Die Chemie der Zink-Kohle-Batterie
Unterrichtseinheit
Eine Flash-Animation veranschaulicht die chemischen Vorgänge, die in einer Zink-Kohle-Batterie bei einer Stromentnahme ablaufen. Das hier vorgestellte Flash-Programm bietet Schülerinnen und Schülern einen Einblick in den Aufbau einer Zink-Kohle-Batterie und stellt in einer Animation die chemischen Vorgänge während der Stromentnahme stark vereinfacht dar. Die Flash-Folie lässt sich im Unterricht per Beamer-Projektion einsetzen, um den Aufbau und die Funktion einer Zink-Kohle-Batterie kennenzulernen, zu verstehen und die Teilreaktionen in Reaktionsgleichungen zu fassen. Am heimischen Rechner können Schülerinnen und Schüler das frei zugängliche Angebot nutzen, um den Unterrichtsstoff zu wiederholen. Die Materialien der Unterrichtseinheit werden durch Beiträge der Gesellschaft Deutscher Chemiker e. V. (GDCh) ergänzt: Artikel aus der GDCh-Wochenschau-Artikel zum Thema stellen den seit fast 100 Jahren in Autos eingesetzten Bleiakkumulator sowie die noch sehr junge Technologie der Lithium-Batterien und ihre Einsatzmöglichkeiten vor. Betrachtung der Teilvorgänge und Aufstellen der Teilgleichungen Das "Innenleben" einer handelsüblichen Batterie kann den Schülerinnen und Schülern an aufgesägten Batterien gezeigt werden. Welche chemischen Vorgänge laufen ab? Der Zinkbecher fungiert als Elektronendonator. Zink wird oxidiert. Das ist aus der äußeren Beschriftung mit dem Minus-Symbol ersichtlich. Doch welcher Stoff wird reduziert? Dies wird in der hier vorgestellten Animation veranschaulicht, indem zum einen die Bestandteile der Batterie mithilfe von Formeln benannt werden (Ausgangsstoffe) und zum anderen die chemischen Veränderungen vereinfacht szenisch dargestellt werden (Produkte). Dabei werden die Oxidation von Zink, die Leitung der Elektronen über einen elektrischen Leiter hin zum Verbraucher und die Reduktion von Mangandioxid zeitlich nacheinander animiert vorgestellt, um den Fokus der Schülerinnen und Schüler verstärkt auf die Teilvorgänge zu konzentrieren. Anhand dieser "zeitlichen Akzentuierung" lassen sich leicht Teilgleichungen zu den Redoxvorgängen aufstellen. Unterrichtsgespräch und selbstständige Schülerarbeit Wird die Animation im Unterrichtsgepräch als Arbeitsmittel eingesetzt, werden ein kontinuierliches und zeitgleiches Prozedere im gesamten Redoxsystem und der kontinuierliche Verbrauch der Ausgangsstoffe thematisiert. Daneben können Schülerinnen und Schüler den Aufbau und die Funktion der Zink-Kohle-Batterie in einer selbstständigen Schülerarbeit am Rechner erarbeiten. Steuerung und Inhalte der Flash-Animation Die Animation kann über den Cursor oder die Tastatur gesteuert werden. Die Teilschritte der Reaktion werden hier per Screenshot vorgestellt und kurz erläutert. GDCh-Wochenschau-Artikel zum Thema Bei der Behandlung des Themas bietet sich ein Blick auf weitere Batterietypen an: klassischer Bleiakkumulator und die junge Technologie der Lithium-Ionen-Batterie Die Schülerinnen und Schüler sollen den Aufbau und die Organisation einer Zink-Kohle-Batterie beschreiben. anhand der Animation zur Zink-Kohle-Batterie erkennen, dass bei der Stromentnahme durch Anschluss eines Verbrauchers innerhalb der Batterie kontinuierlich stoffliche Veränderungen in den beiden Teilen eines Redoxsystems ablaufen. die dynamischen Teilchenmodellszenarien in Reaktionsgleichungen umsetzen. aus der Animation ableiten, dass durch die Kombination und räumlich Trennung geeigneter Reduktions- und Oxidationsmittel chemische Energie gespeichert und durch Anschluss eines Verbrauchers in elektrische Energie umgewandelt werden kann. Die Flash-Animation kann mithilfe der Maus durch Anklicken der Buttons und des Schalters gesteuert werden. Alternativ kann dafür aber auch die Tastatur des Rechners genutzt werden. Diese Möglichkeit unterstützt insbesondere die "mausfreie" Präsentation während des Unterrichtsgesprächs durch die Lehrperson oder im Rahmen eines Schülervortrags. Hier die verschiedenen Steuerungsfunktionen im Überblick: Buttons (Animation) Für Start und Stopp der Animation können die für diese Funktionen üblichen Icons in der Flash-Folie verwendet werden. Ein-und Ausschalter (Animation) Über die Betätigung des Ein- und Ausschalters neben der Glühlampe (Abb. 1, Platzhalter bitte anklicken) startet man die Animation oder setzt sie zurück ("Reset"). Computer-Tastatur Alternativ zu den Buttons kann auch die Space-Taste der Tastatur zum Starten oder Stoppen der Animation genutzt werden. Mit den Pfeiltasten der Tastatur können Sie die Animation schrittweise vor oder auch zurücklaufen lassen. Die Animation beginnt mit der Bewegung zweier Elektronen (Abb. 1, Platzhalter bitte anklicken) über den elektrischen Leiter hin zum Verbraucher. Es ist sehr wichtig, dass die Lehrperson den Schülerinnen und Schülern hier klarmacht, dass diese beiden Elektronen in dem Modell nur exemplarisch dargestellt und bewegt werden. In Wirklichkeit fließen im gesamten Leiter Elektronen vom Minus- zum Pluspol. Die Elektronen entstehen bei der Oxidation von Zinkatomen des Zinkbechers. Daraus lässt sich die erste Teilgleichung (Oxidation von Zink) ableiten: Zn (s) → Zn 2+ (aq) + 2 e - Die Elektronen wandern über die Kohleelektrode in das leitfähige Gemisch aus Kohlenstoff und Braunstein (Abb. 2a). Dort wird Mangan(IV)dioxid reduziert. Unter Aufnahme eines Protons entsteht Mangan(III)oxidhydroxid (Abb. 2b): 2 MnO 2 (s) + 2 H 2 O (l) + 2e - → 2 MnO(OH) (s) + 2 OH - (aq) Die Ammonium-Ionen geben jeweils ein Proton an Hydroxid-Ionen ab (Abb. 2c): 2 OH - (aq) + 2 NH 4 + (aq) → 2 H 2 O (l) + 2 NH 3 (g) Ammoniak diffundiert innerhalb in der Batterie und bildet mit den bei der Oxidation des Zinkbechers entstandenen Zink-Ionen Aminkomplexe (Abb. 2d): Zn 2+ (aq) + 2 NH 3 (g) → [Zn(NH 3 ) 2 ] 2+ (aq) Folgende Sekundärreaktionen führen zur Auflösung des Zinkbechers und somit zur Alterung der Batterie: Zn 2+ (aq) + 2 OH - → Zn(OH) 2 (s) Zn(OH) 2 (s) → ZnO (s) + H 2 O (l) Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Für diese Unterrichtseinheit relevante Artikel stellen wir hier kurz vor. Die vollständigen Beiträge stehen als PDF-Downloads zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Die Karriere des Bleiakkumulators Der klassische Bleiakkumulator wird seit fast 100 Jahren als einziger elektrischer Energiespeicher für den Starter in Kraftfahrzeugen eingesetzt und ist mitverantwortlich für den Erfolg des Automobils. Der Erfolg der Bleibatterie ist in erster Linie auf den im Vergleich zu anderen Batteriesystemen konkurrenzlos niedrigen Preis zurückzuführen, der durch niedrige Rohstoffkosten, eine einfache und weitgehend automatisierte Fertigungstechnik und einen etablierten effizienten Recyclingprozess erreicht wird. Funktionsweise Die Arbeitsweise des Bleiakkumulators wird ausführlich beschrieben. Neben den Entladereaktionen werden auch die "Nebenwirkungen" erläutert. Neben der Rolle des bei der Entladungsreaktion entstehenden und auf der Elektrode ausfallenden Bleisulfats (Reduzierung der Elektroden-Porosität und dadurch Behinderung der Transportvorgänge in den Elektroden und Korrosionseffekte) werden auch die Folgen von Nebenreaktionen dargestellt (Wasserverlust und Gasbildung durch Wasserzersetzung). Zudem werden die grundsätzlichen Unterschiede zwischen zwei Batterietypen aufgezeigt: Geschlossene Batterien (Vented/flooded batteries) Diese haben einen aufschraubbaren Zellstopfen für die Wassernachfüllung und Öffnungen im Deckel für das Entweichen von Gasen. Verschlossenen Batterien (Valve Regulated Lead Acid batteries) Dieser Batterietyp ist fest verschlossen und verfügt über ein Ventil, das sich bei Überdruck öffnet um die entstandenen Gase freizusetzen. Warum Lithium? Lithium ist das leichteste Metall im Periodensystem und steht am negativen Ende der elektrochemischen Spannungsreihe. Die daraus resultierende hohe theoretische Kapazität und die in Kombination mit verschiedenen Kathodenmaterialien realisierbaren hohen Zellspannungen machen es zum idealen Anodenmaterial. Lithium- und Lithium-Ionen-Batterien Der Artikel beschreibt Aufbau und Funktion primärer (nicht wiederaufladbarer) und sekundärer (wiederaufladbarer) Lithium-Batterien. Zudem wird die Lithium-Ionen-Batterie vorgestellt. In diesem System können sowohl das Kathoden- als auch das Anodenmaterial Lithium reversibel einlagern. Die negative Elektrode enthält an Stelle metallischen Lithiums nun Kohlenstoff als Speichermedium, die positive ein Lithium-Übergangsmetalloxid. Beim Ladeprozess werden Lithium-Ionen aus dem Metalloxid ausgelagert, zur negativen Elektrode transportiert und dort in das Gitter des Kohlenstoffs eingelagert. Beim Entladeprozess verläuft der Prozess umgekehrt. Lithium-Polymer-Zelle Eine Variante der Lithium-Ionen-Zelle ist die Lithium-Polymer-Zelle. Elektrodenmaterialien und Zellchemie sind identisch. Es wird aber an Stelle des flüssigen Elektrolyten eine Polymermatrix verwendet, die den Flüssigelektrolyten vollständig aufsaugt und auslaufsicher fixiert. In Lithium-Polymerzellen mit (Fest-)Polymerelektrolyt wird als Elektrolyt wird ein Polymer mit einem darin gelösten Lithiumsalz eingesetzt, das keine flüssigen Lösungsmittel mehr enthält. Der Ionentransport erfolgt komplett über die Polymermatrix. Vielfältige Einsatzmöglichkeiten Lithium-Batterien sind, verglichen mit den konventionellen Systemen, eine sehr junge Technologie. Trotz ihrer erst relativ kurz zurückliegenden Markteinführung zeigen sie im Bereich der Gerätebatterien bereits das größte Marktwachstum und beginnen die etablierten Systeme zu verdrängen. Sie werden in Camcordern, Mobiltelefonen und tragbaren Computern eingesetzt. Zukünftige Fahrzeugkonzepte, wie zum Beispiel das Hybridauto, benötigen leistungsfähigere Batterien. Auch hier können Lithium-Batterien in Zukunft eine bedeutende Rolle spielen. Neue Materialien, Nanokomposite und neue Zellkonzepte bieten Entwicklungspotenzial für weitere Verbesserungen und vielfältige Anwendungen.
-
Chemie / Natur & Umwelt
-
Sekundarstufe II