Materialsammlung Optik
Unterrichtseinheit
Auf dieser Seite haben wir Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Thema Optik für Sie zusammengestellt. Die Optik (vom griech. opticos – "das Sehen betreffend") beschäftigt sich als Teilgebiet der Physik mit dem aus Photonen bestehenden Licht. Photonen werden gemäß dem Welle-Teilchen-Dualismus auch als Lichtteilchen bezeichnet, die je nach Beobachtung Teilcheneigenschaften oder Welleneigenschaften aufweisen können – man unterscheidet deshalb zwischen der geometrischen Optik und der Wellenoptik . Geometrische Optik In der geometrischen Optik wird Licht durch idealisierte (geradlinig gedachte) Lichtstrahlen angenähert. Dabei lässt sich der Weg des Lichtes (zum Beispiel durch optische Instrumente wie Lupe, Mikroskop, Teleskop, Brillen oder auch durch die Reflexion des Lichtes an einem Spiegel) durch Verfolgen des Strahlenverlaufes konstruieren; man spricht in diesem Zusammenhang auch von Strahlenoptik . Die dazu notwendigen Abbildungsgleichungen oder Linsengleichungen ermöglichen es, zum Beispiel den Brennpunkt einer optischen Linse zu bestimmen. Analog dazu kann auch die Brechung des Lichtes – beispielsweise durch eine Prisma – und die Aufspaltung in seine sichtbaren Anteile von violett bis rot ( Regenbogen-Farben ) mittels des Snelliu'schen Brechungsgesetzes beschrieben werden. Wellenoptik Die Wellenoptik beschäftigt sich mit der Wellennatur des Lichtes – dabei werde diejenigen Phänomene beschrieben, die durch die geometrische Optik nicht erklärt werden können. Bedeutende Elemente der Wellenoptik sind die Interferenz von sich überlagernden Wellenfronten, die Beugung beim Durchgang von Licht durch sehr kleine Spalten oder Kanten oder die Streuung von Licht an kleinen Partikeln, die in einem Volumen verteilt sind, die das Licht gerade durchdringt. Zudem kann die Wellenoptik auch Effekte beschreiben, die von der Wellenlänge des Lichtes bestimmt sind – man spricht in diesem Zusammenhang auch von Dispersion. Die häufig gestellte Frage "Warum ist der Himmel blau?" kann in diesem Zusammenhang erklärt werden. Oberflächlich auftretende Phänomene wie die Abgabe von Licht ( Lichtemission ) und die Aufnahme von Licht ( Lichtabsorption ) werden weitestgehend der Atom- und Quantenphysik (auch unter dem Begriff Quantenoptik ) zugeordnet. Die für den Unterricht an Schulen notwendigen Gesetze der Optik betreffen hingegen in erster Linie die Ausbreitung des Lichtes und sein Verhalten beim Durchqueren durchsichtiger Körper . Die hier vorgestellte Lerneinheit erläutert die Funktionsweise eines Satelliten, der das von der Erdoberfläche reflektierte Licht zur Bildaufnahme nutzt und dabei auch Wellenlängen jenseits des sichtbaren Lichts einbezieht. Zusätzlich zum Verständnis der physikalischen Inhalte lernen die Schülerinnen und Schüler auf diese Weise auch Aspekte der Fernerkundung kennen. Eine "Vermittlerfigur" in Form eines virtuellen Professors begleitet die Lernenden bei der Erforschung des elektromagnetischen Spektrums. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen Reflexionseigenschaften unterschiedlicher Objekte kennen lernen. die Begriffe "Reflexion" und "Absorption" erklären und unterscheiden können. den Zusammenhang zwischen Objektfarbe und Reflexionseigenschaften erklären können. das elektromagnetische Spektrum kennen und verstehen, dass es neben dem sichtbaren Licht noch andere Wellenlängenbereiche gibt. die Grundlagen der Umwandlung der Reflexionswerte in Bildinformationen beschreiben können. die Entstehung von Falschfarbenbildern beschreiben können. Thema Dem Unsichtbaren auf der Spur: was sieht ein Satellit? Autoren Dr. Roland Goetzke, Henryk Hodam, Dr. Kerstin Voß Fach Physik Zielgruppe Klasse 7 Zeitraum 3-4 Stunden Technische Ausstattung Adobe Flash-Player (kostenloser Download) Planung Dem Unsichtbaren auf der Spur Die Unterrichtseinheit "Dem Unsichtbaren auf der Spur" beschäftigt sich mit dem Themenkomplex Optik und geht dabei vor allem auf Reflexion, Absorption und die Wellenlängen des elektromagnetischen Spektrums ein. Durch den Bezug zur Satellitenbildfernerkundung werden diese drei Bereiche miteinander verknüpft und ergänzt. Zunächst soll an einem einfachen Beispiel die Charakterisierung verschiedener Objekte hinsichtlich ihrer unterschiedlichen Reflexions- und Absorptionseigenschaften untersucht werden. Weiterführend soll das gesammelte Wissen auf den Satelliten übertragen werden, so dass die Funktionsweise eines Satelliten verstanden wird. Als dritter Punkt wird dann neben der Betrachtung des sichtbaren Lichts der erweiterte Bereich des elektromagnetischen Spektrums (infrarotes Licht) mit einbezogen. Ziel der Unterrichtseinheit ist es, Zusammenhänge zwischen elektromagnetischem Spektrum, Reflexion, Absorption sowie Aufnahme und Entstehung von Satellitenbildern zu verstehen. Aufbau des Computermoduls Das interaktive Modul gliedert sich in eine Einleitung und zwei darauf aufbauende Bereiche. Inhalte des Computermoduls Hier wird der Aufgabenteil mit den drei Bereichen Einleitung, Satellit und "Unsichtbares" Licht genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Dr. Kerstin Voß ist Akademische Rätin am Geographischen Institut der Universität Bonn und leitet das Projekt "Fernerkundung in Schulen". Sie studierte Geographie an der Universität Bonn und schloss ihre Dissertation 2005 im Bereich Fernerkundung ab. Die Schülerinnen und Schüler sollen mithilfe des Reflexionsgesetzes beschreiben können, wie ein Bild durch Reflexion am ebenen Spiegel entsteht. in der verwendeten GEONExT-Konstruktion die Elemente Einfallswinkel, Ausfallwinkel, Gegenstand und Bild zuordnen können. mithilfe des Arbeitsblattes ein einfaches Konstruktionsverfahren für die Bildentstehung am ebenen Spiegel erarbeiten. die Ergebnisse mit einem Bildbearbeitungsprogramm, zum Beispiel dem kostenlosen GIMP, dokumentieren. Thema Reflexion am ebenen Spiegel mit GEONExT Autor Dr. Karl Sarnow Fach Physik Zielgruppe Klasse 8 Zeitraum 1 Stunde Voraussetzungen idealerweise pro Schülerin oder Schüler ein Rechner; Internetbrowser, Java Runtime Environment , GEONExT (kostenloser Download aus dem Netz), Bildbearbeitungssoftware (zum Beispiel GIMP) Die Schülerinnen und Schüler können offline oder online mit dem HTML-Arbeitsblatt arbeiten, in das die GEONExT-Applikation eingebettet ist. Voraussetzung ist, dass auf den Rechnern die benötigte Java-Abspielumgebung installiert ist. Falls dies nicht der Fall ist, bleibt das GEONExT-Applet in der Online-Version des Arbeitsblattes (siehe Internetadresse) für Sie unsichtbar. Mithilfe des Screenshots (Abb. 1, Platzhalter bitte anklicken) können sich aber auch (Noch-)Nicht-GEONExTler einen Eindruck von dem Applet machen. Bereits Philosophen der Antike wie Empedokles (494-434 v. Chr.), Aristoteles (384-322 v. Chr.) und Heron von Alexandria (zwischen 200 und 300 v. Chr.), stellten Überlegungen und Mutmaßungen zur Endlichkeit der Lichtgeschwindigkeit an. Johannes Kepler (1571-1630) und René Descartes (1596-1650) hielten die Lichtgeschwindigkeit für unendlich, erst Olaf Christensen Römer (1644-1710) gelang 1676 der Nachweis der Endlichkeit. Heute kann an vielen Schulen mit Demonstrationsexperimenten die immer noch faszinierende Frage nach der Geschwindigkeit des Lichts experimentell untersucht und beantwortet werden. Der Foucaultsche Drehspiegelversuch ist jedoch vorbereitungsaufwändig für die Lehrkraft und enttäuschend im beobachteten Effekt für die Schülerinnen und Schüler. Auf einer Messung der Phasenverschiebung eines modulierten Lichtsignals beruhende Versuche sind für Lernende nicht einfach zu verstehen. Das RCL "Lichtgeschwindigkeit" arbeitet daher mit einem modifizierten Leybold-Versuch nach der auch für Schülerinnen und Schüler der Sekundarstufe I verständlichen Laufzeitmethode von Lichtimpulsen. Darüber hinaus können die Lernenden anhand selbst durchgeführter Messungen die Lichtgeschwindigkeit bestimmen. Die Schülerinnen und Schüler sollen die Bestimmung der Lichtgeschwindigkeit als messtechnisches Problem erkennen. mit dem RCL "Lichtgeschwindigkeit" Messungen nach der Laufzeitmethode durchführen. aus Strecke-Zeit-Messwertpaaren möglichst genau die Lichtgeschwindigkeit bestimmen und den Messfehler abschätzen. sich mit geeigneten Materialien und Kenntnissen aus der geometrischen Optik und Mechanik weitere Bestimmungsmethoden (Olaf Christensen Römer, Hippolyte Fizeau, Jean Bernard Léon Foucault) erarbeiten und vortragen. eine Vorstellung von der Bedeutung der Lichtgeschwindigkeit in der Physik gewinnen. Thema Bestimmung der Lichtgeschwindigkeit Autor Sebastian Gröber Fach Physik Zielgruppe Sekundarstufe I (ab Klasse 10) und II Zeitraum Teil 1 für Sekundarstufe I oder II: 3 Stunden Teil 2 für Sekundarstufe II: 3 Stunden Technische Voraussetzungen Computer mit Internetzugang und Beamer Software Zeichenprogramm (zum Beispiel Paint) zur Auswertung des Oszilloskopbildes, Tabellenkalkulationsprogramm (zum Beispiel Excel) zur Auswertung der Messdaten
-
Physik / Astronomie
-
Sekundarstufe I,
Sekundarstufe II