• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Sinus, Kosinus und Tangens eines Winkels

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Sinus, Kosinus und Tangens" wird den Lernenden anhand von Java-Applets der Zusammenhang zwischen dem Winkel am Einheitskreis und den dazugehörigen trigonometrischen Funktionen schnell und verständlich nahe gebracht. Java-Applets ermöglichen Visualisierungs- und Darstellungsformen, die mit Papier und Bleistift, Tafel oder Folie, zu zeitaufwändig und kaum realisierbar sind. Beim Einsatz von Java-Applets lassen sich durch einfaches Ziehen mit der Maus geometrische Figuren und Winkelfunktionen zeichnen und beliebig verändern. Das in dieser Unterrichtseinheit verwendete Java-Applet von Walter Fendt ist ein sehr schönes Werkzeug, um den Lernenden den Zusammenhang zwischen dem Winkel am Einheitskreis und den dazugehörigen trigonometrischen Funktionen schnell und verständlich nahe zu bringen. Darüber hinaus lernen die Schülerinnen und Schüler selbstständig, entdeckend und kooperativ zu arbeiten. Bei Fehlern kann man einfach wieder von vorne beginnen. Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Die Schülerinnen und Schüler erkennen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen. benennen besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion. Eine Einführung der Sinus-, Kosinus- und Tangensfunktion kann natürlich auch über das eigenhändige Zeichnen erfolgen. Da die Trigonometrie jedoch anspruchsvoll und anschaulich behandelt werden kann und soll, bringt der Einsatz des Java-Applets neben einer Auflockerung des Unterrichts auch einen klaren Zeit- und Erkenntnisgewinn: Die Lernenden erkennen nämlich die wesentlichen Zusammenhänge mithilfe des Applets sehr schnell und müssen sich nicht mit zeitaufwändigen Zeichnungen aufhalten, bei denen der Arbeitsaufwand in keinem günstigen Verhältnis zu den so erarbeiteten Ergebnissen steht. Darüber hinaus ist die Nutzung von Java-Applets äußerst einprägsam, so dass Sie in Ihrem Unterricht nicht darauf verzichten sollten! Bei passenden Aufgabenstellungen lernen die Schülerinnen und Schüler zudem, sich die Zusammenhänge zu erklären und sich gegenseitig zu überprüfen. 1. Schritt Die Schülerinnen und Schüler haben die Aufgabe erhalten, am Einheitskreis einen Winkel von 40 Grad, Sinus 40 Grad, Kosinus 40 Grad und Tangens 40 Grad einzuzeichnen. Dabei werden Sinus, Kosinus und Tangens farbig unterschieden. Grundlegende Eigenschaften werden dabei wiederholt. In einer Einführung wird dargestellt, dass Sinus, Kosinus und Tangens Funktionen am Einheitskreis darstellen. Dabei wird jedem Winkel ein Punkt auf dem Einheitskreis zugeordnet (analytische Definition). 2. Schritt Die Lernenden begeben sich (maximal) zu zweit an einen Rechner. Das Java-Applet wird gestartet. Die Schülerinnen und Schüler erhalten den Auftrag, Sinus, Kosinus und Tangens am Einheitskreis mithilfe der Maus darzustellen und dabei den Verlauf der Graphen zu beobachten. Erste Eindrücke sollen festgehalten sowie eine Skizze der Graphen angelegt werden. Als besondere Punkte sind dabei die Winkel 30 Grad, 60 Grad, 90 Grad, 120 Grad, 180 Grad und 270 Grad zu betrachten. 3. Schritt Die Lernenden beschreiben den Verlauf der Graphen und stellen fest, dass die Sinus- und Kosinusfunktionen periodisch mit der Periode 360 Grad sind und dass Sinus- und Kosinusfunktion durch Verschiebung um 90 Grad auseinander hervorgehen. Die Tangensfunktion ist punktsymmetrisch zum Ursprung und hat eine Periode von 180 Grad. 4. Schritt Zur Ergebnissicherung werden die Graphen der Sinus-, Kosinus- und Tangensfunktion auf einem bereits zuvor erstellten Arbeitsblatt (siehe Download auf der Startseite des Artikels) zur Verfügung gestellt. Die Schülerinnen und Schüler tragen nun am Graphen die besonderen Punkte (siehe oben) ein und formulieren die Eigenschaften, die zuvor geäußert worden sind. Zusätzlich dazu müssen die Lernenden als Wiederholung den Zusammenhang zwischen Gradmaß und Bogenmaß (Pi) herstellen, um sich mit dem Arbeitsblatt erfolgreich auseinandersetzen zu können.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Trigonometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Trigonometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Die Sinusfunktion: Schwingungen und Schwebungen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Das Ziel dieser Einführung ist es, ohne größeren Zeitaufwand die vorgegebenen Lernziele auf einem neuen Weg zu erreichen und dabei ein besseres Verständnis der Sinusfunktion als Schwingungsfunktion zu vermitteln.Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler verstehen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden. erhören über das physikalische Phänomen Schwebung ein Additionstheorem. Untersuchung periodischer Vorgänge Nachdem die Schülerinnen und Schüler mit der Beschreibung der Natur durch Potenzfunktionen bereits mehr oder weniger vertraut sind, sollen als neue Funktionsklasse nicht gleich die Sinusfunktionen, sondern erst einmal beliebige periodische Vorgänge untersucht werden. Direkt am Phänomen können Amplitude und Periodenlänge als wichtigste Begriffe erfahren werden (Experimentvorschläge finden Sie auf den Arbeitsblättern 1 und 2). Dabei erscheint mir das Wort Periodenlänge (und nicht Periodendauer, Periode oder Schwingungsdauer) für die Beschreibung der Periode im Mathematikunterricht als am besten geeignet. Hier legt man sich nicht schon im Voraus auf zeitliche Perioden fest. Der Frequenzbegriff ist vom mathematischen Standpunkt aus erst einmal nicht nötig. Auch auf den Begriff der Winkelgeschwindigkeit verzichte ich, auch wenn seine konsequente Verwendung durchaus denkbar ist. Phasenunterschiede sind für das Phänomen an sich primär nicht von großer Bedeutung und werden deshalb vorerst nicht behandelt. Daher wird auch nur die Sinusfunktion und nicht zusätzlich auch noch die Kosinusfunktion eingeführt. Die Sonnenaufgangskurve als nichtphysikalisches Sicherungselement Die Begriffe Amplitude und Periodenlänge sollen erst hinreichend gesichert werden, bevor sich die harmonische Schwingungsfunktion als wichtigste periodische Funktion herauskristallisiert. Dazu eignen sich insbesondere Experimente aus der Akustik. Hier kann man Amplitude und Periodenlänge direkt hören und mit dem Oszilloskop sogar sichtbar machen. Als nichtphysikalische Sicherungselemente bieten sich insbesondere tages- und jahreszeitliche Perioden an. Ich habe mich für die Änderung der Sonnenaufgangszeit im Laufe des Jahres entschieden, weil dieses Problem zum Beispiel im Herbst höchst aktuell und schülernah ist. Die Sonnenaufgangskurve weicht zwar mit zunehmender geographischer Breite von einer Sinuskurve ab, diese Abweichungen betragen in Deutschland jedoch weniger als fünf Prozent. Definition der Funktion Erst nach der beschriebenen Einführung wird die Kreisbewegung ins Spiel gebracht und es erfolgt eine Beschränkung auf die rein harmonischen Schwingungen. Das klassische Experiment dazu ist die synchrone Projektion von Federpendel und Kreisbewegung eines Stiftes. Vor der Definition von sin(x) sollen die Schülerinnen und Schüler erkennen, dass die harmonische Schwingungsfunktion keine Potenzfunktion sein kann. Das erste Mal in ihrer mathematischen Laufbahn können sie eine funktionale Abhängigkeit nicht aus den bekannten Rechenoperationen zusammenstellen. Eine neue Funktion muss definiert werden. Das hört sich einfacher an, als es ist, denn man bekommt bei einer solchen Definition sehr viele Freiheiten mit auf den Weg. Die Kurvenform ist zwar mehr oder weniger festgelegt, doch stehen die Achsenbeschriftungen noch völlig frei. Um hier zu steuern, werden die Schülerinnen und Schüler vorher in einem Arbeitsblatt die harmonische Schwingungskurve für eine Projektion eines Punktes auf einer Kreisbahn mit festem Radius genau zeichnen (Arbeitsblatt 4). Dadurch liegt es nahe, die neue Funktion im Bogenmaß zu definieren, nur der Radius sollte noch normiert werden. Argumente im Winkelmaß führte ich erst später ein. Um schnell von der Kreisbewegung zum Graphen der Sinusfunktion zu gelangen, bietet sich das Applet von Walter Fendt an (siehe externe Links auf der Startseite dieser Unterrichtseinheit). Wer etwas mehr Zeit hat, kann seine Schülerinnen und Schüler natürlich auch auf die herkömmliche Art und Weise die Projektion des Einheitskreises mithilfe des oben genannten Arbeitsblattes durchführen lassen, diesmal allerdings vor dem Hintergrund einer echten Bewegung. Kartierung der Funktion Nach der Definition wird die Funktion zu Hause punktweise kartiert und erst anschließend mit der Taschenrechnertaste "sin" in Verbindung gebracht und als Ganzes möglichst genau gezeichnet. Damit die Schülerinnen und Schüler wirklich das Gefühl einer eigenen Definition haben, soll die Namensgebung sehr offen gestaltet werden. Ein weiterer Vorteil eines vorerst anderen Namens besteht darin, dass die Lernenden bei der Kartierung der Funktion nicht zum "Mogeln" mit dem Taschenrechner gedrängt werden. Einsatz des Computers Die "nackte" Sinusfunktion reicht zur Beschreibung der harmonischen Schwingungen noch nicht aus, sie muss verschoben, gestreckt und gestaucht werden. Dabei sollen die Schülerinnen und Schüler lernen, zu vorgegebenen Funktionen der Art f(x) = A sin(B x) + C den zugehörigen Funktionsgraphen skizzieren zu können und umgekehrt zu festen Periodenlängen, Amplituden und Verschiebungen die zugehörige Funktion nennen zu können. Phasenverschiebungen werden aus den genannten Gründen nur kurz behandelt. Bei dieser Vorgehensweise bietet es sich außerdem an, auch die Überlagerung von Schwingungen und damit das Additionstheorem am Phänomen der Schwebung zu erfahren. Die Lernenden sollen das Additionstheorem hören (langsame Amplitudenschwankungen bei ähnlicher Frequenz wie die Grundtöne) und dann mithilfe eines CAS, eines Funktionenplotters oder eines geeigneten Java-Applets den Funktionsgraphen ermitteln. Abb. 1 (Platzhalter bitte anklicken) zeigt die Darstellung einer Schwebung mit dem CAS Derive, die durch Addition von sin(12x) und sin(13x) entsteht (verwendbare Online-Materialien wie zum Beispiel Java-Applets finden Sie unter den externen Links auf der Startseite dieser Unterrichtseinheit). Dabei werden die Begriffe Amplitude und Periodenlänge nochmals gesichert und gefestigt. Der Unterricht zur Trigonometrie basiert im Wesentlichen auf Aufgaben, bei dem es um Eigenschaften von Dreiecken geht. Die Einführung der Sinusfunktion bleibt ein Anhängsel. Erst in neuerer Zeit werden in Schulbüchern die periodischen Funktionen in diesem Zusammenhang besprochen. In dieser Unterrichteinheit soll der Spieß umgedreht werden: Die Sinusfunktion wird vor der Trigonometrie als logische Konsequenz aus der Untersuchung von Schwingungen eingeführt, die Trigonometrie folgt als praktische Anwendung. Dabei entstehen völlig neue Aufgabentypen, die die Vielfalt der Aufgabenkultur bereichern. In dieser Einheit sind dies einerseits komplexe Arbeitsblätter mit offenen Fragestellungen unter Einbeziehung des Computers, andererseits kleine Erkennungsaufgaben, wie man sie von den Parabeln kennt. Mathematik und Physik werden meist nur von Physiklehrkräften fächerübergreifend vermittelt. Damit vergeben die Mathematikerinnen und Mathematiker eine große Chance, Anschauliches mit rein Mathematischem zu verknüpfen. Mit dieser Unterrichtseinheit soll auch Nichtphysikern die Möglichkeit gegeben werden, fächerübergreifend zu arbeiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I

Trigonometrie mit GeoGebra – ein variables Übungskonzept

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema Trigonometrie bietet durch dynamische Arbeitsblätter ein differenziertes Übungsumfeld zu Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dadurch werden die aktuellen Kenntnisse und Fertigkeiten aller Schülerinnen und Schüler berücksichtigt. Die Besonderheit der Lernumgebung zur Trigonometrie "Sinus, Kosinus und Tangens im rechtwinkligen Dreieck" besteht darin, dass sie in jeder Phase des Unterrichts flexibel eingesetzt werden kann. Die dynamischen Arbeitsblätter eignen sich sowohl für die Erarbeitung der trigonometrischen Zusammenhänge im rechtwinkligen Dreieck, als auch für eine differenzierte Übungs- und Anwendungsphase. Die Lernumgebung bietet dynamische Veranschaulichungen sowie einfachere und komplexere Übungen und ermöglicht so den Lernenden eine eigenständige und selbstverantwortliche Wissenserweiterung. Die zu bearbeitenden Aufgaben werden per Computer analysiert und bewertet. Deshalb kann sich die Lehrkraft in der Übungsphase individuell leistungsschwächeren Lernenden zuwenden und gemeinsam mit ihnen Probleme analysieren. So wird eine gezielte Förderung möglich. Das Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck (grüner Kasten auf der rechten Seite). Dazu kommen sechs Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen (blauer Kasten auf der rechten Seite) sowie drei variable Übungen zur Unterrichtsdifferenzierung (gelber Kasten auf der rechten Seite). Die Navigation der Lernumgebung befindet sich rechts neben der dynamischen Darstellung. Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Die Schülerinnen und Schüler lernen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen. beheben erkannte Defizite im Bereich dieser Zusammenhänge selbstständig. können die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden. Das hier vorgestellt Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Da die Lernumgebung aber flexibel einsetzbar ist, können diese auch innerhalb der Lernumgebung selbstständig erarbeitet werden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dazu kommen drei Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen sowie zwei variable Übungen zur Unterrichtsdifferenzierung. Die Navigation der Lernumgebung (Einführung und Erläuterung sowie Übungen) befindet sich rechts neben der dynamischen Darstellung. Übungen zur Selbstkontrolle und Leistungsbestimmung In dieser Unterrichtsphase haben die Schülerinnen und Schüler Zeit, sich mit den ersten drei Übungen zu beschäftigen und so ihre bisherigen Kenntnisse zu überprüfen. Bei allen Übungen erzeugt der Computer per Zufallsgenerator unterschiedliche rechtwinklige Dreiecke und gibt Winkelfunktion und Winkelmaß vor. Die Lernenden sollen den richtigen Quotienten ergänzen. Computer gibt Lösungshinweise Mit dem Button "prüfen" können die Schülerinnen und Schüler ihre Eingabe prüfen und sich mit "Neue Aufgabe" eine weitere Aufgabe stellen lassen. Sie erhalten auf fehlerhafte Eingaben neben der Meldung, dass ihre Eingabe falsch war, einen Lösungshinweis: "Leider falsch! Für Tangens brauchst du doch die Gegenkathete und die Ankathete im Dreieck. Also versuch's noch mal". Die Mindestbearbeitungsdauer der drei Übungen ergibt sich aus der Vorgabe "Schaffst du mehr als 199 Punkte?". Die Lehrkraft kann auch eine bestimmte Zeit für jede Übung vorgeben. Sollten die Schülerinnen und Schüler mit der Bearbeitung der ersten drei Online-Arbeitsblätter nicht zurechtkommen, können sie stets die jeweilige Erläuterungsseite verwenden und sich den einen oder anderen Zusammenhang noch einmal veranschaulichen lassen. Die Lernenden können so die noch bestehenden Defizite aufarbeiten. Die Lehrkraft wird nur dann aktiv ins Unterrichtsgeschehen eingreifen, wenn sich die Schülerinnen und Schüler auch anhand der Erläuterungsseite nicht zurechtfinden. Variation der Aufgaben Bei der ersten variablen Übung werden abwechselnd eine der drei Winkelfunktionen sin, cos, tan und ein bestimmtes Winkelmaß vorgegeben. Die Aufgabe der Schülerinnen und Schüler besteht darin, den richtigen Quotienten anzugeben. Die Funktionsweise des interaktiven Arbeitsblatts unterscheidet sich nicht von der der ersten Übungen. Mit dem Button "prüfen" wird die Eingabe kontrolliert und mit "Neue Aufgabe" werden weitere Aufgaben erzeugt. Die Variation der Aufgabenstellung führt zur Festigung des bisher Gelernten. Dabei besteht auch weiterhin die Möglichkeit, innerhalb der Lernumgebung zu den vorausgegangenen Übungen oder den Erläuterungsseiten zurückzukehren, um Defizite aufzuarbeiten. Differenzierung des Unterrichts Die zweite variable Übung eignet sich zur inneren Differenzierung des Unterrichts. Zu einem zufällig erzeugten Dreieck werden nun der Quotient und das Winkelmaß vorgegeben. Die Schülerinnen und Schüler sollen die zugehörige Winkelfunktion sin, cos oder tan angeben. Dazu müssen sie zuerst die jeweiligen Seitenlängen als Katheten oder Hypotenuse identifizieren und anschließend über das gegebene Winkelmaß die Katheten als An- oder Gegenkathete bestimmen. Anschließend benötigen sie die Definition des Sinus, Kosinus oder Tangens, um die Aufgabe zu lösen. Die Fülle der notwendigen Überlegungen und deren Einbindung in eine Lösungsstrategie ermöglicht ihnen eine weitere Vertiefung ihrer Kenntnisse. Abschließend bietet sich eine herkömmliche Lernzielkontrolle mit Papier und Bleistift an. Sie kann als Leistungserhebung durchgeführt werden, bei der die Inhalte der vorangegangenen Übungen abgefragt und die Leistungen der Schülerinnen und Schüler überprüft werden. Dieser Test kann aber auch als Hausaufgabe gestellt oder in Form einer Partnerarbeit im Anschluss an die Online-Arbeitsblätter bearbeitet werden. So mündet die Arbeit am Computer wieder in die "normale" Unterrichtsarbeit im Klassenzimmer. Ein wichtiger Aspekt beim Lernen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass eine Interaktion zwischen dem Lernenden und dem Computer möglich wird. Diese Interaktion führt zu einem ständigen Wechsel von spannenden und entspannenden Zuständen. Nach jeder Eingabe wartet die Schülerin oder der Schüler auf die Bewertung, um sich danach sofort eine neue Aufgabe stellen zu lassen. Auf diese Weise kann die Konzentration der Lernenden über einen längeren Zeitraum aufrechterhalten werden. Die Rückmeldungen des Computers auf falsche Eingaben führen in der Lerngruppe oft zu einer regen Diskussion über die gemachten Fehler. Wo die kritische Nachfrage der Lehrkraft oft als lästig empfunden und daher möglichst ignoriert wird, akzeptieren die Schülerinnen und Schüler die Rückmeldung des Computers bereitwillig und korrigieren ihre Fehler. Im Unterricht lässt sich immer wieder beobachten, dass selbstständiges Arbeiten Begabungsunterschiede sehr deutlich hervortreten lässt. So sind oft einige Klassenmitglieder mit der Bearbeitung einer Aufgabe bereits fertig, während andere damit noch gar nicht begonnen haben. Um diesem Phänomen zu begegnen, ist ein differenziertes Angebot von Übungen erforderlich, das die Unterschiede im Arbeitstempo und in der Auffassung berücksichtigt. Im regulären Unterricht mit gewöhnlichem Material ist dies nur schwer zu realisieren. Durch die Verwendung der hier vorgestellten interaktiven dynamischen Übungsumgebung wird ein differenziertes und selbsttätiges Lernen möglich. Zudem stehen alle Übungen den Schülerinnen und Schülern - sofern sie über einen Internetzugang verfügen - auch zu Hause zur Verfügung. So können Interessierte das Angebot unbegrenzt nutzen, was die Eigenverantwortlichkeit in hohem Maße fördern kann. Ein wichtiges Element in einer Übungsphase ist die Motivation, mit der die Lerngruppe Aufgaben bearbeitet. Übungen, die die Schülerinnen und Schüler widerwillig ausführen, verfehlen ihr Ziel und sind eigentlich verlorene Zeit. Eine Intensivierung der Übungsarbeit kann durch gelegentliche Wettbewerbe und spielerische Elemente erreicht werden. Wettbewerbe bringen Abwechslung in eine Übungsphase und mobilisieren zusätzlich Motivationskräfte. Die Klasse setzt sich bei Wettbewerben im Allgemeinen in einer Weise ein, wie dies sonst kaum der Fall ist. Wer Lernen und Spielen in einem Zusammenhang nennt und dies noch mit Mathematik in Verbindung bringt, stößt bei Mathematiklehrkräften oft auf große Skepsis. Setzt man aber die bestimmenden Elemente des Spiels mit Aufgabenfunktionen sowie mit den meist vernachlässigten emotionalen Aspekten des Lernens zueinander in Beziehung, wird deutlich, dass das Spiel durchaus ein interessantes didaktisches Rahmenkonzept darstellen kann, das neue unterrichtliche Gestaltungsmöglichkeiten bietet. Für die hier vorgestellten interaktiven Übungen gilt, was für alle Arbeitsmaterialien gelten sollte, nämlich, dass sie zur Unterrichtssituation passen sowie selbsterklärend und motivierend in Form und Inhalt sind. Sie lassen sich nahtlos in einen bestehenden Mathematikunterricht einbinden. Somit wird das Lernen am Computer nicht zu einer Sonderveranstaltung, sondern zu einem weiteren Element eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Zusätzlich können die Schülerinnen und Schüler bei der Bearbeitung der interaktiven Aufgabenblätter immer erkennen, ob sie die Aufgabe korrekt gelöst haben, was in dieser Form bei herkömmlichen Unterrichtsmaterialien nicht leicht zu realisieren ist.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Trigonometrie am Dach

Unterrichtseinheit

In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I zum Thema "Trigonometrie" lernen die Schülerinnen und Schüler die Begriffe und Eigenschaften von Sinus, Kosinus und Tangens für Berechnungen am Dreieck kennen. Sie berechnen Winkel und Seiten von Dreiecken. Ziel ist es, den Unterricht im Sinne des selbstgesteuerten Lernens mit differenzierten Aufgaben umzusetzen. In dieser Unterrichtseinheit für den Mathematikunterricht der Sekundarstufe I erarbeiten die Schülerinnen und Schüler anhand von drei differenzierten Arbeitsblättern die grundlegenden Eigenschaften von Dreiecken und lernen Winkel zu berechnen. Um die Relevanz der Theorie in praktischen Anwendungen zu verdeutlichen, wird ein anschaulicher Bezug zum Dachdecker-Handwerk hergestellt. Die Lernenden erwerben dabei Grundkenntnisse zur Berechnung von rechtwinkligen und nicht rechtwinkligen Dreiecken und vertiefen ihr Verständnis der Trigonometrie im Alltagskontext. Im ersten Schritt ( Arbeitsblatt 1 ) setzen sich die Schülerinnen und Schüler mit den verschiedenen Arten von Dreiecken auseinander. Sie erkennen, dass Dreiecke in vielen alltäglichen Strukturen verborgen sind und erlernen die Unterscheidung nach Winkelarten. Anhand vorgegebener Winkelangaben klassifizieren sie spitzwinklige, rechtwinklige und stumpfwinklige Dreiecke. Darüber hinaus beschäftigen sie sich mit allgemeinen, gleichschenkligen und gleichseitigen Dreiecken und lernen die Aufteilung nach Seiten kennen. Mithilfe der Dreiecksungleichung prüfen sie, ob bestimmte Dreiecke gezeichnet werden können. Schließlich wird ein Bezug zu verschiedenen Dachformen hergestellt. Die Schülerinnen und Schüler erkennen, dass viele Hausdächer in ihrer Grundform als Dreiecke dargestellt werden können. In diesem Kontext lernen sie verschiedene Dachformen und deren Bezeichnungen kennen. Sie wenden ihr Wissen an, indem sie in ihrer Umgebung nach unterschiedlichen Dachformen suchen und diese fotografisch dokumentieren. Mithilfe von Arbeitsblatt 2 vertiefen die Schülerinnen und Schüler ihre Fähigkeiten zur Winkelberechnung und insbesondere Berechnung von rechtwinkligen Dreiecken. Sie üben, die passenden trigonometrischen Funktionen (Sinus, Cosinus, Tangens) zu erkennen und korrekt anzuwenden, um aus vorgegebenen Seitenlängen die fehlenden Winkel zu berechnen. Darüber hinaus lernen sie, fehlende Seitenlängen in Dreiecken zu ermitteln, indem sie ihr Wissen über die Beziehungen zwischen Winkeln und Seiten nutzen. Zum Abschluss wird das erworbene Wissen durch eine praxisnahe Textaufgabe vertieft, die das Dachdecker-Handwerk als Anwendungsbeispiel aufgreift. Dadurch wird der mathematische Lerninhalt in einen alltagsrelevanten Kontext eingebettet, was den praktischen Nutzen der Trigonometrie verdeutlicht. Arbeitsblatt 3 führt die Schülerinnen und Schüler in die Berechnung von nicht-rechtwinkligen Dreiecken ein. Sie lernen den Kosinussatz und den Sinussatz kennen. Im Rahmen der Aufgaben wird der Bezug zur Praxis durch die Analyse von Dachformen hergestellt. Die Lernenden berechnen fehlende Seiten und Neigungswinkel, um die Anwendung der trigonometrischen Grundlagen anhand eines Beispiels zu verdeutlichen. Zum Abschluss recherchieren die Schülerinnen und Schüler, wie die Dachneigung die Wahl der Dacheindeckung beeinflusst und warum die Berechnung von Winkeln in handwerklichen Berufen, insbesondere im Dachdeckerhandwerk, eine wichtige Rolle spielt. Abschließend wenden sie ihr Wissen praktisch an, indem sie sich ein Dach in ihrer Umgebung aussuchen und überlegen, welche Dacheindeckung und Materialien aufgrund der Dachneigung geeignet wären. Diese Unterrichtseinheit fördert das Verständnis der Schülerinnen und Schüler für die Anwendung von Geometrie und Trigonometrie in realen Kontexten, wie dem Planen eines Daches, und überführt das abstrakte Wissen in praxisnahe Zusammenhänge. Diese Unterrichtseinheit vermittelt den Schülerinnen und Schülern der Sekundarstufe I grundlegende und weiterführende Kenntnisse zur Trigonometrie, die sowohl zur Einführung neuer Inhalte als auch zur Wiederholung genutzt werden können. Dabei werden die Lernenden anhand von drei differenzierten Arbeitsblättern systematisch an die geometrische Form des Dreiecks herangeführt und lernen, Dreiecksarten zu bestimmen und Winkel zu berechnen. Je nach Jahrgangsstufe wird neues Wissen erarbeitet oder vorhandenes Wissen vertieft und wiederholt. Das Thema "Trigonometrie" ist in verschiedenen Jahrgangsstufen der Sekundarstufe I (je nach Schulform) lehrplanrelevant. Die in der 7. Klasse erarbeiteten Grundlagen bilden eine wichtige Basis für weiterführende Inhalte, die in der 10. Klasse behandelt werden. Die Arbeitsblätter dieser Einheit sind flexibel einsetzbar: In Klasse 10 dient Arbeitsblatt 1 zur Wiederholung, während die Arbeitsblätter 2 und 3 der Erarbeitung eines neuen Themas gewidmet sind. Vorkenntnisse sind daher für die Bearbeitung von Arbeitsblatt 1 erforderlich. In der Jahrgangsstufe 7 kann Arbeitsblatt 1 für die Einführung in ein neues Thema genutzt werden, währen Arbeitsblatt 2 und 3 sich eher für leistungsstarke Schülerinnen und Schüler eignen. Die Aufgabenblätter sind neben dem Einsatz im regulären Unterricht auch für die Wochenplanarbeit geeignet, da sie durch Hilfestellungen und Info-Kästen ein eigenständiges Arbeiten ermöglichen, welches als Prinzip der Unterrichtseinheit zugrunde liegt. Hilfestellungen dienen als Grundlage für differenzierte Aufgaben, die verschiedene Leistungsniveaus abdecken. Vertiefende Übungen mit Praxisbezug bieten zusätzliche Differenzierungsmöglichkeiten. Der Bezug zum Dachdecker-Handwerk veranschaulicht die praktische Anwendung der Trigonometrie in realen Kontexten, sodass das erworbene Wissen nicht abstrakt bleibt, sondern mit alltäglichen Situationen verknüpft wird. Die Aufgaben sind nach Schwierigkeitsgrad gestaffelt, um unterschiedliche Lernniveaus zu berücksichtigen. Aufgaben mit einem geringeren Schwierigkeitsgrad eignen sich besonders für den Förderunterricht oder zur Wiederholung, während anspruchsvollere Aufgaben leistungsstarke Schülerinnen und Schüler herausfordern und fördern. Dadurch können die Arbeitsblätter in verschiedenen Lernsettings eingesetzt werden. Ziel dieser Unterrichtseinheit ist es, das trigonometrische Verständnis der Schülerinnen und Schüler zu vertiefen und ihre Fähigkeit zu stärken, dieses Wissen auf praktische Fragestellungen anzuwenden. Durch den Einsatz vielfältiger Lernmethoden – von Erklärungen und Beispielen über Info-Kästen bis hin zu praxisnahen Aufgaben – wird ein abwechslungsreicher und motivierender Lernprozess unterstützt. Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Arten von Dreiecken kennen. berechnen Streckenlängen und Winkelgrößen, auch unter Nutzung von trigonometrischen Beziehungen. operieren gedanklich mit Strecken, Flächen und Körpern. Medienkompetenz Die Schülerinnen und Schüler suchen, verarbeiten und bewahren Inhalte und Materialien auf. kommunizieren und kooperieren auf verschiedenen Ebenen miteinander. Sozialkompetenz Die Schülerinnen und Schüler können sachlich kommunizieren. können gemeinsam Aufgaben bearbeiten und ausführen. können sich an Absprachen und Vereinbarungen halten.

  • Mathematik
  • Sekundarstufe I

Schwingungen in Mathematik, Musik und Physik

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Fourier-Analyse (nach J.B.J. Fourier, 1768-1830) auf experimentelle Art und Weise kennen. Mit der Methode können komplexe Schwingungen, wie sie in der Musik und in der Physik vorkommen, in ihre Einzelkomponenten zerlegt werden.Nach der Einführung in das Thema der trigonometrischen Funktionen und insbesondere der Sinusfunktion arbeiten die Schülerinnen und Schüler weitgehend selbstständig am Computer. Mit dynamischen Arbeitsblättern, die mithilfe der kostenlosen Software GeoGebra erstellt wurden, finden sie heraus, wie sich die Parameter Amplitude, Frequenz und Nullphasenwinkel auf eine Sinusschwingung auswirken. Anschließend werden diese Erfahrungen dazu genutzt, Sinusschwingungen gezielt zu beeinflussen, um eine experimentelle Art der Fourier-Analyse durchzuführen. Die dynamischen Arbeitsblätter enthalten auch Erklärungen und Informationen aus der Physik und der Musik, wodurch sie sich für den fächerübergreifenden Unterricht eignen. Da in der Musik Hörerfahrungen nicht fehlen dürfen, stellen neun Hörbeispiele eine direkte Verbindung zur Musik her. Die Hörbeispiele stehen in unmittelbarem Bezug zu den Aufgabenstellungen und vermitteln einen direkten Zusammenhang zwischen den dynamischen Konstruktionen und den musikalischen Entsprechungen. So üben die Schülerinnen und Schüler nicht nur den Umgang mit trigonometrischen Funktionen, sondern lernen auch deren Bedeutung für die Physik und die Musik kennen. Tipps zum Unterrichtsverlauf Anregungen für den fächerübergreifenden Unterricht und zum selbstständigen, erforschenden Lernen sowie Hinweise zur Bedeutung des "klassischen" Heftes Hintergrundinfos für Lehrkräfte und Experimentiervorschläge Allgemeine Informationen zur Herleitung einer Sinusschwingung und zu Schwebungen sowie Vorschläge zu musikalischen Experimenten mit dem Klavier und der Blocklöte Die Schülerinnen und Schüler festigen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern. beeinflussen mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt. erkennen die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik. lernen durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen. kennen die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke". kennen den Aufbau eines Tons durch Überlagerung seiner Partialtöne. lernen das Phänomen der Schwebung kennen. sind mit dem Prinzip der Fourier-Analyse vertraut und kennen Anwendungsgebiete. Mit der Fourier-Analyse können komplexe Schwingungen in ihre Einzelkomponenten zerlegt werden. Jede dieser Teilschwingungen besitzt dabei die Form einer Sinusschwingung und lässt sich als Graph einer Sinusfunktion der Form mit den Parametern Amplitude a , Frequenz f und Nullphasenwinkel phi sub~0~~ darstellen. Um eine komplexe periodische Schwingung in ihre Einzelkomponenten zu zerlegen, wendet man das Verfahren der Harmonischen Analyse an. Nach ihrem Entdecker, dem französische Physiker und Mathematiker Jean Baptiste Joseph Fourier (1768-1830) wird diese Methode auch Fourier-Analyse genannt. Fourier zeigte, dass sich jede beliebige periodische Schwingung eindeutig als Summe von endlich oder unendlich vielen Sinusschwingungen darstellen lässt, deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Die mathematische Durchführung einer Fourier-Analyse ist relativ anspruchsvoll. Man benötigt dafür Kenntnisse über den Umgang mit trigonometrischen Funktionen, Summen und Integralen, sowie mit komplexen Zahlen. Daher eignet sie sich nicht direkt für den Unterricht. Um den Schülerinnen und Schülern aber das Prinzip einer Fourier-Analyse näher zu bringen, genügt es, diese auf experimentelle Weise durchzuführen. Dies wird durch die hier verwendeten dynamischen Arbeitsmaterialien ermöglicht. Musik Anwendungen der Fourier-Analyse findet man sowohl in der Musik, als auch in der Physik und dem alltäglichen Umgang mit Radio, CD-Player und Fernseher. In der Musik nutzt man diese Methode zum Beispiel zur Analyse von Klängen. Dabei nimmt man die Klänge mit einem Mikrophon auf und setzt den Schwingungsverlauf mithilfe eines Analog-Digital-Wandlers in mathematisch erfassbare Zahlenwerte um. Derartige digitalisierte Schwingungsverläufe können dann zum Beispiel auf eine CD gebrannt werden, wobei sie beim Abspielen als Überlagerung von Sinusschwingungen verschiedener Frequenzen reproduziert werden. Physik In der Physik wird die Fourier-Analyse unter anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Schwingungen zu zerlegen. Zum Beispiel nützt man dies um die Eigenfrequenzen eines Messgerätes zu berechnen. Denn um eine Verzerrung des Messvorgangs durch die Resonanzen der Eigenfrequenzen zu umgehen, darf das Messgerät keine Eigenfrequenzen innerhalb des Messbereichs aufweisen. Auch bei Radio und Fernsehen kommt die Fourier-Analyse zum Einsatz. Hier müssen die Signale erst digitalisiert und in ihre Einzelkomponenten zerlegt werden, bevor sie mit einer Trägerwelle gesendet werden können. Treten bei der anschließenden Überlagerung der Einzelfrequenzen Störungen auf, so sind sie zum Beispiel im Fernsehen als Bildstörungen wahrnehmbar. Dies tritt unter anderem auf, wenn Moderatoren Kleidungsstücke mit sehr feinen Streifen tragen und kann als flimmernde Bildstörung wahrgenommen werden. Der Verlaufsplan Schwingungen stellt eine Anregung dar und kann natürlich an die jeweiligen Unterrichtsbedingungen angepasst werden. Im Idealfall stehen Ihnen die für jeden Block vorgeschlagenen Unterrichtsstunden hintereinander zur Verfügung. Dies lässt sich eventuell durch das Tauschen von Unterrichtsstunden mit den Kolleginnen und Kollegen erreichen. Ist dies nicht der Fall, können die Blöcke auch in aufeinander folgenden Mathematikstunden behandelt werden. Die Arbeitsblätter können auch im Rahmen von Hausübungen zu Ende bearbeitet werden, damit alle Schülerinnen und Schüler beim nächsten Unterrichtsblock auf dem gleichen Wissensstand sind. Falls nicht alle über einen heimischen Internetanschluss verfügen, lassen sich die Hausübungen auch in Partner- oder Kleingruppenarbeit erledigen. Beim Abspielen der Hörbeispiele ist die Verwendung von Kopfhörern zu empfehlen, da sich die Lernenden sonst gegenseitig stören würden. Dynamische Arbeitsblätter "Schwingungen in Musik und Mathematik" Um mit den interaktiven Applets arbeiten zu können, benötigen Sie Java (Version 1.4.2 oder höher). Die Unterrichtsmaterialien eignen sich für den fächerübergreifenden Unterricht zwischen den Fächern Mathematik, Musikerziehung und Physik. Sie können in Zusammenarbeit mit den entsprechenden Fachlehrkräften zu einem Projekt ausgebaut oder ergänzt werden. So könnte Ihnen zum Beispiel die Musiklehrerin oder der Musiklehrer bei der Durchführung der beiden angeführten musikalischen Experimente in Block 2 (siehe Verlaufsplan Schwingungen und Hintergrundinfos für Lehrkräfte und Experimentiervorschläge ) behilflich sein, während die Physiklehrkraft Experimente zur Veranschaulichung von mechanischen Schwingungen durchführen könnte (Fadenpendel, Stimmgabeln, gekoppelte Pendel, ... ). Selbstständiges und erforschendes Lernen Durch die Kombination der dynamischen Arbeitsblätter mit den Hörbeispielen erleben die Schülerinnen und Schüler eine direkte Verbindung zwischen den Fächern Mathematik und Musik. So werden Informationen aus ganz verschiedenen Fachbereichen gesammelt und miteinander verknüpft. In dieser Unterrichtseinheit geschieht dies vor allem durch selbstständiges und erforschendes Lernen. Durch das Experimentieren mit den Materialien können im individuellen Lerntempo Erfahrungen gesammelt werden, welche in den Plenumsphasen mit den Mitschülern diskutiert und bestätigt werden können. Ergebnissicherung: Das Heft ist unentbehrlich! Zur Ergebnissicherung dient das Heft. Das schriftliche Festhalten der Beobachtungen und Erkenntnisse ermöglicht eine bessere Strukturierung der Ergebnisse und ein späteres Nachvollziehen des Unterrichtsgeschehens. Außerdem kann man als Lehrkraft so die Arbeitsfortschritte einzelner Schülerinnen und Schüler einsehen und gegebenenfalls unterstützend eingreifen. So wird gewährleistet, dass möglichst alle die Lernziele erreichen und vom Unterricht profitieren. Die grafische Darstellung einer harmonischen Schwingung lässt sich von der gleichförmigen Kreisbewegung ableiten, indem man diese auf eine normal zur Rotationsachse liegende Ebene projiziert, in der ein rechtwinkliges Koordinatensystem liegt. Bewegt sich ein Punkt P auf einer kreisförmigen Bahn mit Radius r , so lässt sich jedem Phasenwinkel phi im Intervall von 0 bis 2 pi der Wert der zugehörigen Auslenkung y zuordnen. Diese Werte werden entlang der Ordinaten-Achse eines Koordinatensystems aufgetragen, wodurch eine Sinuskurve entsteht. Für dieses Experiment benötigen Sie ein Klavier (Flügel oder Pianino). Es soll den Schülerinnen und Schülern verdeutlichen, dass jeder "natürliche" Ton durch die Überlagerung von Teiltönen (Partialtönen) entsteht. Drücken Sie (oder eine Schülerin oder ein Schüler) stumm die Taste des Tones C (in der großen Oktave). Betätigen Sie kurz und kräftig die Taste C 1 (in der Kontra-Oktave) und halten Sie die erste Taste währenddessen gedrückt. Lassen Sie die Klasse aufmerksam zuhören, was nach dem Auslassen der zweiten Taste passiert: Die Saite der Taste C wurde durch die tiefere Saite der Taste C 1 in Schwingung versetzt - der Ton C ist leise wahrnehmbar. Wiederholen Sie diesen Vorgang auch mit dem Stumm-drücken der Tasten c, g (beide in der kleine Oktave), c 1 , e 1 und g 1 (alle in der ersten Oktave). Dabei sind die entsprechenden Töne immer leiser und ihre Wahrnehmung wird somit schwieriger. Möglicherweise sind die letzten beiden Töne auch gar nicht mehr wahrnehmbar. Erklären Sie Ihren Schülerinnen und Schülern, dass jeder Ton des Klaviers durch Überlagerung seiner Partialtöne entsteht. Dies bedeutet für den Ton C 1 , dass er sich aus folgenden Tönen zusammensetzt: C 1 , C, G, c, e, g, b, c 1 , d 1 , e 1 , ... , wobei hier nur die ersten zehn Partialtöne aufgezählt sind. Theoretisch besteht ein natürlicher Ton aus unendlich vielen Partialtönen, wobei nur eine bestimmte Anzahl wahrnehmbar ist. Das Phänomen einer Schwebung tritt bei der Überlagerung zweier Sinusschwingungen gleicher Schwingungsrichtung mit ganzzahligen Frequenzen f sub~1~~ beziehungsweise f sub~2~~ und gleichem Nullphasenwinkel phi sub~0~~ auf. Der Einfachheit halber wählen wir dabei für den Nullphasenwinkel den Wert Null. Die Frequenzen dürfen dabei jedoch keine ganzzahligen Vielfachen voneinander sein. Ändert sich die Amplitude einer Schwingung periodisch, so nennt man dieses Phänomen in der Akustik eine Schwebung und ihre Frequenz Schwebungsfrequenz f sub~S~~. Liegt die Schwebungsfrequenz im Bereich zwischen 1 Hz und 8 Hz, so werden die einzelnen Schwebungen deutlich als Lautstärkeschwankungen wahrgenommen, was Musiker zum exakten Stimmen ihrer Instrumente nutzen. Stimmen die Amplituden A sub~1~~ und A sub~2~~ der beiden Sinusschwingungen überein, so spricht man von einer "vollkommenen Schwebung". Das heißt, die beiden Schwingungen löschen einander immer wieder aus und die Amplitude A sub~r~~ der resultierenden Schwingung schwankt zwischen den Werten 0 und A sub~1~~ + A sub~2~~. Besitzen die Amplituden der beiden Einzelschwingungen verschiedene Werte, so spricht man von einer "unvollkommenen Schwebung". Die Amplitude A sub~r~~ der resultierenden Schwingung schwankt dabei zwischen den Werten / A sub~1~~ - A sub~2~~ / und A sub~1~~ + A sub~2~~. Ein Klavierstimmer nützt die vielen Obertöne eines Klavierklanges um die Intervalle "rein" zu stimmen. Da die erste Oberschwingung eine doppelt so hohe Frequenz wie ihre Grundschwingung hat, klingt der erste Oberton genau eine Oktave höher als der Grundton. Bei einem einzeln erklingenden Ton nimmt das menschliche Ohr die auftretenden Partialtöne nicht getrennt, sondern als Klanggemisch wahr. Spielt der Klavierstimmer diesen Ton jedoch gleichzeitig mit dem etwas verstimmten Ton im Intervallabstand einer Oktave, so bilden sich Schwebungen zwischen der ersten Oberschwingung des tieferen und der Grundschwingung des höheren Tons. Durch die Veränderung der Saitenspannung lässt sich die Frequenz des höheren nun exakt an die des tieferen Tons anpassen, die Schwebung verschwindet und die Oktave klingt "rein". Für dieses Experiment benötigen Sie zwei Sopranblockflöten: Lassen Sie zwei Ihrer Schülerinnen oder Schüler kräftig denselben Ton auf den beiden Blockflöten spielen, zum Beispiel den Ton d 1 , bei dem auf der Vorderseite der Flöten lediglich das zweite Griffloch von oben verschlossen werden muss. Im Normalfall klingen die beiden Töne nun nicht "rein", da sie durch leicht unterschiedliche Frequenzen erzeugt werden. Ihre Schülerinnen und Schüler sollen nun versuchen, durch Veränderung des Anblasedrucks die Töne anzugleichen. Dabei hält ein Lernender den Luftstrom konstant (mittlere Lautstärke) während der andere seinen Anblasedruck variiert. Sobald die beiden Frequenzen übereinstimmen, klingt der Ton "rein", was deutlich hörbar ist. Das Angleichen der beiden Töne erfordert einige Sensibilität von den Schülerinnen und Schülern. Möglicherweise gibt es aber jemanden, der das Instrument gut beherrscht. Dies würde das "Reinstimmen" der beiden Blockflöten erheblich erleichtern.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Musik
  • Sekundarstufe I, Sekundarstufe II

Der Dopplereffekt und die Entdeckung von Exoplaneten

Unterrichtseinheit

Das physikalische Standardthema Dopplereffekt wird durch den Bezug zu einem spannenden astronomischen Forschungsgebiet „gewürzt“. Neben Freihandexperimenten kommt auch ein Java-Applet zum Einsatz, mit dem man mit Sternen und Planeten "experimentieren" kann.Die Suche nach fremden Welten, die womöglich auch intelligentes Leben beherbergen, ist ein Faszinosum. Für die Einführung des Dopplereffekts bietet das aktuelle Forschungsgebiet der spektroskopischen Suche nach extrasolaren Planeten deshalb eine sehr gute Gelegenheit, Schülerinnen und Schüler zu motivieren. Die hier vorgestellte Unterrichtseinheit wurde im Rahmen des Projektes Wissenschaft in die Schulen! erstellt. Der Dopplereffekt ist in vielen Bundesländern Bestandteil der Lehrpläne. In Bayern steht er zum Beispiel im Rahmen der Akustik (Jahrgangsstufe 11) sowie in der Lehrplanalternative Astronomie (Jahrgangsstufe 13) auf dem Programm. In Baden-Württemberg kann er als Phänomen bei elektromagnetischen Wellen behandelt werden. Unterrichtsverlauf und Materialien Vorkenntnisse, Hinweise zum Unterrichtsablauf und alle Materialien im Überblick (Grafiken, Applets und Arbeitsblatt) Die Schülerinnen und Schüler sollen Phänomenologisch in das Thema des akustischen Dopplereffekts eingeführt werden. ihr erworbenes Wissen durch Analogiebetrachtung auf den optischen Dopplereffekt übertragen. Thema Der Dopplereffekt und die Entdeckung von Exoplaneten Autoren Dr. Olaf Fischer Fach Physik, Astronomie Zielgruppe Sek II Zeitraum 2 Stunden Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Anzahl oder Präsentationsrechner mit Beamer; Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Planung Der Dopplereffekt und die Entdeckung von Exoplaneten Folgende Themen sollten im Unterricht bereits behandelt worden sein: Schallwellen und elektromagnetische Wellen Grundbegriffe der Wellenlehre Zusammenhang zwischen Frequenz und Wellenlänge Spektrum, Absorptionslinien Planetenbewegung Schwerpunkt Sinusfunktion Aufbau der Stunde Der Dopplereffekt soll als Phänomen eingeführt werden, das bei verschiedenen Wellenformen (Licht- und Schallwellen) auftritt. Man beachte dabei, dass der Dopplereffekt aber kein spezifisches Wellenphänomen ist. In der Einstiegsphase der Unterrichtseinheit dient die Betrachtung von Lichtwellen ferner Sternen zunächst "nur" der Motivation (Projektion von Exoplaneten in künstlerischer Darstellung, siehe Materialien). Danach wird der Dopplereffekt anhand von Schallwellen "erlebt" (Freihandexperimente mit der Stimmgabel) und kann einfach erklärt werden, bevor man sich wieder dem Licht der Sterne zuwendet. Eine ausführliche Darstellung des möglichen Unterrichtsverlaufs und Vorschläge zum Einsatz der Materialien finden Sie in dem Der Dopplereffekt und die Entdeckung von Exoplaneten . Analogiebetrachtung - akustischer und optischer Dopplereffekt Die Analogiebetrachtung zwischen den beiden Wellentypen spielt für den Erkenntnisgewinn und bei der Ergebnissicherung eine wesentliche Rolle. Sie findet in der tabellarischen Aufzeichnung an der Tafel beziehungsweise im Arbeitsblatt der Schülerinnen und Schüler ihren Niederschlag (dopplereffekt_exoplaneten_tabelle.rtf). Wichtig ist, dass den Lernenden die Grenzen der Analogie mit der gleichen Wertigkeit wie die Analogie selbst vermittelt werden. Für den Dopplereffekt ist die Betrachtung von Relativbewegungen von Sendern (und Empfängern) wichtig. Der Übergang vom einfachsten Fall (geradlinige Bewegung mit konstanter Geschwindigkeit) zu einer von außen betrachteten Kreisbewegung mit konstanter Bahngeschwindigkeit (Blickrichtung in der Kreisbahnebene) stellt eine hohe Anforderung dar. Es gilt die für den Dopplereffekt verantwortliche Radialgeschwindigkeitskomponente zu erkennen. Die Physik in der Schule lebt von Experimenten, die "leibhaftig" stattfinden und damit sinnliche Eindrücke hinterlassen. Für die Einführung des Dopplereffektes sind Freihandexperimente mit der Stimmgabel sehr gut geeignet. Java-Applets, die im Internet kostenfrei zur Verfügung stehen (zum Teil auch als Download), erlauben eine für die Abstraktion wichtige Veranschaulichung der physikalischen Zusammenhänge. So können die Schülerinnen und Schüler zum Beispiel mithilfe eines Java-Applets von Rob Scharein die Auswirkungen des Doppler-Effektes bei verschiedenen Sternen und Planeten (Sonne-Erde, -Jupiter, -Saturn, -Uranus, 51 Pegasi, Gliese 86) "experimentell" untersuchen. Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot des Applets. Jupiter ist blau, die Sonne weiß und der gemeinsame Schwerpunkt als roter Punkt dargestellt.

  • Physik / Astronomie
  • Sekundarstufe II

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Grundbegriffe der Wellenlehre mit GeoGebra

Unterrichtseinheit

Der hier vorgestellte Online-Kurs mit interaktiven GeoGebra-Applets bietet variabel einsetzbare Materialien zum Lehren und Erlernen der Grundbegriffe der Wellenlehre.Schwingungen und Wellen gehören zu den grundlegenden Phänomenen, die in vielen Gebieten der Physik auftreten: der Ton einer schwingenden Saite in der Akustik, die Wellennatur des Lichts in der Optik, der Schwingkreis in der Elektrizitätslehre bis hin zu den Wellenbetrachtungen in der Atom-, Kern- und Quantenphysik. In nahezu jedem Lehrbuch werden die Entstehung und das Fortschreiten von Wellen mit einer Reihe von Momentaufnahmen dargestellt, um der dynamischen Natur der Sache gerecht zu werden. Die kostenfreie dynamische Geometriesoftware GeoGebra bietet hier weitaus bessere Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und die das Verständnis erleichtern. Der Lehrende oder die Lernenden können mithilfe dynamischer Java-Applets, die mit GeoGebra erstellt wurden, gleichsam die Zeit schnell, langsam, vorwärts oder rückwärts laufen lassen und auch anhalten. Parameter wie Amplitude, Frequenz und Phasengeschwindigkeit können kontinuierlich verändert und so deren Einfluss auf die Erscheinung einer Welle beobachtet werden. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. Kurze Kontrollfragen mit einblendbaren Lösungen dienen der eigenständigen Lernzielkontrolle. Einsatz der Materialien im Unterricht Der Online-Kurs kann zur Einführung, Vertiefung und Festigung sowie zur Wiederholung des Stoffs eingesetzt werden. Gestaltung der Arbeitsmaterialien Hinweise zur Textgestaltung, zu "Mouse-Over-Effekten", zu den Kontrollfragen und Lösungen des Kurses sowie zur verwendeten Bildquelle "Wikimedia Commons". Die Schülerinnen und Schüler sollen die Zeigerdarstellung der harmonischen Schwingung verstehen. die Entstehung und das Fortschreiten einer Seilwelle (mechanische, harmonische, lineare Transversalwelle) verstehen. die Begriffe Phase, Phasenwinkel, Periodendauer, Frequenz, Wellenlänge und Phasengeschwindigkeit einer Welle kennen und erklären können. wissen, dass bei der Transversalwelle keine Materie, sondern Energie in Ausbreitungsrichtung transportiert wird. die zeitliche und räumliche Periodizität als Kennzeichen einer Welle erkennen. die Herleitung der Wellengleichung verstehen. die Wellengleichung anwenden können. Trigonometrie Erforderliche mathematische Voraussetzungen für den Kurs sind Kenntnisse in Trigonometrie, insbesondere im Umgang mit der Sinusfunktion und dem Bogenmaß. Schwingungen Zudem ist es sinnvoll, (mechanische) Schwingungen vor der Wellenlehre zu behandeln. Deshalb knüpft die Lerneinheit mit dem Phasenzeigerdiagramm direkt an die harmonische Schwingung an. Zur Einführung der wesentlichen Eigenschaften einer Welle beschränkt sich der Kurs auf die Betrachtung einer (Gummi-)Seilwelle (mechanische, lineare, harmonische, Transversalwelle). Die gewonnenen Erkenntnisse lassen sich dann auf andere Wellentypen (zum Beispiel longitudinale Wellen) übertragen. Für den Online-Kurs bieten sich drei Einsatzmöglichkeiten an: Einführung in die Wellenlehre ohne vorherige Behandlung im Unterricht. Vertiefung und Festigung des bereits im Unterricht behandelten Stoffes, eventuell in Übungsstunden oder als Hausaufgabe. Wiederholung des Stoffs in höheren Jahrgangsstufen, wenn zum Beispiel nach der Mechanik das Thema in der Atomphysik erneut aufgegriffen wird (insbesondere bei Zeitknappheit). Partnerarbeit oder Beamerpräsentation Im Idealfall arbeiten ein bis zwei Lernende selbstständig an einem Computer. Die Applets können natürlich auch mit einem Beamer in einem fragend-entwickelnden Unterricht oder im Rahmen eines Lehrervortrags präsentiert werden. Zum Einstieg: erst "austoben lassen", dann "anleiten" Erfahrungsgemäß entdecken die Schülerinnen und Schüler sehr schnell alleine die Bedienungsmöglichkeiten der Applets und welche unabhängigen Objekte bewegt werden können, so dass auf ausführliche Bedienungshinweise verzichtet werden kann. Zu Beginn der Stunde hat sich bei computergestützten Unterrichtseinheiten eine "Austob-Phase" bewährt, in der die Schüler und Schülerinnen etwa fünf Minuten lang einfach alle Knöpfe und Regler eines Programms ausprobieren dürfen, bevor sie dann zielgerecht die einzelnen Arbeitsanweisungen befolgen. Weniger ist mehr! Eine billigen Applaus verheißende Forderung vieler "Bildungsexperten" ist der Einsatz möglichst vieler Medien im Unterricht. Dabei werden aber die restriktiven Umstände der Unterrichtspraxis vergessen. Der Physiklehrer ist beispielsweise versucht, Lerninhalte sowohl am Realexperiment (hier: Wellenmaschine, Wellenwanne, Schattenprojektion einer Schraubenlinie … ) als auch mit der Computersimulation darzubieten. Dies kann jedoch aufgrund des Zeitdrucks im Unterrichtsalltag oft in ineffiziente Hektik ausarten. Eine Methode sollte genügen. Weniger ist manchmal mehr! Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. Alle wichtigen Begriffe sind wie im Tafel-Unterricht durch rote Unterstreichung hervorgehoben. Zeigt man mit der Maus auf sie, wird eine kurze Definition eingeblendet ("Mouse-Over-Effekt"). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Die Fragen am Ende der einzelnen Arbeitsblätter sind kurz und einfach zu beantworten, um die Schülerinnen und Schüler durch ein schnelles und erfolgreiches Fortkommen zu motivieren. In nachfolgenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Die Antworten der Kontrollfragen können durch Anklicken der abschließenden Frage- oder Ausrufezeichen angezeigt werden, was sich bei den Lernenden schnell herumspricht (Abb. 1, Platzhalter bitte anklicken). Hier muss an die Arbeitsdisziplin der Schülerinnen und Schüler nach dem Motto "erst denken, dann klicken" appelliert werden. Um die Applets kompakt zu halten, wurde auf die Anzeige der Einheiten einiger Größen verzichtet. Dies ist tolerierbar, solange bei der qualitativen Betrachtung die Einheiten nicht entscheidend zum Verständnis beitragen. Die Einheiten der Wellengrößen sollten auf jeden Fall bei nachfolgenden Übungsaufgaben behandelt werden. Die zusätzliche Angabe der Winkel im Gradmaß neben dem Bogenmaß ist ein Tribut an die für Schüler und Schülerinnen erfahrungsgemäß viel vertrautere Einheit beim Abschätzen von Winkelgrößen. Wie in der Realität ist die Phasengeschwindigkeit auch in den Java-Applets des Online-Kurses eine von der Frequenz unabhängige Größe. Die Wellenlänge kann deshalb nicht direkt, sondern nur über die Phasengeschwindigkeit oder die Frequenz verändert werden. Das Verständnis der Zeigerdarstellung einer Schwingung ist universell (zum Beispiel auch beim Wechselstromkreis) anwendbar. Als Bildquelle für den Onlinekurs "Grundbegriffe der Wellenlehre" wurde die Mediendatenbank "Wikimedia Commons" verwendet. Im Gegensatz zu traditionellen Medienarchiven ist Wikimedia Commons frei: Jeder darf die hier bereitgestellten Dateien kopieren, nutzen und bearbeiten, solange die Autorinnen und Autoren genannt und die Kopien und Veränderungen mit derselben Freizügigkeit anderen zur Verfügung gestellt werden. Wikimedia Commons Hauptseite von Wikimedia Commons; die Inhalte sind nach Themen, Typen (Bilder, Geräusche, Filme), Autorinnen und Autoren, Lizenzen und Quellen rubriziert. Was ist Wikimedia Commons? Wikimedia Commons nutzt dieselbe Technologie wie Wikipedia und kann ohne besondere technische Fähigkeiten direkt im Webbrowser bearbeitet werden.

  • Physik / Astronomie
  • Sekundarstufe II

Materialsammlung Algebra

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Algebra: Rechnen in Zahlenbereichen, Zuordnungen, Gleichungen und Ungleichungen, lineare Funktionen, quadratische Funktionen, Potenzfunktionen, ganzrationale Funktionen, Exponentialfunktionen und Begabtenförderung. Das Wilhlem-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit. Thema Stationenlernen mit Netbooks: "Quadratische Gleichungen und Funktionen" Autor Henrik Lohmann Anbieter Universität Duisburg Essen - learning lab, MINTec Fächer Informatik, Mathematik Zielgruppe Sekundarstufe I und II, Material erprobt in Jahrgangsstufe 9 Technische Voraussetzungen Computer mit Geogebra und Maxima, Internetzugang mit Schulplattform Materialien zur Informationstechnischen Grundbildung Beiträge und Resultate aus den vielfältigen Aktivitäten des nationalen Excellence-Schulnetzwerks MINT-EC und seiner Netzwerkschulen werden in der Schriftenreihe "Materialien zur Informationstechnischen Grundbildung" zusammengeführt und veröffentlicht. In verschiedenen Themenclustern erarbeiten MINT-EC-Lehrkräfte und Schulleitungen Schul- und Unterrichtskonzepte, entwickeln diese weiter und nehmen dabei neue Impulse aus Wissenschaft und Forschung und aus aktuellen Herausforderungen der schulischen Praxis auf. Das learning lab der Universität Duisburg Essen befasst sich seit Jahren mit der Konzeption und Entwicklung innovativer Lösungen für das Lernen insbesondere mit digitalen Medien. Im IT-Cluster des MINT-EC arbeitet eine Gruppe von Schulleitung und Medienbeauftragten aus dem Netzwerk von über 180 Gymnasien bundesweit zusammen, um die Potentiale digitaler Medien für den Unterricht systematisch nutzbar zu machen. Die Kopiervorlagen lassen sich einfach und schnell individualisieren und an die jeweiligen schulischen Erfordernisse anpassen - und Sie gehen als Lehrkraft stets bestens gerüstet in Ihren Unterricht. Der Mathelehrer Algebra unterstützt Sie mit allem, was Sie zur Unterrichtsvorbereitung brauchen. Hier wird das gesamte Algebra-Wissen der Unter- und Mittelstufe vermittelt - und zwar vollständig vertont. 80 spannende Themenaufgaben helfen den Schülerinnen und Schülern, den Unterrichtsstoff zu begreifen. Druckbare Darstellungen und viele Beispiele machen den trockenen Algebra-Stoff zum leicht verständlichen Lernerlebnis. Die vielen Beispielaufgaben mit Lösungen schaffen abwechslungsreiche Übungsmöglichkeiten. Auch Eltern profitieren von der Lernsoftware - als Nachschlagewerk, Übungsquelle und Unterstützung beim gemeinsamen Lernen mit den Schülerinnen und Schülern. Empfehlen Sie als Mathelehrkraft den Eltern Ihrer Schülerinnen und Schüler diese Software, damit diese auch in ihren Familien die optimale Lernunterstützung erhalten. Die Mappe im praktischen DIN-A4-Format enthält: Lernsoftware für das Fach Algebra 133 Kopiervorlagen mit allen lehrplanrelevanten Themen Alle Kopiervorlagen zum Drucken und Editieren in elektronischer Form Auszeichnung: CLEVER 2009 für Mathelehrer Algebra! CLEVER ist das Prüfsiegel für empfehlenswerte Software, das die ZUM (Zentrale für Unterrichtsmedien) und die Redaktionsagentur S@M Multimedia Services gemeinsam herausgeben. Die hier vorgestellte dynamische Veranschaulichung wurde mit der kostenlosen Mathematiksoftware GeoGebra erstellt und in eine interaktive Webseite eingebunden. Dies ermöglicht es den Schülerinnen und Schülern zu probieren, zu beobachten und ihre Vermutungen einer Prüfung zu unterziehen. Direkte Rückmeldungen unterstützen die Lernenden auf dem Weg, die Rechenregeln für die Addition ganzer Zahlen zu finden, sowie bei der Anwendung und Festigung der erworbenen Kenntnisse. Durch den Einsatz interaktiver dynamischer Arbeitsblätter erfährt das selbstverantwortete Lernen eine methodische Bereicherung. Die Schülerinnen und Schüler sollen durch Experimentieren die unterschiedlichen Regeln für die Addition ganzer Zahlen selbstständig finden. die Regeln für die Addition ganzer Zahlen verbal beschreiben und die erworbenen Kenntnisse auf unterschiedliche Beispiele anwenden können. Thema Addition ganzer Zahlen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Addition ganzer Zahlen Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Die Schülerinnen und Schüler sollen erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden können. Thema Subtraktion ganzer Zahlen mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Verlaufsplan: Subtraktion ganzer Zahlen Die Schülerinnen und Schüler sollen im Lernbereich "Natürliche Zahlen" die Begriffe Teilbarkeit, Vielfache und Teiler sowie Mengen kennen (Klasse 5). im Wahlpflichtbereich "Wie die Menschen Zählen und Rechnen lernten" Einblick gewinnen in das Zählen und in die Schreibweisen von Zahlen in einem anderen Kulturkreis (Klasse 5). sich im Rahmen der Prüfungsvorbereitung mit den Begriffen Teiler- und Vielfachmengen sowie mit Stellenwertsystemen auseinandersetzen (Klasse 10). Thema Zahlen und Kalender der Maya Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 5 (natürliche Zahlen, Schreibweisen von Zahlen) Klasse 10 (Prüfungsvorbereitung) Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit) Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 5 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Auch die Steuerung einer VRML-Animation sollte demonstriert werden. Die 3D-Animationen der Lernumgebung zum Maya-Kalender sorgen für Anschaulichkeit und vereinfachen die Visualisierung von Aufgabenstellungen und Zusammenhängen. Alle animierten GIFs und Videos der Lernumgebung wurden vom Autor mithilfe des 3D-CAD-Programmes FluxStudio 2.0 erzeugt. Hinweise zum Einsatz der Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Inhalte der Lernumgebung Schülerinnen und Schüler lernen die Maya-Ziffern kennen. Zahnrad-Modelle veranschaulichen die Kalenderzyklen bis hin zum "Long Count", der 2012 enden wird. Die Schülerinnen und Schüler sollen eigene Vorstellungen zu den verschiedenen Grundvorstellungen der Bruchzahlen entwickeln. ihre eigenen Vorstellungen von Bruchzahlen verbalisieren können. Bruchzahlen als wichtige Bestandteile in ihrer Umwelt identifizieren und Verständnis für Sinn und Bedeutung der einzelnen Aufgaben entwickeln. an die Bedeutung von Bruchzahlen intuitiv herangehen und ein eigenes Verständnis für diese entwickeln, ohne die Begriffe Zähler und Nenner zu benutzen. die Aufgaben nach Abschluss des jeweiligen Entdeckerarbeitsblattes selbst erarbeiten können. Thema Schulung der Grundvorstellung von Bruchzahlen Autor Katrin Hausmann unter Mithilfe von Thomas Borys Fach Mathematik Zielgruppe Klasse 5 oder 6 Zeitraum 2 Stunden Technische Voraussetzungen Computerraum, Software: Excel Innerhalb der gesamten Anwendung wurde das Konzept verfolgt, zu den Grundvorstellungen spezielle Übungsaufgaben (im Hauptmenü grün gefärbt) und eine zugrunde liegende Erklärung - oder Entdeckungsseite (gelb gefärbt) - anzubieten. Die Entdeckungsseiten sollen für unerfahrene Schülerinnen und Schüler einen ersten Zugang liefern. Sie verfügen über ein Textfeld, in das die Lernenden ihre Beobachtungen und ersten Versuche zur Beschreibung der verschiedenen Grundvorstellungen der Bruchzahlen schreiben können. Die Texte können nach Ende der Bearbeitung von der Lehrkraft in dem Tabellenblatt "Beobachtungen" eingesehen werden. Damit die Excel-Arbeitsblätter richtig funktionieren, müssen Makros aktiviert sein und die Sicherheitsstufe auf "mittel" eingestellt werden. Hinweise zur Durchführung im Unterricht Die interaktive Excel-Lernumgebung ermöglicht den Schülerinnen und Schülern ein selbstständiges Entdecken der Lerninhalte. Thomas Borys ist Gymnasiallehrer für Mathematik und Physik. Er arbeitet als Studienrat im Hochschuldienst an der Pädagogischen Hochschule Karlsruhe am Institut für Mathematik und Informatik. Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Die Schülerinnen und Schüler sollen natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen können. Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren können. die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen lernen. die Subtraktion gemischter Zahlen symbolisch ausführen können. Thema Gemischte Zahlen anschaulich subtrahieren Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 2-3 Stunden Technische Voraussetzungen Mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; für die Nutzung der dynamischen Materialien benötigen Sie das kostenlose Plugin Java Runtime Environment (Version 1.4 oder höher), Javascript muss aktiviert sein. Planung Gemischte Zahlen anschaulich subtrahieren Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Die Schülerinnen und Schüler sollen erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. durch Experimentieren das Erweitern eines Bruchs visuell erfahren. das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig entdecken. die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele anwenden. Thema Erweitern von Brüchen - eine interaktive Einführung Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Unterrichtsplanung Erweitern von Brüchen - eine interaktive Einführung In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt. Die Schülerinnen und Schüler sollen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen vertiefen. durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen erlangen. das arithmetische Mittel auf ganze Zahlen anwenden können. mithilfe des arithmetischen Mittels auf Ausgangswerte schließen können. Thema Ganze Zahlen - Grundrechenarten verbinden und anwenden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schüler oder Schülerinnen; Software: Java , Version 1.4 oder höher, kostenfreier Download Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Die Schülerinnen und Schüler sollen erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. Einsicht gewinnen, dass Zuglängen mit Termen beschrieben werden können. Tabellen analysieren und fehlende Termwerte ergänzen können. ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln können. Thema Terme - eine kontextorientierte Einführung mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Software: Java , Version 1.4 oder höher, kostenfreier Download Planung Terme - eine kontextorientierte Einführung mit GeoGebra Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Verwendung webbasierter interaktiver Arbeitsblätter zum Thema Gleichungen und Ungleichungen ermöglicht Schülerinnen und Schülern in dieser Unterrichtseinheit einen neuen Umgang mit Fehlern. Die eingesetzten Online-Arbeitsblätter sind Bestandteil der umfangreichen Unterrichtsmaterialien von realmath.de . Bei der Bearbeitung des ersten Arbeitsblattes analysieren die Schülerinnen und Schüler die Hausaufgaben des fiktiven Geschwisterpaares Paul und Paula, suchen Fehler und beschreiben deren Ursachen. Anschließend begegnen sie in einem zweiten Online-Arbeitsblatt Aufgabenstellungen, bei denen sie ihre Fehleranalyse produktiv umsetzen können: Sie bauen ganz bewusst Fehler in Gleichungen ein, die ihre Partnerin oder ihr Partner dann korrigieren soll. Die hier vorgestellte Unterrichtseinheit entstand im Rahmen der Mitarbeit am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung webbasierter Arbeitsblätter umgesetzt werden können (Modul 3: Aus Fehlern lernen). Die Schülerinnen und Schüler sollen Fehler in bearbeiteten Gleichungen und Ungleichungen finden. Fehler und deren Ursachen beschreiben. das Wissen über Fehler kreativ und produktiv umsetzen. Thema Gleichungen und Ungleichungen - Fehler produktiv nutzen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Browser mit aktiviertem Javascript; Beamer Unterrichtsplanung Verlaufsplan Gleichungen und Ungleichungen der Unterrichtseinheit Das Lösen von Gleichungen und Ungleichungen durch Äquivalenzumformungen sowie das Inversions- und Distributivgesetz müssen bereits besprochen und an Beispielen behandelt worden sein. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Methodische Vorgehensweise Wie können die negativen Vorerfahrungen der Schülerinnen und Schüler mit dem Begriff ?Fehler? ins Positive gewendet werden? Unterrichtsverlauf "Gleichungen und Ungleichungen" Beschreibung der Unterrichtsphasen, Hinweise zum Einsatz der Arbeitsmaterialien und Screenshots der Online-Arbeitsblätter Bezug der Unterrichtseinheit zu SINUS-Transfer Aus Fehlern lernen - Schwerpunkt von SINUS-Modul 3 ist die Rehabilitierung des Fehlers als Lerngelegenheit. Die hier vorgestellten Materialien ermöglichen es, den Einfluss der Parameter m und t auf die Lage der Geraden mit der Gleichung y = mx + t experimentell zu entdecken. Hierbei verstärkt die Dynamik die Anschaulichkeit entscheidend und trägt so zu einem erleichterten und vertieften Verständnis dieses Funktionstyps bei. Die Schülerinnen und Schüler erarbeiten sich mithilfe eines dynamischen Arbeitsblatts den Stoff weitgehend selbstständig oder kooperativ (Einzel- oder Partnerarbeit). Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die in den Aufgaben immer wieder verlangte Dokumentation von Erkenntnissen und Ergebnissen trainiert das Verbalisieren und Fixieren mathematischer Kontexte. Die Schülerinnen und Schüler sollen den Einfluss des Parameters t auf die Lage der Geraden erarbeiten. den Schnittpunkt einer Geraden mit der y-Achse bestimmen. erkennen, dass der Parameter m die Steigung der Geraden bestimmt. einüben, rechnerisch zu überprüfen, ob ein Punkt auf einer Geraden liegt. mathematische Zusammenhänge eigenständig und kooperativ erarbeiten und dokumentieren. Thema Parameter linearer Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 8 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Zentrales Element dieser Lerneinheit ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation herstellen können. die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Thema Pixel auf Abwegen Autoren Dr. Kerstin Voß, Henryk Hodam Fach Mathematik Zielgruppe Klasse 8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) Planung Pixel auf Abwegen Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls vielmehr das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in die Thematik Das interaktive Modul gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der multimedialen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abb. 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abb. 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter. Die Besonderheit der Übungen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass von Schülerinnen und Schülern erstellte Zeichnungen per Computer analysiert und bewertet werden. Somit muss sich die Lehrkraft nicht mehr mit der unmittelbaren Korrektur der Schülerarbeiten befassen, sondern kann sich in einer differenzierten Unterrichtssituation leistungsschwächeren Schülerinnen und Schülern zuwenden und diesen bei auftretenden Schwierigkeiten helfend und erklärend zur Seite stehen. Alle dynamischen Zeichnungen innerhalb der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um interaktive dynamische Lernumgebungen zu erstellen. Die Schülerinnen und Schüler sollen erkennen, dass die Steigung einer Geraden durch das Steigungsdreieck eindeutig festgelegt ist. die Gleichung von Ursprungsgeraden anhand der Steigung bestimmen können. Ursprungsgeraden nach einer gegebenen Gleichung zeichnen können. die Gleichung von Ursprungsgeraden aus den Koordinaten eines Punktes bestimmen können. Thema Steigung einer Geraden - mit GeoGebra entwickeln Autor Dr. Andreas Meier Fach Mathematik Zielgruppe 8. und 9. Klasse Zeitraum 2-3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript, Java Runtime Environment (kostenloser Download) Planung Steigung einer Geraden - mit GeoGebra entwickeln In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes (von der Website realmath.de ), das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Schülerinnen und Schüler sollen Texte grafischen Darstellungen zuordnen. Informationen aus grafischen Darstellungen entnehmen und interpretieren. selbstständig Texte zu grafischen Darstellungen erstellen. eigene grafische Darstellungen zu Sachverhalten entwerfen. Thema Lineare Funktionen - grafische Darstellungen interaktiv erkunden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 8-9 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler, Browser mit aktiviertem Javascript, Beamer, OHP Unterrichtsplanung Lineare Funktionen der Unterrichtseinheit Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Das ?ICH-DU-WIR?-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf "Lineare Funktionen" Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen anhand der Funktionsmaschine den Funktionsbegriff verinnerlichen. Zuordnungsvorschriften linearer Funktionen kennen und anwenden können. Zuordnungsvorschriften der Form y=mx+n formulieren können. das Ablesen von linearen Funktionen aus dem Koordinatensystem beherrschen. das Eintragen von linearen Funktionen in ein Koordinatensystem beherrschen. Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen erkennen. das grafische Lösen linearer Gleichungssysteme kennen lernen. Thema Lineare Funktionen - die Funktionsmaschine Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 7 oder 10 Zeitraum etwa 4 Stunden bei der Erarbeitung in Klasse 7; etwa 2 Stunden beim Einsatz als Prüfungskomplex in Klasse 10 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Schülerin/Schüler), Flash-Player (kostenloser Download aus dem Internet), Browser mit aktiviertem Javascript Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten! Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler sollen die Bedeutung des Vorfaktors a in der Funktionsvorschrift f(x) = ax 2 + bx + c erkennen und benennen können. erkennen, dass ein negatives (positives) Vorzeichen des Vorfaktors b eine Verschiebung der Parabel nach rechts (links) bewirkt, vorausgesetzt der Vorfaktor a ist positiv (negativ). den Einfluss des Vorfaktors c auf die Lage der Parabel angeben können. anhand vorgegebener Funktionsvorschriften angeben können, wie die Parabel geöffnet und verschoben ist. Thema Untersuchung von Parabeln mit Excel Autorin Sandra Schmidtpott Fach Mathematik Zeitraum 1-2 Unterrichtsstunden (je nach Excel-Vorkenntnissen) Zielgruppe Klasse 9 technische Voraussetzungen Rechner in ausreichender Menge für Partnerarbeit, Beamer Software Excel Die Schülerinnen und Schüler sollen Quadratische Funktionen in der Normalform erkennen und zeichnen können. Quadratische Funktionen in der Scheitelpunktform erkennen und zeichnen können. Quadratische Funktionen von der Scheitelpunktform in die Normalform überführen können und umgekehrt. das Lösen Quadratischer Gleichungen beherrschen. das Lösen von Sachaufgaben mittels Quadratischer Gleichungen beherrschen. Thema Quadratische Funktionen und Gleichungen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 9 oder 10 Zeitraum 7 Stunden Technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Flash-Player , Java Runtime Environment , Browser mit aktiviertem Javascript, Excel (für die Nutzung einer Hilfedatei zur Lösung Quadratischer Gleichungen); im Idealfall Beamer Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Unterrichtsverlauf "Nullstellen" Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Am Beispiel der Einführung in die Potenzfunktion mit ganzzahligem Exponent soll aufgezeigt werden, wie Schülerinnen und Schüler sich die Eigenschaften dieser Funktionen durch Experimentieren und Beobachten erarbeiten können. Durch die mit GeoGebra erzeugten dynamischen Veranschaulichungen werden sie in die Lage versetzt, sich ihrem eigenen Lerntempo entsprechend mit den Eigenschaften von Potenzfunktionen aktiv auseinander zu setzen. Die inhaltliche Aufbereitung der einzelnen interaktiven dynamischen Arbeitsblätter bietet eine Vorstrukturierung der zu erarbeitenden Unterrichtsinhalte. So leitet die Unterteilung in geradzahlige und ungeradzahlige Exponenten sowie die Vorgabe von jeweils neun zu prüfenden Aussagen zu zielgerichtetem Experimentieren an und unterstützt den individuellen Lernprozess. Die Zahl n als Exponent steht im Folgenden in allen Funktionsgleichungen stets für eine natürliche Zahl. Die Schüler und Schülerinnen sollen erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax n auf den Verlauf des Graphen beschreiben können. erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x -n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax -n auf den Verlauf des Graphen beschreiben können. anhand vorgegebener Graphen deren Gleichung ermitteln können. Thema Potenzfunktion - Graphen analysieren, Eigenschaften entdecken Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 10 Zeitraum etwa 3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang und aktiviertem Javascript für je zwei Lernende, Java Plugin (1.4.2 oder höher, kostenloser Download) Planung Potenzfunktion - Graphen analysieren Die Schülerinnen und Schüler sollen Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen können. Potenzfunktionen mithilfe von Funktionsplottern darstellen können. das Berechnen von Wertetabellen für Potenzfunktionen beherrschen. den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax n erarbeiten. Wurzelfunktionsgraphen erkennen und beschreiben können. Thema Potenzfunktionen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 2 Stunden technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript; eventuell Beamer Die Vorteile von Netbooks für den schulischen Einsatz liegen auf der Hand: Sie sind klein, leicht und deutlich preiswerter als herkömmliche Laptops. Die vorliegende Unterrichtseinheit zeigt Einsatzmöglichkeiten digitaler Medien für den Mathematikunterricht, ohne dass dafür der Computerraum aufgesucht werden muss. Vielmehr dienen die Netbooks dazu, im eigenen Klassenraum die fachlichen Inhalte mithilfe digitaler Medien noch anschaulicher zu vermitteln. Die Schülerinnen und Schüler sollen die mathematischen Inhalte der Kurvendiskussion erfassen und anwenden können. die mathematische Software (GeoGebra, wxMaxima) bedienen können. die verschiedene Software entsprechend ihrer Vorteile unterscheiden und zielgerichtet einsetzen können. Thema Nullstellen ganzrationaler Funktionen in Netbook-Klassen Autor Dr. Karl Sarnow Fach Mathematik Zielgruppe Klasse 10 im G8 Zeitraum 7 Stunden Technische Voraussetzungen Netbooks, Mathematiksoftware GeoGebra und wxMaxima (beides kostenfrei erhältlich) Hintergrund Einordnung der Unterrichtseinheit in den schulischen Kontext mit einer Verkürzung der Gymnasialzeit auf acht Jahre Unterrichtsverlauf 1. bis 3. Stunde Die ersten Stunden dienen dazu, dass sich die Lernenden beim ersten Einsatz von Netbooks mit den Geräten vertraut machen können. Unterrichtsverlauf 4. bis 6. Stunde Die Nullstellen einer Gleichung 3. Grades werden mit wxMaxima untersucht und anschließend mit dem konventionellen Ansatz begründet. Unterrichtsverlauf 7. Stunde Thema der letzten Stunde ist die Untersuchung der Nullstellen ganzrationaler Funktionen mit wxMaxima. Das Ergebnis wird im Nullstellensatz zusammengefasst. Die Schülerinnen und Schüler sollen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen lernen. Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. die Nutzung von Funktionsplottern üben. Die Schülerinnen und Schüler sollen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse gewinnen. die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch) verstehen. ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge übertragen. die exponentielle Regression unter Verwendung von Hilfsmitteln nutzen. im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a * x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. Thema Die Exponentialfunktion und die "Unendlichkeitsmaschine" Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit), VRML-Plugin (blaxxun Contact, Cortona3D Viewer) In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Linearen Funktionen und Exponentialfunktionen kennen. die Begriffe Wachstumsrate und Wachstumsfaktor kennen und anwenden können. den Unterschied zwischen Linearem Wachstum und Exponentiellem Wachstum (Zerfall) kennen und aus Anwendungsbezügen das entsprechende Wachstumsmodell bestimmen können. die Begriffe Anfangswert und Wachstums-(Zerfalls-)faktor kennen und anwenden können. den Einfluss des Wachstumsfaktors a beziehungsweise des Zerfallsfaktors 1/a auf den Graphen der Exponentialfunktion kennen. die Eigenschaften der Exponentialfunktionen kennen. verschiedene Wachstums-(Zerfalls-)faktoren bestimmen und Funktionsvorschriften angeben können. Thema Einführung der Exponentialfunktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 10 Zeitraum 6-8 Unterrichtsstunden Technische Vorraussetzungen Computer in ausreichender Anzahl (Partner- oder Kleingruppenarbeit), Beamer, GeoGebra, Java-Plugin Von der GeoGebra-Homepage können Sie die dynamischen Arbeitsblätter der Unterrichtseinheit in zwei Paketen (ZIP-Archive) herunterladen: Das Bevölkerungsmodell von Malthus sowie die Materialien zur Verzinsung und Exponentialfunktion . Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Akustik

Unterrichtseinheit

Auf dieser Seite haben wir Informationen und Anregungen für Ihren Physik-Unterricht zum Themenkomplex Akustik für Sie zusammengestellt. Wissenschaftler der Universität in Bristol verwendeten Spektogramme für die Analyse der Rufe von 585 Füchsen. Sie identifizierten 20 Ruftypen und schlugen Bedeutungen für diese vor. Daraus ergibt sich die Frage, ob wir mithilfe der Wissenschaft Emotionen von Tieren interpretieren können. Der BowLingual Hundeübersetzer liefert einen ersten Ansatz für die Analyse von Hundebellen. Die Schülerinnen und Schüler wenden Kenntnisse über Schallwellen an und entscheiden anhand von Forschungsergebnissen, ob das Gerät hält, was es verspricht. Dabei gehen sie der Frage nach, ob die Schallwellen in menschliche Sprache übersetzt werden können. Thema Was sagt der Fuchs? Tierlaute interpretieren Anbieter ENGAGE Fach Physik Zielgruppe Sekundarstufe I Zeitraum 1-2 Schulstunden Technische Voraussetzungen Computer mit Internetzugang Tabellarischer Verlaufsplan Verlaufsplan "Was sagt der Fuchs?" Wissenschaftliches Arbeiten Analyse und Evaluation - Präsentation begründeter Erklärungen, einschließlich Erklärung von Daten in Bezug auf Vorhersagen und Hypothesen. Physik Wellen - Schallwellenfrequenz, gemessen in Hertz (Hz). Wellen in Materie - Beschreibung von Wellenbewegungen bezogen auf Amplitude, Wellenlänge, Frequenz und Periode. Die Schülerinnen und Schüler wenden Kenntnisse über Schallwellen an. lernen, eine mündliche oder schriftliche Argumentation, die durch empirische Beweise und wissenschaftliche Begründungen gestützt wird, auszuarbeiten und zu präsentieren. entscheiden, ob genug Beweise vorhanden sind, die die Behauptung stützen, dass ein Gerät das Bellen eines Hundes interpretieren kann. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Die Schülerinnen und Schüler sollen die Definitionsgleichung der Geschwindigkeit kennen. wissen, wie die Durchschnittsgeschwindigkeit eines sich bewegenden Körpers bestimmt werden kann. die Zeit, die der Schall zur Ausbreitung einer definierten Strecke benötigt, mithilfe eines Computers und eines Kopfhörers experimentell bestimmen können. ein Experiment zur Bestimmung der Schallgeschwindigkeit in Luft (optional auch in Wasser) beschreiben und durchführen können. den Wert der Schallgeschwindigkeit in Luft (optional auch in Wasser) für eine Temperatur von 20 Grad Celsius kennen und wissen, dass dieser mit der Temperatur variiert. wissen, dass sich die Schallwellen in verschiedenen Materialien unterschiedlich schnell ausbreiten. Die Schülerinnen und Schüler sollen mit einer geeigneten Tonanalyse-Software (zum Beispiel Cool Edit) ein aufgenommenes Signal auswerten können. Oszillogramme interpretieren können. Thema Bestimmung der Schallgeschwindigkeit in Luft und Wasser Autor Patrik Vogt Fach Physik Zielgruppe Klasse 9-10 Zeitraum mindestens 2 Stunden Technische Voraussetzungen ein Computer und ein Stereokopfhörer pro Schülergruppe, Maßband, Tonanalyse-Software - zum Beispiel Cool Edit (Shareware, Windows), GoldWave (Windows, Shareware) oder Nero Wave-Editor Beobachtet man den Start eines Wettlaufs aus mehreren hundert Metern Entfernung, so liegt zwischen der optischen Wahrnehmung des Klappenschlags und des zu hörenden Knalls eine merkliche Zeitdifferenz. Dieser Effekt, den die Schülerinnen und Schüler aus dem Sportunterricht kennen, zeigt, dass die Ausbreitung des Schalls mit einer endlichen Geschwindigkeit erfolgt. Weitere Alltagserfahrungen führen zur gleichen Schlussfolgerung. Besonders eindrucksvoll ist die Zeitdifferenz zwischen der Wahrnehmung von Blitz und Donner bei einem weit entfernten Gewitter, aus der die Entfernung des Unwetters geschätzt werden kann. Bestimmung der Schallgeschwindigkeit Verschiedene experimentelle Varianten werden hier vorgestellt. Ein Low-Cost-Arrangement eignet sich zur Bestimmung der Schallgeschwindigkeit in Luft und in Wasser. Die Schülerinnen und Schüler sollen akustische Phänomene mit einem Audio-Editor aufzeichnen und analysieren. anhand exemplarischer Fragestellungen fächerübergreifendes Wissen erarbeiten, für das Inhalte aus der Mathematik, Physik, Biologie und Musik benötigt werden. den Computer als Mess- und Auswertungsgerät sowie zur Darstellung der Ergebnisse (html-Seiten) einsetzen. Thema Hörexperimente mit der Soundkarte Autoren OStR Gert Braune, Prof. Dr. Manfred Euler Fächer Physik, Mathematik, Biologie, Musik Zielgruppe Klasse 10 (Gymnasium); vertiefender Unterricht des 11. oder Projektunterricht des 13. Jahrgangs (Projektwoche) Zeitraum 3 Wochen bei Zusammenlegung aller Physik-, Mathematik- und Musikstunden in der Projektklasse Technische Voraussetzungen Windows-Rechner mit Browser und Soundkarte pro Gruppe (3 Schülerinnen und Schüler), Kopfhörer, Mikrofone, ggf. Internet Software Audio-Editor wie GoldWave oder CoolEdit96, Dekoder (kostenlos im Internet) Wird das Projekt (wie hier beschrieben) in die 10. Klasse eingebettet, so sollten die Schülerinnen und Schüler über grundlegende Vorkenntnisse in Bezug auf trigonometrische Funktionen verfügen, zum Beispiel den Graphen einer Sinusfunktion kennen und zeichnen können. Kenntnisse über Exponential- und Logarithmusfunktionen wären vorteilhaft, weil man dann zum Beispiel die Bezeichnung "dB" besser verstehen kann. Sie sind aber nicht unbedingt erforderlich. Projektverlauf Hinweise zur technischen Ausstattung, Einführung, arbeitsteilige Gruppenarbeit, Präsentation der Ergebnisse Erfahrungen und Ergebnisse aus der Erprobung Tipps zu den Hörexperimenten aus der Unterrichtspraxis, Screenshots aus den Programmen und Arbeitsergebnisse Prof. Dr. Manfred Euler ist Direktor der Abteilung Physikdidaktik am IPN und lehrt Didaktik der Physik an der Universität Kiel. Er ist derzeit vor allem im Rahmen verschiedener nationaler und internationaler Initiativen und Projekte zur Verbesserung der Qualität des naturwissenschaftlichen Unterrichts tätig.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Die Expansion des Weltalls

Unterrichtseinheit

In dieser Unterrichtseinheit zur Expansion des Weltalls erarbeiten die Schülerinnen und Schüler grundlegende Ansätze zum Verständnis des Urknall-Modells. Dabei geht es in erster Linie um die physikalische Interpretation der Rotverschiebung in den Spektren weit entfernter Galaxien. Die Arbeitsblätter nehmen dabei Bezug auf ein Erklärvideo zum Thema Kosmologie. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Verschiebung von Spektrallinien in den Spektren von Galaxien wird zunächst als Folge des optischen Dopplereffekts gedeutet, was dem Vorgehen von Edwin Hubble bei seinen Auswertungen im Jahre 1929 entspricht. Die Lernenden stellen in diesem Zusammenhang mithilfe von 14 Galaxienspektren ein Entfernung-Geschwindigkeit-Diagramm für die Galaxien auf und bestimmen einen Wert der Hubble-Konstante. In einem weiteren Arbeitsblatt erfahren die Lernenden dann, dass der Astrophysiker George Lemaître die Rotverschiebung der Spektrallinien mit der Ausdehnung des Raumes erklärte und damit als einer der Ersten das Urknall-Modell postulierte. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema "Expansion des Weltalls" im Unterricht Die Unterrichtseinheit verbindet Inhalte der Oberstufen-Physik (beispielsweise den Dopplereffekt, die Aufnahme und Interpretation von Spektren sowie die Darstellung und Auswertung von Daten) mit interessanten Fragen der modernen Kosmologie. Dadurch werden Inhalte des Physik-Unterrichts in einen stark motivierenden und anwendungsorientierten Kontext gestellt. Vorkenntnisse Im Unterricht sollte die Wellen-Eigenschaft des Lichts bereits behandelt worden sein. Speziell sollten Kenntnisse vorhanden sein, wie man Lichtspektren aufnimmt (Prisma oder optisches Gitter) und auswertet. Kenntnisse zum Dopplereffekt sind nützlich, können aber auch während der Unterrichtseinheit durch Recherche erarbeitet werden. Einige astronomische Grundkenntnisse sollten ebenfalls vorhanden sein. So ist es hilfreich, wenn die Lernenden wissen, was die Einheit "Lichtjahr" bedeutet, was eine Spiralgalaxie ist, und wie das Spektrum des Wasserstoff-Atoms aussieht. Didaktische und methodische Analyse Die Entdeckung von Edwin Hubble, dass die Rotverschiebung in den Spektren von Galaxien mit deren Entfernung von der Erde korreliert, war für die Entwicklung der modernen Kosmologie außerordentlich bedeutsam und befeuerte die Diskussion über die Beschaffenheit und Dynamik des Universums. Theoretische Folgerungen auf der Basis der Allgemeinen Relativitätstheorie konnten nun auf den experimentellen Prüfstand gestellt werden. Selbst Albert Einstein wurde veranlasst, seine Idee eines statischen Universums und die Einführung seiner kosmologischen Konstante zu überdenken. Interessant ist in diesem Zusammenhang, dass Edwin Hubble keineswegs die Idee eines expandierenden Weltalls formulierte, sondern lediglich die Verknüpfung von Entfernung und Rotverschiebung feststellte, dies aber mit einer Relativgeschwindigkeit der Objekte zueinander zu erklären versuchte. Der eigentliche Vater des Urknall-Modells ist aber der belgische Priester und Astrophysiker Georges Lemaître, der die Ergebnisse von Hubble ganz anders interpretierte: Der Raum ist es, der sich kontinuierlich ausdehnt, die Galaxien dabei mitnimmt und so eine scheinbare Bewegung der Objekte bezüglich des Beobachters erzeugt. Die Rotverschiebung entsteht dann dadurch, dass die Lichtwellen praktisch auseinandergezogen werden, wenn der Raum sich auf ihrem Weg zu uns vergrößert hat. Dies nennt man kosmologische Rotverschiebung. Für ein eingängiges Beispiel, das man auch gut im Unterricht vorführen kann, eignet sich ein Luftballon. Dieser wird ein wenig mit Luft gefüllt, dann werden an verschieden Stellen Punkte (Galaxien) mit einem Filzstift aufgezeichnet. Auch eine "Lichtwelle" in Form einer aufgemalten engen Sinuskurve sollte nicht fehlen. Wenn man nun den Luftballon langsam aufbläst (der Raum vergrößert sich), erkennen die Lernenden gut, dass sich die Punkte voneinander wegbewegen, obwohl sie ihren Platz nicht verlassen. Außerdem wird die Lichtwelle auseinandergezogen, was besagter kosmologischer Rotverschiebung entspricht. Die Deutung der Rotverschiebung als Dopplereffekt ist dennoch akzeptabel für nicht zu weit entfernte Galaxien, da der Wert von H 0 dann noch als konstant angesehen werden kann. Allerdings muss man sich bei dieser Deutung darüber im Klaren sein, dass man dann der Galaxie eine Geschwindigkeit zu einem Zeitpunkt zuordnet, als das Licht von ihr ausging. Wird die Rotverschiebung der Galaxie hingegen kosmologisch gedeutet, können wir daran ablesen, in welchem Maße sich das Universum seither ausgedehnt hat. Die Unterrichtseinheit "Die Expansion des Weltalls" orientiert sich in ihrer Struktur an dem wissenschaftshistorischen Weg: So wird zunächst der Dopplereffekt als nützliches Hilfsmittel zur Messung von Geschwindigkeiten im Weltall behandelt. Die Auswertung von Galaxienspektren führt dann unter Verwendung der Dopplerformel zu einem Entfernung-Geschwindigkeit-Diagramm, so wie es Hubble seinerzeit erstellt hatte. Daraus lässt sich dann das Hubble-Gesetz herleiten und aus der Steigung der Regressionsgerade die Hubble-Konstante bestimmen. Dass die Geschwindigkeit, die aus der Rotverschiebung mithilfe der Dopplerformel gewonnen wurde, eher als scheinbare Bewegung verstanden werden sollte, wird schließlich im dritten Arbeitsblatt thematisiert, wenn die Idee des sich aufblähenden Raumes und das Urknall-Modell zur Sprache kommen. Für die Erstellung des Hubble-Diagramms stehen die Spektren von 14 Galaxien zur Verfügung. Diese befinden sich in unserer kosmischen Nachbarschaft, also in einem Raumbereich, in dem die Rotverschiebung deutlich unter 10 % (z=0,1) liegt. Dann nämlich darf man davon ausgehen, dass die Hubble-Konstante wirklich eine Konstante ist. Für weiter entfernte Objekte gilt das nicht mehr, da ihr Licht aus einer Zeit stammt, als die Ausdehnungsrate des Weltalls einen anderen Wert hatte als jetzt. Man weiß inzwischen, das die Expansionsgeschwindigkeit sich im Laufe der Jahrmilliarden verändert hat und die Hubble-Konstante daher zeitabhängig ist (also eher ein Hubble-Parameter ist). Es ist ratsam, dass die Lernenden die 14 Galaxienspektren arbeitsteilig auswerten und ihre Ergebnisse anschließend in einer Tabelle im Plenum eintragen. Die Auswertung erfolgt sinnvollerweise mithilfe eines Tabellenkalkulationsprogramms. Achten Sie darauf, dass die Lernenden eine Gerade als Trendkurve wählen, die durch den Ursprung geht. Die Lernenden werden feststellen, dass die Streuung der Punkte um diese Gerade recht groß ist. Dies dient als willkommener Anlass, im Plenum die Gründe zu besprechen. Hier sollte vor allem kurz auf die Problematik der Entfernungsmessung von Galaxien eingegangen werden. Der Streit um den Wert der Hubble-Konstanten ist übrigens in der Wissenschaft zurzeit in vollem Gange. Erstaunlicherweise haben gänzlich verschiedene und voneinander unabhängige Methoden zu unterschiedlichen Werten für H 0 geführt, wobei sich die Fehlergrenzen der Ergebnisse kaum überlappen. Bisher konnte niemand schlüssig erklären, woher diese Unterschiede kommen. Das Thema dieser Unterrichtsreihe streift also ein brandaktuelles Thema der modernen Astrophysik. Fachkompetenz Die Schülerinnen und Schüler lernen den optischen Dopplereffekt kennen und wenden ihn an, um die Geschwindigkeit astronomischer Objekte zu bestimmen. werten Spektren von Galaxien aus und bestimmen aus einem Diagramm die Hubble-Konstante. lernen die grundlegenden Ideen des Urknall-Modells kennen. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet und sammeln, sortieren und bewerten Informationen. verwenden ein Tabellenkalkulationsprogramm zur Darstellung und Auswertung von Daten. binden Informationen eines Erklärvideos in ihre Lösungen ein. Sozialkompetenz Die Schülerinnen und Schüler bearbeiten Aufgaben in Paar- und Gruppenarbeit. tauschen Informationen und Messergebnisse untereinander aus. diskutieren und hinterfragen Lösungen im Plenum .

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner