• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Relativitätstheorie: Die Periheldrehung der Merkurellipse

Unterrichtseinheit

Schülerinnen und Schüler lernen die Periheldrehung des innersten und kleinsten Planeten des Sonnensystems als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen.Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Periheldrehung der Merkurbahn, die Lichtablenkung von Sternenlicht am Sonnenrand und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Periheldrehung der Merkurellipse und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Klassische Physik und Relativitätstheorie Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Periheldrehung von Ellipsenbahnen, der Formel für die Verschiebung des Perihels sowie einem Informations- und Arbeitsblatt diskutieren und vergleichen die Schülerinnen und Schüler die Vorhersagen der Newtonschen Physik mit denen der Allgemeinen Relativitätstheorie. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen der vorgeschlagenen Aufgaben. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Die Bahnbewegungen des Merkur weichen von der Vorhersagen der Newtonschen Physik ab. Sie konnten erst mit der Allgemeinen Relativitätstheorie erklärt werden. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise und Materialien zum Einsatz im Unterricht Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Bahnellipse des Planeten Merkur sich im Laufe der Zeit kontinuierlich verschiebt. erkennen, dass ein Teil dieser Verschiebung mithilfe der klassischen Physik nicht erklärbar ist. die Formel für die Verschiebung des Perihels aus der Allgemeinen Relativitätstheorie kennenlernen und für Beispielrechnungen anwenden können. mithilfe der Computersimulation und von Berechnungen (Arbeitsblatt) ein Gefühl für die Abhängigkeit der Periheldrehung von der Masse des Zentralkörpers und den Parametern der Ellipse bekommen. erkennen, dass die Allgemeine Relativitätstheorie nur in Extremsituation eine deutliche Abweichung von der Newtonschen Physik zeigt. erfahren, dass die Erklärung der Periheldrehung durch die Relativitätstheorie historisch ein wichtiger Beweis für die Richtigkeit der neuen Gravitationsphysik war. Thema Allgemeine Relativitätstheorie: Periheldrehung der Merkurellipse Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Mithilfe des Gravitationsgesetzes von Isaac Newton (1643-1727) lässt sich zeigen, dass die Planeten die Sonne auf Ellipsenbahnen umlaufen. Eigentlich sollte man annehmen, dass diese Ellipsen feste Positionen im Raum einnehmen und sich über Jahrtausende nicht verändern. Aber wir dürfen die Planeten nicht als voneinander isolierte Objekte betrachten. Vielmehr zerren die einzelnen Himmelskörper durch ihre Gravitationskräfte aneinander, sodass sich die Lage ihrer Bahnen mit der Zeit leicht verändert - die Ellipsen beginnen sich so zu drehen, dass der sonnennächste Punkt der Ellipse, das Perihel, sich langsam verschiebt. Diese gravitativen Störungen lassen sich mithilfe der Newtonschen Physik berechnen. Bei der Merkurbahn ergibt sich so zum Beispiel eine Periheldrehung von 532,1 Bogensekunden pro Jahrhundert. Die tatsächliche Drehung der Merkurellipse, also das, was Astronomen beobachten, beträgt jedoch 575,2 Bogensekunden. Dies war bereits im neunzehnten Jahrhundert bekannt, aber die fehlenden 43 Bogensekunden blieben lange Zeit rätselhaft, denn die Gravitationsphysik Newtons konnte keine schlüssige Erklärung dafür liefern. Abb. 1 zeigt - nicht maßstabsgetreu! - die Drehung der Ellipse eines Planeten. Im Perihel (sonnennächster Punkt einer Planetenbahn) ist Merkur etwa 46, im Aphel (sonnenfernster Punkt einer Planetenbahn) fast 70 Millionen Kilometer von der Sonne entfernt. Erst die im Jahr 1915 von Albert Einstein veröffentlichte Allgemeine Relativitätstheorie war in der Lage, die fehlenden 43 Bogensekunden vorherzusagen. Dies war ein erster starker und wichtiger Beweis für die Richtigkeit der neuen Theorie über die Gravitation. Die Newtonsche Physik erweist sich als gut brauchbare Näherung für die Betrachtung kleiner Massen beziehungsweise großer Abstände. Da die Bahn des kleinsten Planeten des Sonnensystems der Sonne von allen Planeten am nächsten kommt, macht sich eine Abweichung von der klassischen Beschreibung der Planetenbahnen bei Merkur am deutlichsten bemerkbar. Informationen zum Planeten Merkur und Hinweise für seine Beobachtung finden Sie bei Lehrer-Online und im Netz: Merkur - Beobachtung des flinken Planeten Nur an wenigen Tagen eines Jahres hat man Gelegenheit, Merkur mit bloßem Auge als auffälliges Objekt zu sehen. Relativistische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 2 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Periheldrehung gemäß der Allgemeinen Relativitätstheorie. Klassische Physik Per Klick auf den Button "Bahnkurve nach Newton" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Newtonschen Physik darstellen lassen (Abb. 3, Platzhalter bitte anklicken). So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Periheldrehung der Merkurbahn Lichtablenkung am Sonnenrand Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Zusammen mit den vielfältigen Animationen der Webseite "Tempolimit Lichtgeschwindigkeit" von Prof. Dr. Ute Kraus (Physik und ihre Didaktik an der Universität Hildesheim) eröffnen die Simulationen interessante und vielfältige Möglichkeiten, verschiedene Effekte der Allgemeinen Relativitätstheorie einem größeren Publikum sehr anschaulich vorzustellen. Tempolimit Lichtgeschwindigkeit Visualisierung und Veranschaulichung der Relativitätstheorie: Hier finden Sie Artikel, Bilder, Filme und Bastelbögen. Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Periheldrehung, Lichtablenkung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner