eine "Badword -Liste" erstellt werden können In eine Liste werden unerwünschte Wörter eingetragen. Tauchen Wörter aus der Liste im Text auf, wird es nicht in der Geschichte erscheinen, da vor dem Veröffentlichen des Kapitels die "Badword -Liste" abgefragt wird. E-Mail-Benachrichtigung bei neuen Einträgen Die Benachrichtigung dient zur zusätzlichen Kontrolle, um zu verhindern, dass unerwünschte Texte erscheinen. Die Lehrkraft hat so die rechtzeitig die Möglichkeit, Texte zu löschen. Möglichkeit zur Änderung der Templates Das Aussehen des Eingabeformulars wird bei dieser Art von Skripten meist durch Templates gesteuert. Ein Template wird einmal angelegt und das Skript veröffentlicht anhand der Vorgaben im Template die geschriebenen Kapitel. Durch die Einflussnahmemöglichkeit erhält ein Geschichtenprojekt ein individuelles Erscheinungsbild. Das Skript sollte kostenlos sein Ein nicht unwichtiger Aspekt bei der herrschenden Finanznot von Schulen. Ein besonderer Dank gilt somit all den vielen Usern, die Skripte kostenlos zur Verfügung stellen und so dazu beitragen, dass Ideen verwirklicht werden können. Technische Voraussetzungen Je anspruchsloser ein Skript an die serverseitigen Voraussetzungen ist, umso einfacher ist die Einbindung in das eigene Angebot. Wenn ein Server, auf dem das Skript laufen soll, alle technischen Voraussetzungen bietet (Eigene CGI-Skripte, MySQL-Datenbank ...), kann allerdings auch jedes Skript genommen werden, das die obigen Anforderungen erfüllt. Viele Web-Hoster bieten entsprechende Komplettpakete. Suche nach geeigneten Skripten Die Suche nach einem Skript über die Suchmaschine Google brachte eine große Zahl von Treffern. Die Sichtung, Installation und das Ausprobieren der Skripte war eine zeitintensive Angelegenheit, mit der ich hier nicht langweilen möchte. Schließlich war ein geeignetes und dazu noch kostenloses Skript gefunden worden, das den oben aufgeführten Anforderungen entspricht. Allerdings stellte dieses Skript auch die höchsten Anforderungen an den Server. Erste Schritte Nach der (automatisch ablaufenden) Installation des Skripts, der Übertragung ins Deutsche und nach einigen kleineren Tests habe ich es den Schülerinnen und Schülern des dritten und vierten Schuljahres an meiner Schule vorgestellt. Diese Möglichkeit des Geschichtenschreibens kommentierten die Kinder spontan als "tolle Idee". In einer Stunde wurden Anmeldung und Login vorgestellt und eingeübt. Ideensammlung Ideen für neue Geschichten wurden schnell genannt und aufgegriffen. Parallel wurden im Sprachunterricht die Regeln erarbeitet (wiederholt), die Grundlage für das Schreiben von Geschichten sind. Begonnen wurden im Unterricht allerdings keine der dort zu findenden Geschichten, da die Nutzung des Angebots auf freiwilliger Basis geschehen sollte. In der Freiarbeit bestand das Angebot, Entwürfe von neuen Geschichten oder Fortsetzungen zu schreiben und zu besprechen. Anschließend müssen die Userdaten eingegeben werden. Pflichtfelder sind der User- oder Login-Name (frei wählbar), das Passwort (zur Sicherheit mit wiederholter Eingabe), der angezeigte Name, die E-Mail-Adresse und die Anzeige der E-Mail Adresse (hier soll zwingend "nein" ausgewählt werden, damit die Schüler von Spam-Mails verschont bleiben). Los geht's Über die Auswahl unterschiedlicher Optionen kann die Anzeige der Geschichten gesteuert werden. So können alle begonnen Geschichten, alle fertigen Geschichten oder Geschichten nach Kategorien angezeigt werden. Der Login Die Registrierung als neuer Schreibling ist denkbar einfach. Ein Klick auf "Registrieren" öffnet eine neue Seite. Vorab müssen die Benutzerregeln akzeptiert werden: Die Autoren sind immer freundlich zueinander. Hinweise auf Rechtschreibfehler sind unerwünscht.

  • Deutsch / Kommunikation / Lesen & Schreiben
  • Sekundarstufe I, Sekundarstufe II

Geschichte des Universums: Erstellen von Zeitachsen

Kopiervorlage

In diesem Arbeitsmaterial von ESERO Germany setzen sich die Lernenden mit der Geschichte des Universums auseinander. Dies geschieht mittels der Erstellung von Zeitstrahlen. Die Weiten des Universums sind unendlich und teils unergründlich. Die Zahlen, mit denen bei der Erforschung des Universums gerechnet wird, sind oftmals so groß, dass sie unser Vorstellungsvermögen sprengen. Gerade für junge Lernende ist das hohe Alter des Universums möglicherweise nur schwer zu verstehen und in die richtige Perspektive zu rücken. Mit dieser kreativen und mathematischen Forschungsaufgabe können Schülerinnen und Schüler einen Einblick in die Hauptereignisse der Geschichte des Universums gewinnen und sie auf den leicht verständlichen Zeitmaßstab eines Jahres übertragen. Das Arbeitsmaterial umfasst Hintergrundinformationen zu folgenden Thematiken: Eine kurze Geschichte des Universums Asteroiden Kometen Millionen, Milliarden und Zehnerpotenzen Darüber hinaus gibt es für die Lernenden einen Aufgabenblock mit Arbeitsblättern, welcher sich der Erstellung einer persönlichen Zeitachse sowie einer Zeitachse für das Universum widmet. Dazu gibt es Informationen zur Berechnung von Zeitmaßstäben sowie zu Schlüsselereignissen in der Geschichte des Universums. Eine Lehranleitung sowie Lösungen der Arbeitsblätter für die Lehrkraft sind ebenfalls im Material enthalten. Bei den Aufgaben in diesem Arbeitsmaterial arbeiten die Schülerinnen und Schüler gruppenweise, um Zeitachsen zu erstellen: zunächst eine für ihr eigenes Leben und dann eine für die Hauptereignisse in der Geschichte des Universums. Anschließend rechnen sie die Ereignisse in der Geschichte des Universums auf den Maßstab eines Jahres um, um ein besseres Gefühl für die Verhältnisse der zeitlichen Abläufe zu gewinnen. Ferner untersuchen die Lernenden die Ereignisse und erstellen Werkstücke als Begleitinformation, um sie schließlich vor der Klasse zu präsentieren. Fachkompetenz Die Schülerinnen und Schüler lernen, dass das Universum sehr alt ist. lernen, dass die Erde erst vor relativ kurzer Zeit entstand. lernen, dass die Menschen erst seit relativ kurzer Zeit auf der Erde leben. lernen die Erstellung einer Zeitachse von Ereignissen ab dem Beginn des Universums bis heute. lernen den Einfluss von Einschlägen auf die Entwicklung der Erde. Sozialkompetenz Die Schülerinnen und Schüler arbeiten in Gruppen an ihren Zeitachsen. präsentieren ihre Forschungsergebnisse im Plenum.

  • Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe I

Verlust einer Dimension – die Zentralperspektive

Unterrichtseinheit

Das Computeralgebrasystem MuPAD dient im Rahmen einer fächerübergreifenden Projektarbeit als Werkzeug zur Gewinnung von Einsichten in die mathematischen Grundlagen der Zentralperspektive. Zudem stehen auch ideengeschichtliche Aspekte im Vordergrund.Querverbindungen zwischen Wissenschaft und Kunst aufzuzeigen, ist in Lehrplänen ein oft genanntes Bildungsziel, das jedoch selten konkretisiert wird. Doch so befruchtend in der Geschichte der Disziplinen Kunst und Mathematik Berührungen und Begegnungen waren, so anregend können sie für den Unterricht sein. Sagt man von der Philosophie, sie sei "ihre Zeit in Gedanken gefasst" (Georg Wilhelm Friedrich Hegel), so kann man von der Kunst sagen, sie sei ihre Zeit in Bildern ausgedrückt. Die Beschäftigung mit der Zentralperspektive, insbesondere mit einer Betrachtung im kunsthistorischen Längsschnitt, gibt Zugriff auf Querverbindungen zwischen Mathematik, Kunst und Philosophie und legt offen, dass epochale Veränderungen nie Sache einer Wissenschaft oder der Gesellschaft allein waren, sondern als Strömung stattfanden, die alle Bereiche von Kultur und Zivilisation umfasste.Von Leonardo da Vincis Äußerung "Die erste Absicht des Malers ist, zu machen, dass eine ebene Fläche sich als ein erhabener [ ... ] Körper darstelle" bis zu Magrittes "Ich benutze die Malerei um das Denken sichtbar zu machen" erfolgt ein Paradigmenwechsel von der Nutzung der Möglichkeiten der Zentralperspektive zum Aufbau einer Illusion der Realität bis zur Nutzung ihrer Defizite zur Zerstörung dieser Illusion und des Aufbaus eines anderen Verständnisses von Realität. Der Unterricht sollte beim Thema Zentralperspektive die Gelegenheit nutzen, ideengeschichtliche Querverbindungen aufzuzeigen. Dieses Anliegen steht in den Materialien dieser Unterrichtseinheit im Vordergrund. Die Unterrichtseinheit ist zwar für den Einsatz in der Jahrgangstufe 11 konzipiert, die MuPAD-Animationen können jedoch durchaus schon unterstützend in den Klassen 7 oder 8 verwendet werden (Beamerpräsentation), in denen ein erster Zugang zum zentralperspektivischen Zeichnen vermittelt wird. Historische Entwicklung und Wandlung Von der Definition der handwerklichen Grundlagen in der Renaissance bis zur Benutzung der Zentralperspektive zur Offenlegung des Illusionären im 20. Jahrhundert Hinweise zum unterrichtlichen Einsatz Welche Einsichten können mithilfe des Computeralgebrasystems bei der experimentellen Annäherung an die Zentralperspektive gewonnen werden? Arbeitsmaterialien Alle Materialien der Unterrichtseinheit im Überblick Die Schülerinnen und Schüler sollen Abbildungseigenschaften der Zentralprojektion als Regeln der zentralperspektivischen Darstellung erkennen (Mathematik). Einblick in die Entwicklung der zentralperspektivischen Darstellung bei Künstlern von der Renaissance bis zur Moderne gewinnen (Bildende Kunst). Thema Nutzung von Eigenschaften der Zentralprojektion als Zeichenregeln zur Darstellung des Raumes in der Ebene Autor Rolf Monnerjahn Fächer Mathematik, Bildende Kunst Zielgruppe Jahrgangsstufe 11 Zeitraum etwa 8-11 Stunden Technische Voraussetzungen Verfügbarkeit von MuPAD/MathWorks Renaissance - Definition handwerklicher Grundlagen Die Anfänge der zentralperspektivischen Darstellung liegen in der Renaissance. Sie sind verbunden mit einer Hinwendung zum Diesseits nach der Jenseitsorientierung des Mittelalters. Anfänglich werden zentralperspektivische Elemente naiv und unkritisch verwendet: Kanten von Gebäuden, Fugen von Kacheln und ähnliches laufen in die angenommene Tiefe hinein schräg aufeinander zu, ohne sich an einem definierten Fluchtpunkt zu orientieren. In Italien stellen Künstler wie Leon Battista Alberti (1404-1472) und Filippo Brunelleschi (1377-1446), in Deutschland Albrecht Dürer (1471-1528), die zentralperspektivische Darstellung teilweise mithilfe der Mathematik auf eine gesicherte, aber eher noch als handwerklich zu bezeichnende Grundlage. Das Hilfsliniengerüst aus Fluchtlinien und Parallelen zum Bildrahmen genügt aus heutiger Sicht nur einfachen Objektanordnungen. 17. Jahrhundert - das solide mathematische Fundament Im 17. Jahrhundert gibt der französische Architekt und Mathematiker Gérard Desargues (1591-1661) der Zentralperspektive ein ausgereiftes mathematisches Fundament (in dem er übrigens die Euklidische Geometrie überschreitet). Künstler wagen sich jetzt auch an Darstellungen heran, die zwei Fluchtpunkte enthalten. 19. und 20. Jahrhundert - Technik, Offenlegung des Illusionären Ab dem 19. Jahrhundert wird die zentralperspektivische Darstellung eher für die technische Zeichnung bedeutsam als für die Kunst. Gleichwohl erlebt die Zentralperspektive eine Wiedererweckung im Surrealismus des 20. Jahrhunderts. Mit der Perfektion der künstlerischen zentralperspektivischen Darstellung ist aber ihre Überwindung hinsichtlich ihrer ideellen Ursprünge verbunden - sie wird nicht mehr zum Aufbau der Illusion von Wirklichkeit genutzt, sondern geradezu zur Offenlegung des Illusionären, beziehungsweise einer Realität hinter dem Augenscheinlichen. Etliche Künstler machen dabei vor allem Gebrauch von Effekten, die auf dem Verlust der Tiefeninformation bei der Zentralprojektion beruhen. Bruno Ernst, "Der Zauberspiegel des M.C. Escher", Köln 1994 Keine MuPAD-Grundkenntnisse erforderlich Für den Umgang mit dem in der Unterrichtseinheit MuPAD-Notebook (zentralperspektive.mn) müssen keine Grundkenntnisse im Umgang mit MuPAD vorhanden sein, da nur fertige MuPAD-Prozeduren genutzt werden. Eine elementare Einführung in die Handhabung des Computeralgebrasystems MuPAD bietet das vom Autor dieser Unterrichtseinheit verfasste Buch "MuPAD im Mathematikunterricht" (Cornelsen, ISBN: 978-3-06-000089-0). Fächerverbindend - Bildende Kunst und Mathematik Die hier vorgestellte Unterrichtseinheit ist eine von zweien zu dieser Thematik. Sie widmet sich dem Thema eher aus der Sicht der Bildenden Kunst, während die andere mehr auf der Seite des Fachs Mathematik steht (siehe Unterrichtseinheit Abbildung des Raums in die Ebene - Zentralprojektion im Fachportal Mathematik). Die Fähigkeiten zur Interpretation einer zentralperspektivischen Darstellung fallen individuell gleichermaßen unterschiedlich aus wie die Fähigkeiten zur Herstellung einer zentralperspektivischen Zeichnung. Darauf muss der Unterricht sich einrichten. Es sollten einige Grundbegriffe vermittelt werden, damit sprachliche Äußerungen über zentralperspektivische Darstellungen eine Grundlage haben. Darüber hinaus sind aber vor allem die MuPAD-Darstellungen mit ihren manipulativen Möglichkeiten (MuPAD-Notebook "zentralperspektive.mn") dazu gedacht, sich dem Thema eher experimentell zu nähern. Wie weit dann Einsichten gewonnen werden - wie sie im folgenden Text zusammenfassend aufgezählt werden - ist dann Sache der einzelnen Schülerinnen und Schüler. Die Normale zur Projektionsebene durch den Augpunkt heißt Hauptsehstrahl. Der Schnittpunkt des Hauptsehstrahls mit der Projektionsebene heißt Hauptpunkt. Parallelenscharen von Geraden, die parallel zur Projektionsebene verlaufen, werden als Parallelenscharen abgebildet (die Parallelität bleibt erhalten; nicht erhalten bleibt allerdings der Abstand der Parallelen). Alle zur Projektionsebene nicht parallelen Parallelenscharen werden als Geradenbüschel abgebildet. Alle Schnittpunkte solcher Geradenbüschel heißen Fluchtpunkte. Der Schnittpunkt eines Geradenbüschels, das Bild einer zur Projektionsebene normalen Parallelenschar ist, ist der Hauptpunkt. Ist der Hauptpunkt Ursprung eines orthogonalen, dreiachsigen Koordinatensystems und ist die Projektionsebene die xz-Ebene, so heißt die xy-Ebene Horizontalebene. Alle Fluchtpunkte der Bilder von Parallelenscharen, die in zur Horizontalebene parallelen oder orthogonalen Ebenen liegen, liegen auf der Schnittgeraden von Horizontalebene und Projektionsebene (der x-Achse). Diese heißt Horizont. Je kleiner der Betrag des Winkels einer Geraden aus einer solchen Parallelenschar gegen die Projektionsebene ist, um so größer ist der Abstand des zugehörigen Fluchtpunkts vom Hauptpunkt (Grenzfall Parallelität zur Projektionsebene: der Abstand ist unendlich). Bei der Zentralprojektion bleibt die Größe einer Strecke nicht erhalten (es sei denn, sie liegt in der Projektionsebene selbst). Je größer der Abstand einer Strecke zur Projektionsebene (und zum Augpunkt) ist, desto kleiner wird ihre Bildstrecke. Bei Strecken, die parallel zur Projektionsebene liegen, bleiben Teilstreckenverhältnisse erhalten (in Abb. 1 durch die Farbgebung gelb-violett angedeutet). Die MuPAD-Prozedur "ZPszene(Augpunkt,Winkel)" erlaubt uns noch einen Schritt weiter zu gehen: Unter "Winkel" können (durch Komma getrennt) bis zu drei Winkel in Grad angegeben werden. Der zweite aufgezählte Winkel lässt die Szene um die x-Achse rotieren, so dass beobachtet werden kann, was geschieht, wenn man eine Fotokamera schräg nach oben auf Gebäude richtet: Vertikale, in der Wirklichkeit parallele Linien, laufen im Bild nach oben zusammen - die Parallelen im Gegenstandsbereich entfernen sich nach oben von der Projektionsebene, der wiedergegebene Abstand muss also immer kleiner werden. Es entstehen Fluchtpunkte außerhalb der Horizontgerade. Es gibt Ebenen, deren zentralperspektivisches Bild eine Gerade ist (alle Ebenen durch den Augpunkt; das Bild der Horizontalebene ist der Horizont). Es gibt Geraden, deren zentralperspektivisches Bild ein Punkt ist (alle Geraden durch den Augpunkt; das Bild des Sehstrahls ist der Hauptpunkt). Diese Feststellungen sind die Voraussetzung für die Darstellung so genannter "unmöglicher" Objekte (Abb. 2), aber auch für ungewollte Fehler in perspektivischen Darstellungen.

  • Kunst / Kultur / Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Zeit und Relativitätstheorie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Themenkomplex Zeit und Relativitätstheorie (allgemeine und spezielle Relativitätstheorie). Wissenschaftliche Ergebnisse und Methoden können eine hohe Motivationskraft in sich tragen. Die in diesem Beitrag vorgeschlagenen Kontexte sind virtuelle Realitäten, generiert mit in der Astrophysik gebräuchlichen Visualisierungsmethoden. Ihr didaktischer Zweck in der Einstiegsphase besteht darin, Vorerfahrungen bei relativistischen Effekten zu schaffen, die das normale, klassisch geprägte Vorstellungsvermögen übersteigen. Das zentrale Problem bei solchen Visualisierungsmethoden ist die Darstellung dreidimensionaler Objekte auf einer zweidimensionalen Projektionsebene, die man sich als Filmleinwand oder Kamerabild vorstellen kann. Beim so genannten relativistischen Rendering werden Bilder schnell bewegter Objekte mit einer ruhenden Kamera beziehungsweise ruhende Objekte mit einer schnell bewegten Kamera aufgenommen. Wie relativistische, das heißt schnell bewegte, Objekte dem Betrachter erscheinen, kann gemäß den Gesetzen der Speziellen Relativitätstheorie berechnet werden. Neben der Längenkontraktion sind die endliche Laufzeit von Lichtsignalen und die Lichtaberration zwei Effekte, die die Geometrie solcher Abbildungen bestimmen. Schülerzentrierte Unterrichtsmethoden und kooperative Arbeitsformen Die Schülerinnen und Schüler sollen einige geometrische Effekte bei verschiedenen Fluggeschwindigkeiten der Kamera durch das Brandenburger Tor erkennen und in dieser Phase nur ansatzweise miteinander vergleichen - vorzugsweise als vorbereitende Hausaufgabe in Partner- oder Gruppenarbeit. Als Grundlage dienen das Arbeitsblatt (lorentz_modul_1_ab.pdf) sowie MPEG-Filme, die den Schülerinnen und Schülern für die Hausarbeit, zum Beispiel über den Dateiaustausch eines virtuellen Klassenraums von lo-net, dem Lehrer-Online-Netzwerk, zur Verfügung gestellt werden können. Neben dem "klassischen" Arbeitsblatt steht auch ein Online-Arbeitsblatt mit aktiven Links auf die Filme zur Verfügung. Filmsequenzen Die folgenden Abbildungen zeigen jeweils ein Einzelbild der Simulationsflüge mit unterschiedlichen Geschwindigkeiten der Kamera durch das stilisierte Brandenburger Tor. Zu jeder Geschwindigkeit steht ein komprimierter MPEG-Film zur Verfügung. Auf Details zu den Filmen werden wir zu einem späteren Zeitpunkt eingehen (siehe Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Bei der Besprechung der Hausaufgabe wird unter anderem folgender Problemfragenkomplex entwickelt: Problemfrage 1.1 Warum sehen schnell bewegte Körper so aus wie in den Computersimulationen? Problemfrage 1.2 Welche Aussagen macht die Newtonsche Mechanik zu diesem Problem? Dieses Modul behandelt Standardstoff des Physikunterrichts. In der Diskussion der virtuellen Realitäten werden Szenen aus dem Alltag angesprochen, die physikalisch eine verwandte Problemstellung enthalten, wie zum Beispiel Koffer auf einem Rollband oder das Ablesen einer Hinweistafel von einem sich bewegenden Laufband aus, zum Beispiel im Flughafen. Zwischen bewegtem Objekt und bewegtem Beobachter (fliegender Kamera) wird differenziert. Ausgehend von der Fragestellung des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird folgende Problemfrage entwickelt: Wie kann die Bewegung beziehungsweise die Bahn eines sich mit konstanter Geschwindigkeit bewegenden Objektes bezüglich eines Koordinatensystems beschrieben werden? Als Lernvoraussetzung ist der Begriff des Inertialsystems notwendig. Ebenso das Relativitätsprinzip Galileis: Alle Inertialsysteme sind (bezüglich der Gesetze der Mechanik) gleichwertig. Als Zusatz kann Newtons Relativitätsprinzip angesprochen werden: "The motion of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line." Der Begriff der Gleichwertigkeit kann, je nach Vertiefungsabsicht, verschieden gefasst werden. Von Gleichwertigkeit sprechen wir, wenn grundlegende physikalische Gesetze in allen Inertialsystemen gleichermaßen gelten oder später formal mathematisch vertieft: Gesetze unter den Transformationen sind, die von einem Inertialsystem zu einem anderen Inertialsystem führen. Im Hinblick auf die spätere Ableitung der Lorentztransformation wird ein Ereignis in zwei Inertialsystemen beschrieben und die Galileitransformation als vermittelnde Abbildung eingeführt (Abb. 8, Platzhalter bitte anklicken). Die Grafik zeigt zwei Inertialsysteme S und S', die gegeneinander mit der Geschwindigkeit V bewegt sind. Der Punkt P = P(x, y, z) = P(x', y', z') bezeichnet ein Ereignis zur Zeit t . Mit x, y, z, t werde ein Ereignis im Inertialsystem S charakterisiert; das gleiche Ereignis werde in einem anderen Inertialsystem S' durch die Koordinaten x', y', z', t' beschrieben. V beschreibt die Relativgeschwindigkeit zwischen S und S'. In diesem Fall bewegt sich das System S' mit der Geschwindigkeit bezüglich System S in die positive Richtung der gemeinsamen x -Achsen. Keine Mathematisierung der Sachverhalte In diesem Abschnitt sollen die Schülerinnen und Schüler einen ersten Einblick in Laufzeiteffekte bei Beobachtungen von schnell bewegten Objekten erhalten. Da noch keine relativistischen Werkzeuge zur Verfügung stehen, wird rein klassisch argumentiert. Auf eine Mathematisierung der Sachverhalte wird in diesem Stadium weitgehend verzichtet. Die Arbeit mit den interaktiven Materialien (Online-Arbeitsblätter, Java-Applets) ermöglicht den Schülerinnen und Schülern eigene Beobachtungen. Verzicht auf Visualisierung inkorrekter klassischer Effekte Sowohl die in Modul 1. Einstieg in das Thema verwendeten Computerfilme als auch die für diesen Abschnitt empfohlenen Java-Applets zeigen die relativistische (zumindest geometrische) Realität. Es wird bewusst davon Abstand genommen, die Effekte der Newtonschen Mechanik bei hohen Geschwindigkeiten zu visualisieren, obwohl auch dazu Java-Applets existieren. Dies hat mehrere Gründe: Sowohl Retardierung als auch Aberration (Erläuterung der Begriffe siehe weiter unten) treten im klassischen und im relativistischen Fall auf, wenn auch mit unterschiedlicher Intensität. Bei einer Konstellation von ruhendem Objekt und nahezu darauf zu fliegender Kamera sind klassische und relativistische Laufzeiteffekte bis nahe an die Lichtgeschwindigkeit aufgrund der perspektivischen Darstellung trotz Lorentzkontraktion kaum zu unterscheiden, wenn man von der Bildgröße bei gleicher Kameraposition absieht. Die Größe des Bildes ist nicht nur abhängig vom momentanen Standort der Kamera, sondern auch von deren Geschwindigkeit und damit von der Lorentzkontraktion der Bildweite. Die Untersuchung der letzteren wird Gegenstand von Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes sein. Im relativistischen Fall sind die Beobachtungen für die Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" identisch. Insbesondere wenn die Unterrichtseinheit auf Level 1 absolviert werden soll, schaffen zusätzliche klassische Varianten virtueller Realitäten (un-)vermeidbare Verwirrung, da dann auch andere Anflug- beziehungsweise Vorbeiflugwinkel notwendig werden. Dies geht zu Lasten eines zügigen Fortschritts in Richtung der Ableitung der speziellen Lorentztransformation (Modul 5. Ableitung der speziellen Lorentztransformation ). Die einzelnen Untermodule des Moduls 3 "Messen versus Beobachten" behandeln die folgenden Themen: Grundlagen zu Messen und Beobachten, Zentralperspektive, klassische Retardierung Frontaler Anflug auf ein Objekt, klassische Retardierung Seitlicher Vorbeiflug an einem Objekt, Aberration Für den hier präsentierten schnellen Weg zur algebraischen Herleitung der Lorentztransformation ist es nicht notwendig, zuvor einen Überblick über Längen- und Zeitmessverfahren zu geben. Allerdings ist zu empfehlen, diese Problematik später bei der Diskussion der Längenkontraktion aufzugreifen (im Anschluss an Modul 6.3 Längenkontraktion ). Eine Diskussion von Retardierungseffekten, das heißt Effekten, die auf der endlichen Laufzeit des Lichtes beruhen, ist allerdings unumgänglich, da diese infolge der Kameraposition beim Durchflug des Brandenburger Tores den Hauptbeitrag zu den beobachtbaren Formänderungen leisten. Retardierungseffekte treten immer auf, sowohl bei klassischer als auch bei relativistischer Betrachtung. Im klassischen Fall ist ihre Ausprägung davon abhängig, ob sich die Kamera oder das Objekt bewegt. Im relativistischen Fall gilt dies nicht, da die Form der Lorentztransformation genau dies als Folge von Einsteins zweitem Postulat (Konstanz der Lichtgeschwindigkeit, siehe auch Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) "verhindert". Ausgehend von den virtuellen Realitäten des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird die scheinbare Formänderung des Brandenburger Tores als Funktion der Fluggeschwindigkeit und der Position der Kamera ins Bewusstsein gehoben. Daraus ergibt sich unter anderem die Frage nach der genauen Form und Größe des ruhenden Tores. Nach deren mehr oder weniger intensiven Behandlung - je nach angestrebtem Level - wird die Beobachtung eines den Gesetzen der klassischen Mechanik unterworfenen bewegten Objektes in das Zentrum des Interesses gerückt. Problemfrage 3.1.1 Welche Informationen können über die exakte Geometrie des Tores und der Kamera aus der perspektivischen Ansicht gewonnen werden, wenn die Kamera ruht oder sich mit geringer Geschwindigkeit ( V = 0,01 c ) bewegt? Problemfrage 3.1.2 Wie sieht ein Beobachter beziehungsweise eine Kamera ein fernes und relativ einfach geformtes Objekt, wie zum Beispiel einen Würfel? Messen und Beobachten Als Lernvoraussetzung ist die Kenntnis des Messvorganges als Vergleich mit einem Eichnormal notwendig. Es wird geklärt, dass Messen und Beobachten unterschiedlich sind: Von (Ab-)Messen sprechen wir, wenn die Koordinaten der Randpunkte eines Objektes, also im Prinzip dessen Umriss, gleichzeitig bestimmt werden. Von Beobachten sprechen wir, wenn wir ein Abbild eines Objektes betrachten, wie zum Beispiel ein Netzhautbild oder einen Kamerafilm. Dabei werden die Bildpunkte von Lichtstrahlen erzeugt, die gleichzeitig auf der Netzhaut oder dem Film eintreffen. Lösung von Problemfrage 3.1.1 Es wird mitgeteilt, dass die Tordurchflüge im Prinzip mit einer Lochkamera aufgenommen worden sind. Die Abbildungsgesetze der Lochkamera werden von den Schülerinnen und Schülern selbstständig memoriert und zur Ausmessung einiger Bilder in dem folgenden Online-Arbeitsblatt benutzt: Online-Arbeitsblatt Die Schülerinnen und Schüler werten Bilder der Simulationsflüge durch das Brandenburger Tor mit einem interaktivem Messtool aus. Das Messtool funktioniert nicht im Internetexplorer, bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Lösung von Problemfrage 3.1.2 Aus den Überlegungen zum Problemkreis Messen wird gefolgert: Es gibt zwei Arten, die Position eines Objektes zu beschreiben. Die momentane Position der Oberfläche eines Objektes zum Zeitpunkt t sowie die retardierte Position, bei der die endliche Ausbreitungsgeschwindigkeit des Lichtes vom Objekt zum Beobachter mit zu berücksichtigen ist. Anschließend wird ein Würfel betrachtet, der mit der Geschwindigkeit V an einer Kamera vorbei fliegt, wobei eine Momentaufnahme gemacht werden soll. Dabei werden alle Lichtstrahlen erfasst, die gleichzeitig bei der Kamera eintreffen. Die dabei angestellten Betrachtungen sind auf dem Informationsblatt (lorentz_modul_3_1_info.pdf) zusammengefasst. Dieses Beispiel kann vertieft werden. Im klassischen Fall besitzt das Licht die Geschwindigkeit c nur im stationären Bezugssystem des Beobachters. Aufgrund des Galileischen Relativitätsprinzips besitzt von einem Objekt ausgehendes Licht unterschiedliche Geschwindigkeiten, zum Beispiel c + V in Bewegungsrichtung und c - V in der entgegen gesetzten Richtung. Das hier vorgestellte Beispiel sollte nach Einführung der Lorentzkontraktion unter relativistischen Gesichtspunkten erneut aufgegriffen werden (frühestens im Anschluss an Modul 6.3 Längenkontraktion ). Der Trick der unendlich weit entfernten Kamera in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung hat Wesentliches verborgen beziehungsweise nicht geklärt. Die dem Beobachter beim Vorbeiflug zugewandte Seite des Würfels ist unverzerrt als ebene Fläche abgebildet worden. Dies ist bei endlichem Kameraabstand falsch, da streng genommen alle Punkte des Objektes unterschiedlich weit von der Blende der Kamera entfernt sind. Die unten verlinkten Applets rechnen relativistisch. Bei einem Anflug auf ein Objekt sind klassische und relativistische Rechnung aufgrund der Perspektive kaum zu unterscheiden. Der relativistische Fall ist bezüglich der Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" nicht unterscheidbar, das heißt ein Applet beschreibt beide Fälle, da kein gekachelter Boden als Referenz vorhanden ist. Die im Einstieg beobachtete Wölbung horizontaler und vertikaler Kanten beziehungsweise die Verbiegung von Flächen ist ein Rätsel geblieben. Um das Problem zu akzentuieren, können statt des Brandenburger Tores Java-Applets von einfachen Drahtgittermodellen betrachtet werden. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Erklärung der Randwölbungen in den Raum. Es wird vorgeschlagen den Effekt der endlichen Lichtlaufzeit nur bei einem Stab zu besprechen, der sich gemäß der klassischen Mechanik mit seiner Breitseite auf eine Kamera zu bewegt, die sich mittig vor ihm befindet. Es genügt, die Diskussion auf die Stabenden zu beschränken. Von jedem Punkt der sichtbaren Stabseite fällt ein Lichtstrahl in die Kamera. Licht von der Stabmitte muss den kürzesten Weg und von den Stabenden den längsten Weg zurücklegen. Aufgrund der endlichen Lichtgeschwindigkeit, im klassischen Fall V + c (beziehungsweise im relativistischen Fall c ), muss Licht, das zum gleichen Zeitpunkt bei der Kamera eintrifft, zu unterschiedlichen Zeitpunkten ausgesandt worden sein, wenn sein Weg unterschiedlich lang ist. Die Überlegung verläuft völlig analog zu den Überlegungen des Beispiels in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , wo der Effekt der klassischen Retardierung bei einem vorbei fliegenden Würfel betrachtet worden ist. Punkte mit zunehmendem Abstand von der Stabmitte werden dem Betrachter daher weiter entfernt erscheinen, was insgesamt den Eindruck einer Stabwölbung erzeugt. Damit ist auch geklärt, weshalb die Stärke der Wölbung geschwindigkeits- und abstandsabhängig sein muss. Drahtrahmen Java-Applet zum frontalen Anflug auf einen quadratischen Rahmen (relativistisch). Zwei Linien Java-Applet zum frontalen Anflug auf zwei horizontale Linien (relativistisch). Gitter aus 9 Punkten Java-Applet zum frontalen Anflug auf ein Gitter aus neun Punkten (relativistisch). Die Rückseite des Brandenburger Tores ist grün eingefärbt. Obwohl die fliegende Kamera einen Öffnungswinkel von 60 Grad in horizontaler Richtung und 51,33 Grad in vertikaler Richtung besitzt, wird die grüne Rückseite der Pfeiler beim Durchflug mit hohen Geschwindigkeiten sichtbar (Abb. 9, Platzhalter bitte anklicken). Um den Einfluss von Retardierung und Aberration zu verdeutlichen, können Java-Applets mit Drahtgittermodellen eingesetzt werden. Unter Aberration versteht man den Effekt, dass zwei unterschiedlich schnell bewegte Beobachter ein und dasselbe Objekt nicht an seinem realen Ort wahrnehmen, sondern an zwei verschiedenen scheinbaren Orten, deren Lage von der jeweiligen Geschwindigkeit des Beobachters abhängt. Aberration tritt sowohl bei klassischer als auch relativistischer Rechnung auf. Ein Analogmodell dafür stellt zum Beispiel "Schnürlregen" dar. Wenn man im Regen steht, kommen die Tropfen bei Windstille genau senkrecht von oben. Fährt man jedoch mit dem Fahrrad im Regen, so scheinen die Tropfen von schräg vorne zu kommen, wobei der Winkel von der eigenen Geschwindigkeit abhängt. Erklärbar ist der Effekt dadurch, dass ein Objekt einer vorbei fliegenden Kamera Lichtstrahlen hinterher sendet, die die Flugbahn der Kamera kurz vor deren Blende schneiden und dann auf dem sich nähernden Kamerafilm auftreffen. Die Formel für den Aberrationswinkel wird hier weder angesprochen noch abgeleitet. Weitere allgemeine Informationen zum Thema Aberration finden Sie hier: Die bereits im Einstieg (Modul 1. Einstieg in das Thema ) beobachtete Sichtbarkeit der grünen Rückseite des Brandenburger Tores ist bisher nicht geklärt. Um das Problem zu vereinfachen, können statt des Tores einfache Drahtgittermodelle betrachtet werden. Die Visualisierung geschieht wiederum mithilfe von Java-Applets. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Sichtbarkeit der Rückseite eines Objektes in den Raum. Die folgenden Java-Applets verdeutlichen sowohl die bereits bekannte Retardierung als auch die Aberration. Letztere wird aus Gründen der Elementarisierung im klassischen Fall nur im Ruhesystem des Drahtrahmens qualitativ erklärt. Eine Lochkamera bewegt sich mit hoher Geschwindigkeit. Bestimmte Lichtstrahlen, die von der Rückseite des Drahtrahmens in Richtung der wegfliegenden Kamera ausgesandt werden und die Flugbahn vor der Kamera schneiden, werden durch die bewegte Blende dringen und dann vom Film "eingefangen". Eine Herleitung der Aberrationsformel erfordert eine genaue Berechnung des Auftreffpunktes des Lichtstrahls auf der Bildebene und kann in Level 3 frühestens im Anschluss an Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes in Angriff genommen werden. Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an einem Quadrat (relativistisch). Zwei Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an zwei Quadraten (relativistisch). Es ist üblich, der Begründung von Einsteins zweitem Postulat zur Konstanz der Lichtgeschwindigkeit im Unterricht einen Abschnitt über die verschiedenen historischen Methoden zur Bestimmung der Lichtgeschwindigkeit voranzustellen (siehe Links und Literatur ), woraus das Postulat als Konsequenz von Messungen gefolgert wird. Diese saubere physikalische Fundierung ist allerdings an dieser Stelle der Unterrichtseinheit nicht zwingend notwendig, weshalb eine Alternative vorgeschlagen wird. Einstein schreibt selbst in seiner Biografie (Albert Einstein, Autobiographisches, 1946): "Nach zehn Jahren Nachdenkens fand ich ein Prinzip, auf das ich schon mit 16 Jahren gestoßen bin. Wenn ich einem Lichtstrahl mit Lichtgeschwindigkeit nacheile, so sollte ich diesen Lichtstrahl als ruhend wahrnehmen. So etwas scheint es aber nicht zu geben. Intuitiv klar schien es mir von vornherein, dass sich für einen solchen Beobachter alles nach denselben Gesetzen abspielen müsse wie für einen relativ zur Erde ruhenden Beobachter." Diese ursprünglich intuitive Erkenntnis war offensichtlich mit ein Anstoß zu Einsteins Postulat zur Konstanz der Lichtgeschwindigkeit. Wir werden sie in verfremdeter Form als Kontext zur Motivation des zweiten Postulats einsetzen (siehe unten). Die Originalformulierung der Einsteinschen Postulate, entnommen aus seiner Publikation von 1905, lautet: P1' Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden. P2' Jeder Lichtstrahl bewegt sich im "ruhenden" Koordinatensystem mit der bestimmten Geschwindigkeit c , unabhängig davon, ob dieser Lichtstrahl von einem ruhenden oder bewegten Körper emittiert ist. Verständnis der Galileitransformation Kenntnis des Galileischen Relativitätsprinzips Wissen, dass Messungen einen konstanten Wert für die Geschwindigkeit des Lichtes liefern. Es wird ein Gedankenexperiment ("Einsteins Traum") vorgestellt, das anregen soll, die Konsequenzen der Galileitransformation zu durchdenken. Das Gedankenexperiment liefert den Anstoß zur Problemfrage in Modul 5. Ableitung der speziellen Lorentztransformation , da die Galileitransformation dem experimentellen Resultat der Konstanz der Lichtgeschwindigkeit widerspricht. Einsteins Traum "Einstein sieht sich im Traum auf einem Lichtstrahl durch die Galaxis reiten. In der Hand hat er eine wundersame Lichtquelle, heller als tausend Sonnen, mit der er Lichtpulse aussenden kann. Als er einen langen Lichtpuls in Flugrichtung schickt, materialisiert sich auf diesem zweiten Strahl ein Spiegelbild von ihm selbst, Zweistein. Mit wehenden Haaren und Lichtquelle unter dem Arm, mit der Zweistein die Sterne anblinkt. Auch Zweistein blinkt irgendwann in Flugrichtung. Dreistein erscheint auf diesem Strahl ... " Die Schülerinnen und Schüler sollen überlegen, wie schnell das Licht aus der Lichtquelle von N-Stein ist. Modifizierung der Postulate für den Unterricht Für die Einsteinschen Postulate wird eine gegenüber der Originalformulierung modifizierte Form empfohlen. Sie werden als Lösung der Diskrepanz zwischen Messung und Konsequenzen der Galileitransformation betrachtet: P1 Alle Inertialsysteme sind bezüglich aller Gesetze der Physik gleichberechtigt. P2 Die Lichtgeschwindigkeit im leeren Raum hat immer und überall den konstanten Wert c . In der Speziellen Relativitätstheorie werden Beobachtungen untersucht, die von zwei verschiedenen Beobachtern gemacht werden, die bezüglich zueinander eine konstante Geschwindigkeit besitzen. Die einzig verwendbaren Bezugssysteme sind daher Inertialsysteme. In der Allgemeinen Relativitätstheorie spielen hingegen beschleunigte Bezugssysteme eine wichtige Rolle, da ihr Ziel die Verallgemeinerung der Newtonschen Gravitationstheorie ist. Die Raumzeit der klassischen Mechanik Newtons trägt eine affine Struktur, da eine gleichförmige Bewegung in jedem Inertialsystem als Gerade beschrieben wird (Gültigkeit des Trägheitssatzes). Infolge des ersten Postulates von Einstein (P1') (siehe Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) muss also auch die neue Transformation der Speziellen Relativitätstheorie, die Lorentztransformation, eine affine Transformation sein. Postulat (P1') bestimmt die Gestalt dieser Transformation zwischen Inertialsystemen bis auf eine universelle Konstante völlig. Durch Postulat (P2') wird diese Konstante eindeutig festgelegt. Im Unterricht beschränkt man sich auf Inertialsysteme, die sich nur durch eine Relativbewegung unterscheiden, wie sie bereits in Modul 2. Die spezielle Galileitransformation eingeführt worden ist. Die Transformation zwischen Ereignissen ist in diesem Fall linear in x und t beziehungsweise x' und t' , was zur speziellen Lorentztransformation führt. Kenntnis des experimentell ermittelten konstanten Wertes der Lichtgeschwindigkeit Kenntnis des Begriffs der linearen Bewegung Fähigkeit zur mathematischen Beschreibung der Bahnkurve linearer Bewegungen Kenntnis des ersten Newtonschen Axioms (Trägheitssatz) Einsicht, dass die Annahme der Gültigkeit der Galileitransformation den Betrag der Lichtgeschwindigkeit vom gewählten Inertialsystem abhängig macht. Wissen, dass das Postulat (P1) die Gültigkeit des Relativitätsprinzips Galileis auf alle Gesetze der Physik erweitert. Das Gedankenexperiment "Einsteins Traum" aus Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat liefert den Anlass, die Galileitransformation als modifizierungsbedürftig einzustufen, da alle Messungen die Konstanz der Lichtgeschwindigkeit bestätigen. Welche Form muss eine neue Transformation aufweisen? Man wird nur im oberen Leistungsbereich mit einem zweiparametrigen linearen Ansatz für die gesuchte Transformation starten und durch Widerspruchsbeweis zeigen, dass nur diese lineare Gestalt Postulat (P1) erfüllt und damit alle Transformationen von dieser Gestalt sein müssen. Wenn, wie es die Regel ist, die Zeit drängt, kann die Lehrkraft alternativ als Impuls die Frage nach der Transformation eines Ereignisses (x, t) durch folgenden Vorschlag initiieren: Diese Transformation muss eine gleichförmige Bewegung, wir wählen die einfachste Form, x = v t , in eine gleichförmige Bewegung überführen. Für zwei Zeitpunkte t 1 und t 2 gilt dann: Die Gleichförmigkeit ist für alle Zeiten t genau dann erhalten, wenn gilt. Damit ist ein korrekter Ansatz entwickelt. Ein Beispiel für eine Tafelanschrift zur Ableitung der Lorentztransformation liefert das folgende PDF. In den folgenden Ausführungen wird statt k das in der Literatur übliche gamma verwendet, was nur für einen höheren Leistungslevel zu empfehlen ist. Die Schülerinnen und Schüler sind mit den folgenden Inhalten vertraut: Ein Punktereignis wird im Bezugssystem S durch die Koordinaten (x, t) , genauer (x, y, z, t) , und im System S' durch die Koordinaten (x', t') , genauer (x', y', z', t') , beschrieben. Stimmen die Ursprünge der beiden Systeme S und S' zur Zeit t = t' = 0 überein, dann ist die Beziehung zwischen (x, t) und (x', t') durch die Lorentztransformation gegeben: wobei Welches Ergebnis liefert die Lorentztransformation bei Transformation eines (Punkt-)Ereignisses (x, t)? Es werden zwei verschiedene Punktereignisse betrachtet. Benötigt werden nur die Ergebnisse für Ereignis 1: Ereignis 2: Anschließend wird der räumliche und zeitliche Abstand der Ereignisse im System S' berechnet: Algebraisch ist damit auch die Relativität der Gleichzeitigkeit bewiesen: Für jeden Beobachter ist Gleichzeitigkeit eine Funktion des verwendeten Bezugssystems. Ein Verständnis für die Implikationen aus den Gleichungen (A1) und (A2) kann erst nach weiterer eingehender Diskussion erzielt werden. Dies soll in den beiden folgenden Modulen geschehen. Es wird der Spezialfall betrachtet, das heißt es werden zwei aufeinander folgende Ablesungen einer Uhr im System S mit den Ablesungen von zwei verschiedenen Uhren im System S' verglichen, weshalb das Problem der Synchronisation verschiedener Uhren angeschlossen werden sollte. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Zeitspannen? Eine Uhr ruhe im System S im Punkt Zwei verschiedene Ablesungen der Uhr definieren eine Zeitspanne und sollen als zwei Ereignisse angesehen werden: Ereignis 1: Ereignis 2: Die Zeitkoordinaten dieser Ereignisse für das System S', das relativ zu S die Geschwindigkeit V hat, sind im Prinzip bereits in Modul 6.1 Punktereignisse und ihre Transformation bestimmt worden. Falls 6.1 nicht behandelt worden ist, rechnet man analog dazu neu. Es ergibt sich also: woraus folgt womit eine Verknüpfung der entsprechenden Zeitintervalle in S und S' gefunden ist. Das Ergebnis wird durch Zahlenbeispiele vertieft. Es wird der Spezialfall betrachtet, das heißt es werden die Koordinaten der Endpunkte eines Stabes in System S' zur Zeit gleichzeitig bestimmt. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Längen? Die gleichzeitige Messung zur Zeit der Endpunkte eines Stabes in S', wird durch die zwei Punktereignisse und beschrieben, das heißt es gilt in S' Das gesuchte Ergebnis ergibt sich sofort für aus den allgemeinen Abstandsgleichungen (siehe Gleichungen (A1) und (A2) in Modul 6.1 Punktereignisse und ihre Transformation ): Falls Modul 6.1 Punktereignisse und ihre Transformation nicht behandelt worden ist, rechnet man analog dazu neu. Angeschlossen werden sollte eine Diskussion der Messzeitpunkte in beiden Systemen, das heißt unter anderem, dass die Messung der Stabenden im System S nicht gleichzeitig stattfindet. Bisher sind bei den Auswertungen der virtuellen Realitäten aus Modul 1. Einstieg in das Thema (Flüge durch das Brandenburger Tor) wichtige Daten der Aufnahmen, wie Kameraposition und Bildgröße des Objektes, nicht bearbeitet worden. Ursache für unterschiedliche Bildgrößen bei gleicher Kameraposition und verschiedenen Anfluggeschwindigkeiten auf ein Objekt ist die Lorentzkontraktion der Bildweite. Dies bedeutet, dass die Projektionsebene näher an die Blende heran gerückt ist, was das Bild vergrößert. Im Lochkameramodell ist die Kamera lorentzkontrahiert. Die Schülerinnen und Schüler haben Modul 3.1 absolviert und kennen die Lorentzkontraktion (Modul 5. Ableitung der speziellen Lorentztransformation ). Es wird den Schülerinnen und Schülern die Kameraposition des jeweils ersten - und bei Bedarf auch letzten - Bildes der Computerfilme zum Durchflug des Brandenburger Tores mitgeteilt (Tab. 1). Die Beobachtung, dass die Startbilder in der Größe recht ähnlich sind, führt direkt zu der Problemfrage. Tab. 1: Infos zur Bildauswertung Geschwindigkeit Kameraposition Startbild in LE (Längeneinheiten) Kameraposition Endbild in LE (Längeneinheiten) 0,01 c 70 -2 0,50 c 46 -2 0,90 c 24 -7 0,95 c 16 -12 0,99 c 8 -28 Warum sind unterschiedliche Startpositionen gewählt worden beziehungsweise warum sind bei den verschiedenen Flügen die Bilder des Tores bei identischer Kameraposition unterschiedlich groß? Hinweise zum Einsatz der Materialien Falls eine genügend schnelle Internetanbindung und genügend Speicherplatz vorhanden sind, kann die Lehrkraft die Originaleinzelbilddateien der Filme im Schulnetz zur Auswertung speichern. Andernfalls wird auf die interaktiven Online-Materialien zurückgegriffen, die ausgewählte und skalierte Einzelbilder zur Ausmessung am Bildschirm bereitstellen. Schon ein rein optischer Vergleich dieser Bilder zeigt die mit wachsender Geschwindigkeit abnehmende Größe des Tores. In beiden Fällen werden die in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung beim Ausmessen von Bilddaten gewonnenen Erfahrungen genügen, um die Bildweite für einige Fälle zu berechnen. Ein Vergleich der erhaltenen Werte bestätigt die Lorentzkontraktion der Lochkamera (Bildweite). Online-Arbeitsblätter Die interaktiven Funktionen der Arbeitsblätter arbeiten nicht im Internetexplorer. Bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Beachten Sie auch die Hinweise am Ende der Seiten zur Nutzung des Messtools. Brandenburger Tor 1 Kameraposition 8 LE (LE = Längeneinheiten) Brandenburger Tor 2 Kameraposition 16 LE Brandenburger Tor 3 Kameraposition 21,47 LE Die Schülerinnen und Schüler sollen ein Gefühl für das Wesen und die Eigenschaften der Zeit gewinnen, insbesondere die Begriffe Gleichzeitigkeit und Geschwindigkeit der Zeit näher kennen lernen. die Herkunft unseres natürlichen Zeitsystems (Jahr, Monat, Tag, Stunde, Minute) und den Begriff der Weltzeit verstehen. im Rahmen einer Gruppenarbeit zum Uhrenbau die Begriffe von Zeitmessung und Uhr durchleuchten und eigene weiterführende Ideen verwirklichen. mithilfe des Computers den Uhrenbau dokumentieren und den Mitschülerinnen und Mitschülern vorstellen (zum Beispiel mit einer PowerPoint-Präsentation). die Uhren testen und die Ergebnisse auswerten und beurteilen. einen kurzen Einblick in das Thema "Relativität der Zeit" erhalten, die mit einem Java-Applet veranschaulicht werden kann (Klasse 8). Thema Was ist Zeit? Wie messe ich sie? Autorinnen Ulrike Endesfelder, Kirsten Kalberla Fach Naturwissenschaften, Physik, Technik, Projektarbeit/Projekttag Zielgruppe Klasse 5-8 Zeitraum etwa 2 Doppelstunden Die Unterrichtseinheit zum Uhrenbau eignet sich für den Unterricht im Fach Naturwissenschaften oder Physik, aber zum Beispiel auch für Projekttage. Sie basiert auf einem Angebot der flowventure-Erlebnispädagogik. flowventure wurde im Rahmen der UN-Dekade "Bildung für nachhaltige Entwicklung" ausgezeichnet und bietet für Schulklassen kommerzielle Programme an (siehe Zusatzinformationen). Erste Doppelstunde Die Lernenden werden abwechslungsreich in die Thematik eingeführt und erstellen danach an Bastelstationen in Gruppenarbeit verschiedene Uhrenmodelle. Zweite Doppelstunde Nachdem jede Gruppe ihre Uhr vor der Klasse präsentiert hat, werden alle Uhren zeitgleich getestet. Die gesammelten Daten werden in Heimarbeit ausgewertet. Russell Standard Durch Raum und Zeit mit Onkel Albert: Eine Geschichte um Einstein und seine Theorie, Fischer Verlag (2005), ISBN-13: 978-3596800155 Urike Endesfelder ist Diplom Physikerin und Referentin bei flowventure-Erlebnispädagogik . Die Schülerinnen und Schüler sollen ohne experimentellen Beweis akzeptieren, dass die Lichtgeschwindigkeit für jeden Beobachter konstant ist (vor dieser Situation standen zunächst auch viele Naturwissenschaftler zur Zeit der Veröffentlichung der Relativitätstheorie). aus der vorgegebenen Konstanz der Lichtgeschwindigkeit in Verbindung mit geometrischen Überlegungen eine Gleichung für die Zeitdilatation herleiten (kann auch durch die Lehrerin oder den Lehrer vorgegeben werden). durch Anwendung dieser Gleichung die Auswirkung der Zeitdilatation erkennen und feststellen, dass diese bei "normalen" Geschwindigkeiten äußerst gering ist. Thema Die Einsteinsche Zeitdilatation Autor Manfred Amann Fach Physik Zielgruppe ab Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit), Internetanschluss, Java Runtime Environment , aktiviertes JavaSkript Gerald Kahan Einsteins Relativitätstheorie zum leichten Verständnis für jedermann 2004 Dumont-Verlag (Nachdruck) ISBN 3-8321-1852-7 Kahans Buch ist besser als so manche aktuelle Einsteinjahr-Literatur und sehr gut für interessierte Schülerinnen und Schüler mit mathematischen und physikalischen Grundkenntnissen geeignet. Nigel Calder Einsteins Universum 1980 Umschau-Verlag, Lizenzausgabe Deutscher Bücherbund Auch dieses Buch stellt in seinen Veranschaulichungen nach meinem Empfinden einen Großteil der aktuellen Einsteinliteratur in den Schatten, ist aber leider nur noch antiquarisch erhältlich, zum Beipsiel über amazon.de. Die Grundzüge der Speziellen Relativitätstheorie (SRT) basieren auf einer einfachen Formel. Nein, nicht E = mc², sondern v = s/t. Ausgehend von zwei einfachen Annahmen lieferten revolutionäre Gedankenexperimente über die Laufzeit von Licht, gemessen von zueinander bewegten Beobachtern, verblüffende neue Erkenntnisse über Raum und Zeit. Und mithilfe des guten alten Pythagoras (Link zur Lernumgebung "Die Satzgruppe des Pythagoras" des Autors bei Geogebra.org) sind auch die zugehörigen Formeln für die Zeitdilatation und die Längenkontraktion schnell hergeleitet. In der Lernumgebung zur Kinematik der Speziellen Relativitätstheorie können Lehrende und Schülerinnen und Schüler mithilfe der Maus am Monitor Darstellungen und Konstellationen kontinuierlich verändern. Bestimmte Fragestellungen lassen sich so dynamisch verfolgen und überprüfen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. So wird die Relativität der Gleichzeitigkeit am Beispiel der Beobachtung eines Lichtblitzes erkundet, der in der Mitte einer fliegenden Rakete gezündet wird. Die Geschwindigkeit des Raumschiffs können die Lernenden dabei variieren. Die Schülerinnen und Schüler sollen die Bedeutung der Postulate der Speziellen Relativitätstheorie verstehen. die Notwendigkeit einer präzisen Definition von Ort und Zeit eines Ereignisses einsehen. die Relativität der Gleichzeitigkeit als zwingende Konsequenz der Postulate erkennen. die Formel für die Zeitdilatation herleiten und anwenden können. die Formel für die Längenkontraktion herleiten und anwenden können. die Zitate aus Originalarbeiten richtig deuten und dem Gelernten zuordnen können. Thema Kinematik der Speziellen Relativitätstheorie Autor Claus Wolfseher Fach Physik Zielgruppe Oberstufe Zeitraum mindestens 5 Unterrichtsstunden oder freie Zeiteinteilung bei selbstständiger Bearbeitung außerhalb des Unterrichts Technische Voraussetzungen Internetbrowser mit aktiviertem JavaScript, Java Runtime (JRE Version 1.4 oder höher, kostenfrei) Kinematik der SRT - prägnant und kompakt Weder für die Lehrkraft noch für die interessierten Schülerinnen und Schüler ist es befriedigend, wenn Formeln vom Himmel fallen, insbesondere wenn es um die populäre Relativitätstheorie geht. Andererseits sehen zeitlich knapp kalkulierte Lehrpläne meist nur eine Mitteilung oder einen Hinweis auf die Gleichungen der Zeitdilatation oder der Längenkontraktion vor. Intention der hier vorgestellten interaktiven Lerneinheit ist es daher, die Kinematik der Speziellen Relativitätstheorie möglichst prägnant und kompakt zu erläutern, ohne auf die Herleitung der zugehörigen Formeln zu verzichten. Die Schülerinnen und Schüler erfahren dabei auch, dass mathematische Grundkenntnisse fundamental, ja hier sogar ausreichend sind, um zu neuen Erkenntnissen zu gelangen. Die erarbeiteten Formeln sollten in Anwendungsaufgaben (beispielsweise Durchqueren der Atmosphäre von Myonen oder Reise zu ?-Centauri) gefestigt werden. In der Unterrichtspraxis führte die Lerneinheit stets automatisch zu Diskussionen, die auf das Zwillingsparadoxon, das Hafele-Keating-Experiment und die Kausalitätsproblematik abzielten und von der Lehrkraft aufgenommen werden konnten. Anknüpfungspunkt für die Dynamik der SRT Auf diese Weise erhalten die Lernenden trotz der Einschränkungen des alltäglichen Unterrichtbetriebs einen über bloße Mitteilungen hinausgehenden Einblick in die SRT, der als Basis für weiterführende, eigenständige Forschungen und als Anknüpfungspunkt für die Dynamik der SRT dienen kann. Einsatzmöglichkeiten und Aufbau der Materialien Die Konzeption der Texte, Zusatzinformationen, Lösungen und die Interaktivität der Lernumgebung werden hier skizziert. Die Schülerinnen und Schüler sollen die Axiome der Speziellen Relativitätstheorie kennen. die Galilei-Transformation rechnerisch und grafisch anwenden und interpretieren können. Raum-Zeit-Diagramme konstruieren und interpretieren können. die Lorentz-Transformation rechnerisch und grafisch anwenden und interpretieren können. die wichtigsten Phänomene der SRT wie Längenkontraktion und Zeitdilatation angeben und interpretieren können. Geschwindigkeiten relativistisch addieren können. die relativistische Massenzunahme wiedergeben und in Beispielen anwenden können. die Beziehung von Masse und Energie in Einsteins berühmter Äquivalenzformel deuten und die Abhängigkeit der Gesamtenergie und der kinetischen Energie von der Geschwindigkeit beschreiben können. die Äquivalenz von Masse und Energie und die Möglichkeiten der Anwendung verstehen. Thema Online-Kurs "Spezielle Relativitätstheorie" mit GeoGebra Autor Andreas Lindner Fach Physik Zielgruppe Jahrgangsstufe 12 Zeitraum 4-6 Stunden (bei Vertiefung entsprechend mehr) Technische Voraussetzungen Internetbrowser, Java Runtime (JRE Version 1.4 oder höher, kostenfrei); die Mathematiksoftware GeoGebra ist zum Betrachten der Arbeitsblätter nicht Voraussetzung, kann aber zum Erstellen eigener Konstruktionen kostenfrei aus dem Internet heruntergeladen werden. Der Onlinekurs besteht (zurzeit) aus 25 HTML-Seiten mit 13 interaktiven GeoGebra-Applets. Eine ausführliche Besprechung der Kursinhalte würde den hier gegebenen Rahmen sprengen. Aus diesem Grund beschränken wir uns auf allgemeine Hinweise zum Einsatz der Materialien. Generell eignet sich der Online-Kurs zum Einzelstudium, als Ergänzung des traditionellen Unterrichts oder als zusammenfassende Wiederholung des Unterrichtsthemas. Abhängig von dem zur Verfügung stehenden Zeitrahmen bewährt sich neben der Nutzung der Applets ein händisches Rechnen von Aufgabenstellungen, zum Beispiel im Bereich der Längenkontraktion oder der Zeitdilatation. Anschließend können die Ergebnisse mit den interaktiven Arbeitsblättern des Online-Kurses verglichen werden, um die Einsicht zu vertiefen. Auch bei einer intensiveren Auseinandersetzung mit den Minkowski-Diagrammen sollte ein händisches Konstruieren oder ein Konstruieren am Computer durch die Schülerinnen und Schüler angestrebt werden. Gestaltung, Nutzung und Inhalte des SRT-Kurses Hier finden Sie Hinweise zur formalen Aufbereitung der GeoGebra-Applets, zur Nutzung des Online-Kurses sowie eine Übersicht der einzelnen Kapitel und Unterkapitel. Fast alle Zugänge zur Lorentztransformation im Unterricht arbeiten mit einem exzessiven Vorlauf an geometrischen Betrachtungen von Minkowskidiagrammen. Dieser Beitrag stellt eine bedenkenswerte Alternative vor. Computergenerierte Bildsequenzen und Filme, die relativistische Effekte simulieren, bieten in Verbindung mit Java-Applets und interaktiven JavaScript-Messtools faszinierende Möglichkeiten, um nicht nur Interesse für dieses Teilgebiet der modernen Physik zu wecken, sondern auch Kernaussagen der Speziellen Relativitätstheorie anschaulich zu vermitteln. Die naive Annahme, dass bei hohen Geschwindigkeiten alle Körper nur lorentzkontrahiert erscheinen, wird durch einen simulierten Flug durch ein fiktives Brandenburger Tor widerlegt. Ein Klick auf die Grafik mit der gewohnten Ansicht des Gebäudes (oben links) zeigt weitere geometrische Effekte, die durch Retardierung und Lichtaberration zustande kommen. Schülernahe Erklärungen sind möglich. Der modulare Aufbau der Unterrichtseinheit, die in drei verschiedenen Level durchgeführt werden kann, bietet interessante methodische Differenzierungsmöglichkeiten. Eine kurze Übersicht liefert dieses Die Lorentztransformation - Fundament der SRT . Die Autorin dankt Prof. Dr. Hanns Ruder von der Theoretischen Astrophysik der Universität Tübingen und seinen Mitarbeiterinnen und Mitarbeitern, insbesondere Frau PD Dr. Ute Kraus und Herrn Thomas Müller, die die Originaldateien der Simulationsfilme für diese Unterrichtseinheit zur Verfügung gestellt zu haben. Da die Unterrichtseinheit inhaltlich einen weiten Bogen spannt, von der Galileitransformation über die Ableitung der Lorentztransformation bis hin zu Zeitdilatation und Längenkontraktion, beschränkt sich die folgende Liste auf Groblernziele, die jedoch levelabhängig (schnell, genauer, exakt) mit unterschiedlichen Feinlernzielen zu belegen und daher in unterschiedlicher Intensität zu realisieren sind. Die Schülerinnen und Schüler sollen die Galileitransformation verstehen. das Relativitätsprinzip der klassischen Mechanik kennen (Galileisches Relativitätsprinzip). erkennen, dass die Galileitransformation modifizierungsbedürftig ist. in der Lage sein, die Position eines ruhenden Objektes aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchfluges durch ein Tor mit nichtrelativistischer Geschwindigkeit; siehe Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ). Einblick in Retardierungseffekte gewinnen (Level 1: Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , Level 2 und 3: Module 3.1 Grundlagen, Zentralperspektive, klassische Retardierung und 3.2 Frontaler Anflug auf ein Objekt, klassische Retardierung ). Einblick in den Effekt der Lichtaberration erhalten (nur Level 3: Modul 3.3 Seitlicher Vorbeiflug an einem Objekt, Aberration ). wissen, das Einsteins erstes Postulat eine lineare Gestalt der speziellen Lorentztransformation (bezüglich x und t ) erzwingt (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). erkennen, wie die Postulate Einsteins in die Herleitung der speziellen Lorentztransformation eingehen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). eine elementarisierte Ableitung der Lorentztransformation kennen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). die Begriffe Punktereignis, Abstand und Gleichzeitigkeit verstehen (nur Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). den Begriff des Raum-Zeit-Kontinuums verstehen (erkennen, das räumliche und zeitliche Abstände nicht als voneinander unabhängig angesehen werden können; Level 1: Module 6.1 Punktereignisse und ihre Transformation und 6.2 Zeitdilatation , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). die Begriffe Längenkontraktion und Zeitdilatation kennen und die Fähigkeit erlangen, die entsprechenden mathematischen Relationen aus der speziellen Lorentztransformation herzuleiten (Level 1: Module 6.2 Zeitdilatation und 6.3 Längenkontraktion , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). in der Lage sein, die Lorentzkontraktion einer schnell bewegten Kamera aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchflugs durch ein Tor mit relativistischen Geschwindigkeiten; nur Level 3, Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Thema Die Lorentztransformation - Fundament der Speziellen Relativitätstheorie Autorin Dr. Sigrid M. Weber Fach Physik Zielgruppe Sek II Zeitraum variabel, je nach Vertiefung und medientechnischen Vorkenntnissen der Schülerinnen und Schüler; als Anhaltspunkt für Level 1: mindestens 6 Stunden plus Hausaufgabenphase (zur Bearbeitung der Aufgaben in Modul 1. Einstieg in das Thema und 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ) Technische Voraussetzungen Computer in ausreichender Anzahl für Einzel oder Partnerarbeit, ggf. Beamer, Browser mit Java -Plugin und Plugin zum Abspielen von MP4-Filmen ( QuickTime Player ) sowie aktiviertem JavaSkript. Alternativ zu den Plugins: Plattformabhängige Applikationen zum Ausführen von Java-Applets (Java Engine mit Appletviewer) und zum Abspielen von MP4-Filmen ( QuickTime Player ). Unterrichtsplanung Das Die Lorentztransformation - Fundament der SRT verschafft Ihnen einen Überblick über die möglichen unterschiedlichen Anforderungsniveaus der Unterrichtseinheit, das sind die Level "schnell", "genauer", "exakt", sowie die in den jeweiligen Modulen eingesetzten digitalen Medien. Die Schülerinnen und Schüler sollen das Computeralgebrasystem Derive als universelles mathematisches Werkzeug kennen lernen. mit Derive eine Anleitung für die Erzeugung von Minkowski-Diagrammen entwickeln. Aufgaben aus der Relativitätstheorie sowohl grafisch als auch rechnerisch mit Derive lösen können. die Bedeutung von Minkowski-Diagrammen erkennen. erkennen, dass die Erhaltungssätze der Mechanik in der Relativitätstheorie eine neue Bedeutung bekommen. Thema Minkowski-Diagramme mit Derive Autor Rainer Wonisch Fach Physik Zielgruppe Jahrgangstufe 12 oder 13, Grund- oder Leistungskurs Zeitraum 10-12 Stunden Technische Voraussetzungen Computer mit Beamer (Lehrerdemonstration), Rechner in aus reichender Anzahl für Partner- oder Gruppenarbeit Software Derive; Infos zur Software finden Sie in der (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:355022) im Mathematik-Portal von Lehrer-Online Die hier beschriebene Unterrichtseinheit setzt voraus, dass der Unterricht zur Relativitätstheorie bereits bis hin zu den Minkowski-Diagrammen gediehen ist. Auch eine zeichnerische Umsetzung ist schon durchgeführt worden, so dass die ersten Teile der Unterrichtseinheit aus physikalischer Sicht eine Wiederholung sind. Es wird nicht vorausgesetzt, dass die Schülerinnen und Schüler reichlich Übung im Umgang mit dem Computeralgebrasystem (CAS) Derive haben, obwohl dies nicht schaden könnte. Lehrkräften, die im Umgang mit Derive noch nicht so geübt sind, wird die Erstellung von Minkowski-Diagrammen mithilfe einer Anleitung im PDF-Format Schritt für Schritt erläutert. Die an die Schülerinnen und Schüler gestellten Anforderungen sind auch von einem Grundkurs zu bewältigen. Wenn man den letzten Teil der Unterrichtseinheit mit der Behandlung der Erhaltungssätze sehr ausführlich behandeln möchte, dann benötigt man zu den in der Kurzinformation angegebenen 10-12 Stunden noch etwa vier zusätzliche Unterrichtstunden. Vorgeschlagen wird eine Mischung aus lehrerzentriertem, fragend-entwickelndem und schülerzentriertem Unterricht. Vorschlag für den Unterrichtsverlauf (Teil 1) Typische Probleme der Speziellen Relativitätstheorie (Stunde 1 bis 8) Vorschlag für den Unterrichtsverlauf (Teil 2) Betrachtung der Erhaltungssätze für Impuls und Energie (Stunde 9 und 10 beziehungsweise 9 bis 12)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner