• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Das Hühnerei mathematisch modellieren

Unterrichtseinheit

Diese Unterrichtseinheit hat das mathematische Modellieren eines Hühnereis zum Ziel. Dazu werden zunächst Schnittflächen von Ebenen mit einem Würfel sowie Rotationsebenen und daraus entstehende Körper betrachtet und dann mithilfe der Differential- und Integralrechnung Volumen und Oberflächeninhalte bestimmt. Die Inhalte werden mit GeoGebra visualisiert. In dieser Unterrichtseinheit werden die Lernenden mit vier Arbeitsblättern zur Idee herangeführt, wie sie mithilfe der Differential- und Integralrechnung ein Hühnerei vermessen können. In allen Arbeitsblättern steht der Einsatz von GeoGebra zur Visualisierung im Mittelpunkt. Auf dem ersten Arbeitsblatt werden Schnitte eines Würfels mit Ebenen betrachtet. Die Art der Schnittflächen hängt stark damit zusammen, wie die schneidende Ebene bezüglich des Würfels verläuft. Da sich die schneidende Ebene bewegt, lassen sich unterschiedliche Konstellationen betrachten. Auf dem zweiten Arbeitsblatt werden diese Betrachtungen durch weitere Lagen und Bewegungsmöglichkeiten der Ebenen bezüglich des Würfels erweitert und es erfolgen Betrachtungen von Schnitten mit weiteren Körpern. Es werden vor allem auch Körper mit gekrümmten Oberflächen betrachtet. Den Lernenden wird verdeutlicht, dass die Kenntnis der Schnittflächen ausreicht, um Körper zu beschreiben. Kenntnis von Maßzahlen wie Höhen und Längen und anderer beschreibender Größen führen zu einem bekannten Formelapparat für Volumen und Ober- beziehungsweise Mantelflächen. Eine interaktive Übung dient als Ergänzung zum Arbeitsblatt. Auf dem dritten Arbeitsblatt findet ein Übergang zur Differential- und Integralrechnung statt. Rotationskörper, die durch die Rotation einer Fläche um eine Achse entstehen, können mithilfe der Differential- und Integralrechnung erfasst werden. Anwendungen zu Körpern, die durch Rotation eines Halbkreises, der Wurzelfunktion oder einer Parabel entstehen, werden erarbeitet. Drei interaktive Übungen dienen als Ergänzung zum Arbeitsblatt. Auf dem letzten Arbeitsblatt geschieht der Übergang vom Halbkreis über Ellipsen zur "Eiform". Neben den Möglichkeiten durch Integration und Differentiation exakte Maßzahlen zu bestimmen, wird auch die Möglichkeit einer Annäherung thematisiert, um das Hühnerei möglichst exakt rechnerisch erfassen zu können. Wo Berechnungen von Hand mühsam – ja teilweise unmöglich – sind, können mit dem Einsatz von GeoGebra den Körpern Maßzahlen zugeschrieben werden. Am Bespiel der Körperform eines Eies wird aber auch gezeigt, dass die Software an Grenzen stößt. Für die Betrachtung eines eiförmigen Körpers werden zunächst die Formelapparate für die Körper Zylinder, Kegel und Kugel erarbeitet, sodass mit Radien, Längen und Höhen Volumen, Mantel- und Oberfläche bestimmt werden können. Im Zusammenhang mit der Differential- und Integralrechnung werden schließlich komplexere Rotationskörper mithilfe bestimmter Integrale berechenbar. Da für eine Ellipse und für ein Ei die Integrandenfunktionen zu komplex für händisches Rechnen werden, nutzt man CAS. Mithilfe mehrerer GeoGebra Simulationsdateien wird den Lernenden das Arbeiten mit der Integral- und Differentialrechnung vorgestellt, bis hin zu einem eiförmigen Körper. Interaktive Übungen dienen als Ergänzung zur Unterrichtseinheit. Fachbezogene Kompetenzen Die Schülerinnen und Schüler gewinnen Erkenntnisse zu verschiedenen Schnittflächen und Rotationskörpern durch experimentellen Umgang mit GeoGebra. wiederholen Teile des bekannten Formelapparates für Oberflächen und Volumen. erweitern und festigen Kenntnisse im Zusammenhang der Differential- und Integralrechnung. Medienkompetenz Die Schülerinnen und Schüler experimentieren mit interaktiven GeoGebra-Dateien. setzen mobile Endgeräte im Unterricht zur Modellierung des Hühnereis ein. analysieren und reflektieren mit von GeoGebra erzeugten Rotationskörpern. Sozialkompetenz Die Schülerinnen und Schüler steigern ihr Selbstwertgefühl und ihre Eigenverantwortung (Rückmeldungen zu Lösungsstrategien sowie Rückmeldungen und Hinweise beim Erarbeiten von Lösungen). lernen sich selbst durch die Differenzierungsmöglichkeiten in den Aufgabenstellungen einzuschätzen. zeigen durch offene Fragestellungen Engagement und Motivation und stoßen auf neue Ideen durch das Experimentieren in den Experimentierecken der verschiedenen Einheiten.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Was ist schon normal? Binomial- und Normalverteilung

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Wahrscheinlichkeitsverteilungen lernen die Schülerinnen und Schüler über interaktive GeoGebra-Arbeitsblätter die Entwicklung der Normalverteilung als Näherung der Binomialverteilung kennen.Die Untersuchung von Binomialverteilungen B (n; p) bei wachsendem n führt über den integralen und lokalen Grenzwertsatz zur Approximation der Binomialverteilung durch die Normalverteilung. Mit ihr eröffnet sich den Lernenden ein weites Feld von Anwendungen in Naturwissenschaft und Technik, in der Wirtschaft und den Sozialwissenschaften. Der hier vorgestellte Online-Kurs bietet eine variabel einsetzbare Methode, die Entwicklung der Normalverteilung als Näherung der Binomialverteilung zu lehren oder zu lernen. In nahezu jedem Lehrbuch werden zur Darlegung der Beweisidee der lokalen und integralen Näherungsformel von de Moivre-Laplace zahlreiche Histogramme und Dichtekurven präsentiert. Der Einsatz der mit der kostenfreien dynamischen Geometriesoftware GeoGebra entwickelten Applets schafft hier Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und das Verständnis erleichtern.Erfahrungsgemäß entdecken die Schülerinnen und Schüler sehr schnell alleine die Bedienungsmöglichkeiten der Applets und erkennen, welche unabhängigen Objekte bewegt werden können, so dass auf ausführliche Bedienungshinweise verzichtet werden kann. Zu Beginn der Stunde hat sich bei computergestützten Unterrichtseinheiten eine "Austobphase" bewährt, in der die Lernenden etwa fünf Minuten lang einfach alle Knöpfe und Regler eines Programms ausprobieren dürfen, bevor sie dann (nach einem "Reset") zielgerecht die einzelnen Arbeitsanweisungen befolgen. Voraussetzungen Stochastische Vorkenntnisse Erforderliche mathematische Voraussetzung für den Kurs ist die Behandlung der Bernoulli-Kette und binomialverteilter Zufallsgrößen mit den grundlegenden Begriffen Erwartungswert, Varianz und Standardabweichung. Auch die grafische Darstellung der Wahrscheinlichkeitsverteilung und Verteilungsfunktion mit Histogramm und Dichtefunktion sowie die Standardisierung von Zufallsgrößen sollten bekannt sein. Diese Vorkenntnisse werden im Online-Kurs noch einmal kurz als Vorbereitung für die folgenden Ausführungen wiederholt. Integralrechnung Neben diesen stochastischen Vorkenntnissen sind zur Behandlung der Gaußschen Integralfunktion und ihrer Eigenschaften auch Erfahrungen aus der Analysis, insbesondere der Integralrechnung, hilfreich. Einsatz im Unterricht Für den Online-Kurs bieten sich verschiedene Einsatzmöglichkeiten an: begleitende dynamische Visualisierung der mathematischen Sachverhalte während der Behandlung im Unterricht selbstständige Vertiefung und Festigung des bereits im Unterricht behandelten Stoffs, eventuell in Übungsstunden oder als Hausaufgabe Wiederholung und Zusammenfassung zurückliegender Lerninhalte (zum Beispiel vor Prüfungen) Partnerarbeit oder Präsentation Im Idealfall arbeiten die Schülerinnen und Schüler selbstständig in Einzel oder Partnerarbeit an einem Computer. Die Applets können natürlich auch mit einem Beamer oder im Computerraum durch Spiegelung des Lehrer-Bildschirms in einem fragend-entwickelnden Unterricht oder einem Lehrervortrag präsentiert werden. Materialien zur Binomial- und Normalverteilung Interaktive GeoGebra-Applets Dynamische Arbeitblätter eröffnen neue Wege des Lehrens und Lernens. Die Schülerinnen und Schüler können mithilfe der Maus ("Anfassen" von Punkten oder per Schieberegler) oder der Tastatur am Computer die Parameter der verschiedenen Wahrscheinlichkeitsverteilungen kontinuierlich verändern und so deren dynamische Entwicklung und Annäherung verfolgen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den mathematischen Sachverhalten. Kurze Kontrollaufgaben mit einblendbaren Lösungen dienen der eigenständigen Lernzielkontrolle. Textgestaltung, "Mouse-Over-Effekte" und Popups Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. Alle wichtigen Begriffe sind (wie im Tafel-Unterricht) rot hervorgehoben. Zeigt man mit der Maus auf sie, werden eine kurze Definition oder Zusatzinformationen eingeblendet (Mouse-Over-Effekt). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Aufgaben und Antworten Die Kontrollaufgaben sind kurz und einfach zu bearbeiten, um die Schülerinnen und Schüler durch ein schnelles und erfolgreiches Fortkommen zu motivieren. In nachfolgenden oder begleitenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Die Antworten auf die Kontrollfragen können durch Anklicken der abschließenden Frage- oder Ausrufezeichen angezeigt werden, was sich bei den Schülerinnen und Schülern schnell herumspricht. Hier muss an die Arbeitsdisziplin der Lernenden nach dem Motto "erst denken, dann klicken" appelliert werden.Die Schülerinnen und Schüler wiederholen die Binomialverteilung. verstehen die Entstehung der standardisierten Dichtefunktion. können die integrale Näherungsformel von de Moivre-Laplace herleiten und anwenden. verstehen mit den Kenntnissen der Integralrechnung die Entstehung der Gaußschen Integralfunktion. verstehen die Herleitung der lokalen Näherungsformel und ihre Abgrenzung zur integralen Näherungsformel. können die lokale Näherungsformel anwenden. können die Entwicklung der Normalverteilung als Näherung der Binomialverteilung nachvollziehen und die Normalverteilung anwenden. erkennen die Bedeutung des Zentralen Grenzwertsatzes. Stochastische Vorkenntnisse Erforderliche mathematische Voraussetzung für den Kurs ist die Behandlung der Bernoulli-Kette und binomialverteilter Zufallsgrößen mit den grundlegenden Begriffen Erwartungswert, Varianz und Standardabweichung. Auch die grafische Darstellung der Wahrscheinlichkeitsverteilung und Verteilungsfunktion mit Histogramm und Dichtefunktion sowie die Standardisierung von Zufallsgrößen sollten bekannt sein. Diese Vorkenntnisse werden im Online-Kurs noch einmal kurz als Vorbereitung für die folgenden Ausführungen wiederholt. Integralrechnung Neben diesen stochastischen Vorkenntnissen sind zur Behandlung der Gaußschen Integralfunktion und ihrer Eigenschaften auch Erfahrungen aus der Analysis, insbesondere der Integralrechnung, hilfreich. Für den Online-Kurs bieten sich verschiedene Einsatzmöglichkeiten an: begleitende dynamische Visualisierung der mathematischen Sachverhalte während der Behandlung im Unterricht selbstständige Vertiefung und Festigung des bereits im Unterricht behandelten Stoffs, eventuell in Übungsstunden oder als Hausaufgabe Wiederholung und Zusammenfassung zurückliegender Lerninhalte (zum Beispiel vor Prüfungen) Partnerarbeit oder Präsentation Im Idealfall arbeiten die Schülerinnen und Schüler selbstständig in Einzel oder Partnerarbeit an einem Computer. Die Applets können natürlich auch mit einem Beamer oder im Computerraum durch Spiegelung des Lehrer-Bildschirms in einem fragend-entwickelnden Unterricht oder einem Lehrervortrag präsentiert werden. Interaktive GeoGebra-Applets Dynamische Arbeitblätter eröffnen neue Wege des Lehrens und Lernens. Die Schülerinnen und Schüler können mithilfe der Maus ("Anfassen" von Punkten oder per Schieberegler) oder der Tastatur am Computer die Parameter der verschiedenen Wahrscheinlichkeitsverteilungen kontinuierlich verändern und so deren dynamische Entwicklung und Annäherung verfolgen (Abb. 1, Platzhalter bitte anklicken). Dies ermöglicht einen aktiv-entdeckenden Zugang zu den mathematischen Sachverhalten. Kurze Kontrollaufgaben mit einblendbaren Lösungen dienen der eigenständigen Lernzielkontrolle. Textgestaltung, "Mouse-Over-Effekte" und Popups Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. Alle wichtigen Begriffe sind (wie im Tafel-Unterricht) rot hervorgehoben. Zeigt man mit der Maus auf sie, werden eine kurze Definition oder Zusatzinformationen eingeblendet (Mouse-Over-Effekt). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Aufgaben und Antworten Die Kontrollaufgaben sind kurz und einfach zu bearbeiten, um die Schülerinnen und Schüler durch ein schnelles und erfolgreiches Fortkommen zu motivieren. In nachfolgenden oder begleitenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Die Antworten auf die Kontrollfragen können durch Anklicken der abschließenden Frage- oder Ausrufezeichen angezeigt werden, was sich bei den Schülerinnen und Schülern schnell herumspricht. Hier muss an die Arbeitsdisziplin der Lernenden nach dem Motto "erst denken, dann klicken" appelliert werden.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Bewegung auf einer vertikalen Kreisbahn mit Excel

Unterrichtseinheit

Die Schülerinnen und Schüler untersuchen interaktiv die Gesetze der reibungsfreien Bewegung eines Körpers auf einer vertikalen Kreisbahn bei unterschiedlicher Gesamtenergie - vom Fadenpendel bis zum Looping.Winkelkoordinate, -geschwindigkeit und -beschleunigung sowie die aufzuwendende Radialkraft sind in einem Excel-Diagramm als Funktion der Zeit grafisch dargestellt. Durch kontinuierliche Veränderung des Parameters E (Summe aus kinetischer und potenzieller Energie) können die Diagramme dynamisch verformt und so die verschiedenen Bewegungsarten von der harmonischen Schwingung bis zum Looping beobachtet und analysiert werden. Die numerisch nach dem Halbschrittverfahren berechneten Diagramme, die man sonst im Unterricht und in der Literatur selten zu sehen bekommt, bieten einen beziehungsreichen Zugang zu vielen Aspekten der für die Jahrgangsstufe 11 vorgesehenen Lerninhalte.Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Rechner. Zentrales Medium ist neben der Excel-Datei das bereitgestellte Arbeitsblatt mit detaillierten Arbeitsaufträgen. Diese können je nach Intention und Umfang der Unterrichtseinheit auch nur teilweise eingesetzt oder auf verschiedene Abschnitte des Lehrplans verteilt werden. Wegen der Vielfalt der angesprochenen Themen (harmonische Schwingung, Energiesatz, beschleunigte Kreisbewegung, Kräftezerlegung, Newton'sche Grundgleichung F = ma und ihre prinzipielle Bedeutung für die Berechnung von Bewegungen) eignet sich das Material besonders zur vertiefenden Wiederholung oder für ein Projekt, in dem auch das numerische Verfahren und/oder fortgeschrittene Excel-Anwendungen thematisiert werden. Theoretischer Hintergrund, Realisierung in Excel, Einsatz des Materials im Unterricht Die Darstellung der zeitlichen Abhängigkeit der oben genannten kinematischen Größen mithilfe einer Excel-Tabelle bringt eine Reihe neuer Aspekte in den Unterricht, die hier erläutert werden. Die Schülerinnen und Schüler sollen Diagramme physikalisch interpretieren und darüber sachgerecht kommunizieren. die Gesetze der Kinematik, insbesondere der harmonischen Schwingung und der Kreisbewegung, den Energiesatz und das Prinzip der Kräftezerlegung anwenden. die Grenzen analytischer Methoden und den Vorteil numerischer Lösungen erfahren. das Halbschrittverfahren analysieren (optional). fortgeschrittene Anwendungen in Excel praktizieren (optional). Thema Vom Fadenpendel bis zum Looping - Bewegung auf einer vertikalen Kreisbahn mit Excel Autor Dr. Hans-Joachim Feldhoff Fächer Physik oder fächerübergreifendes Projekt (Physik/Informatik) Zielgruppe Jahrgangsstufe 11 Zeitraum 3-6 Stunden Technische Voraussetzungen je 1 Rechner für 1-2 Lernende Software Microsoft Excel, ergänzend für die Lehrkraft: GeoGebra (kostenfreie Software) [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007 Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft Die Bewegung eines Körpers auf einer vertikalen Kreisbahn unter dem Einfluss der Erdanziehung (zum Beispiel in einer kreisförmigen Loopingbahn oder an einem Seil) wird im Unterricht gern als Anwendung der Gesetze der Kreisbewegung und des Energiesatzes behandelt. Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft lassen sich in Abhängigkeit von der jeweiligen Position damit leicht berechnen. Zeitlicher Verlauf der kinematischen Größen Schwieriger ist die Darstellung der zeitlichen Abhängigkeit dieser Größen: Durch Zerlegung des Gewichts in eine radiale und eine tangentiale Komponente erhält man aus der Newton'schen Grundgleichung F = ma die Differenzialgleichung phi'' = -(g/r) sin(phi) für die gegen die Vertikale gemessene Winkelkoordinate phi . Die analytische Lösung führt auf ein elliptisches Integral, das nicht durch elementare Funktionen darstellbar ist [1]. Es muss daher ein numerisches Verfahren angewendet werden, um den zeitlichen Verlauf der kinematischen Größen im Diagramm darzustellen. Dies geschieht hier mithilfe des Halbschrittverfahrens, das zum Beispiel in [2] kurz beschrieben wird. Neben der Darstellung der kinematischen Größen in Diagrammen liefert dieses Verfahren auch eine numerische Bestimmung der Periodendauer T . Zusatzmaterial für Lehrpersonen Das "klassische" Berechnungsverfahren nach [1] kann mithilfe der GeoGebra-Datei "numerische_integration.ggb" nachvollzogen werden. Diagramme Die zum Download bereit gestellte Datei "vertikale_kreisbahn.xls" enthält die beiden Tabellenblätter "Diagramme" und "Berechnung". Bei den Diagrammen befindet sich ein Schieberegler, mit dem die Gesamtenergie E kontinuierlich von 0 bis 10 mgr verändert werden kann. Dieser Wert wird in der Berechnungstabelle übernommen. Der Kreisradius r ist auf 1 gesetzt und sollte nicht verändert werden. Die Schrittweite Delta_t des Halbschrittverfahrens ist auf vier Millisekunden voreingestellt. Sie kann nach Aufhebung des Blattschutzes verändert werden, um die Genauigkeit des Verfahrens zu analysieren. Berechnungstabelle Die eigentliche Berechnungstabelle enthält die Zeit t , die Winkelkoordinate phi , die Winkelgeschwindigkeit omega , die Winkelbeschleunigung alpha und die aufzuwendende Radialkraft, hier als Seilkraft F_Seil bezeichnet, die jedoch bei positivem Vorzeichen als nach außen gerichtete Stützkraft (zum Beispiel durch eine dünne Stange) interpretiert werden muss. Zusätzlich werden zur Darstellung der Bewegung für einige ausgewählte Punkte die kartesischen Koordinaten x und y berechnet. Berechnung und Visualisierung Für die Anfangsposition phi = 0 erhält man die Winkelgeschwindigkeit omega aus der Energie. Die übrigen Größen können aus phi direkt berechnet werden. Sodann werden sukzessive nach dem Halbschrittverfahren die nächsten Werte von omega und von phi und damit dann wieder die weiteren Größen berechnet. Es werden 750 Rechenschritte durchgeführt, so dass der Bewegungsverlauf während der ersten drei Sekunden in den auf der Tabelle basierenden Diagrammen dargestellt werden kann. Dies reicht für die Diskussion völlig aus. Die interaktive Arbeit mit den Diagrammen wird durch die Arbeitsaufträge in der Datei "vertikale_kreisbewegung.pdf" strukturiert. Den wesentlichen Teil bilden die Aufgaben zum physikalischen Inhalt: Die kontinuierliche Verformung der Kurven durch die Veränderung der Gesamtenergie E lässt sehr schön erkennen, wie sich aus einer anfänglich harmonischen Pendelschwingung ( E < < mgr ) allmählich eine nicht-harmonische Schwingung mit wachsender Periodendauer T entwickelt. wie für Ausschläge über 90 Grad die erforderliche Radialkraft das Vorzeichen wechselt (bei mgr < E < 2,5 mgr ). wie die Bewegung bei E = 2 mgr aus der Schwingung in einen Looping übergeht und dann für wachsende Werte von E bei abnehmender Umlaufzeit einer gleichförmigen Kreisbewegung immer ähnlicher wird. Die Arbeitsaufträge verlangen eine detaillierte Beschreibung und Interpretation dieser Beobachtungen. Daneben sind herkömmliche Aufgaben in das Arbeitsblatt integriert (Energiesatz, Kräfte bei der Kreisbewegung, harmonische Schwingung et cetera). Optional können zusätzliche Arbeitsaufträge zum Halbschrittverfahren und zu Excel zum Einsatz kommen. Letztere setzen fortgeschrittene Kenntnisse in Excel voraus und sind gegebenenfalls in einem fächerübergreifenden Projekt (Physik/Informatik) anzusiedeln. Während im physikalischen Teil nur mit den Diagrammen gearbeitet wird, werden hier Eingriffe in die Berechnungstabelle vorgenommen. Dazu empfiehlt es sich, vorher eine Kopie der Datei "vertikale_kreisbewegung.xls" anzufertigen, für die dann der Schreibschutz aufgehoben wird. [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007

  • Physik / Astronomie
  • Sekundarstufe II

Schwingungen in Mathematik, Musik und Physik

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Fourier-Analyse (nach J.B.J. Fourier, 1768-1830) auf experimentelle Art und Weise kennen. Mit der Methode können komplexe Schwingungen, wie sie in der Musik und in der Physik vorkommen, in ihre Einzelkomponenten zerlegt werden.Nach der Einführung in das Thema der trigonometrischen Funktionen und insbesondere der Sinusfunktion arbeiten die Schülerinnen und Schüler weitgehend selbstständig am Computer. Mit dynamischen Arbeitsblättern, die mithilfe der kostenlosen Software GeoGebra erstellt wurden, finden sie heraus, wie sich die Parameter Amplitude, Frequenz und Nullphasenwinkel auf eine Sinusschwingung auswirken. Anschließend werden diese Erfahrungen dazu genutzt, Sinusschwingungen gezielt zu beeinflussen, um eine experimentelle Art der Fourier-Analyse durchzuführen. Die dynamischen Arbeitsblätter enthalten auch Erklärungen und Informationen aus der Physik und der Musik, wodurch sie sich für den fächerübergreifenden Unterricht eignen. Da in der Musik Hörerfahrungen nicht fehlen dürfen, stellen neun Hörbeispiele eine direkte Verbindung zur Musik her. Die Hörbeispiele stehen in unmittelbarem Bezug zu den Aufgabenstellungen und vermitteln einen direkten Zusammenhang zwischen den dynamischen Konstruktionen und den musikalischen Entsprechungen. So üben die Schülerinnen und Schüler nicht nur den Umgang mit trigonometrischen Funktionen, sondern lernen auch deren Bedeutung für die Physik und die Musik kennen. Tipps zum Unterrichtsverlauf Anregungen für den fächerübergreifenden Unterricht und zum selbstständigen, erforschenden Lernen sowie Hinweise zur Bedeutung des "klassischen" Heftes Hintergrundinfos für Lehrkräfte und Experimentiervorschläge Allgemeine Informationen zur Herleitung einer Sinusschwingung und zu Schwebungen sowie Vorschläge zu musikalischen Experimenten mit dem Klavier und der Blocklöte Die Schülerinnen und Schüler festigen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern. beeinflussen mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt. erkennen die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik. lernen durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen. kennen die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke". kennen den Aufbau eines Tons durch Überlagerung seiner Partialtöne. lernen das Phänomen der Schwebung kennen. sind mit dem Prinzip der Fourier-Analyse vertraut und kennen Anwendungsgebiete. Mit der Fourier-Analyse können komplexe Schwingungen in ihre Einzelkomponenten zerlegt werden. Jede dieser Teilschwingungen besitzt dabei die Form einer Sinusschwingung und lässt sich als Graph einer Sinusfunktion der Form mit den Parametern Amplitude a , Frequenz f und Nullphasenwinkel phi sub~0~~ darstellen. Um eine komplexe periodische Schwingung in ihre Einzelkomponenten zu zerlegen, wendet man das Verfahren der Harmonischen Analyse an. Nach ihrem Entdecker, dem französische Physiker und Mathematiker Jean Baptiste Joseph Fourier (1768-1830) wird diese Methode auch Fourier-Analyse genannt. Fourier zeigte, dass sich jede beliebige periodische Schwingung eindeutig als Summe von endlich oder unendlich vielen Sinusschwingungen darstellen lässt, deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Die mathematische Durchführung einer Fourier-Analyse ist relativ anspruchsvoll. Man benötigt dafür Kenntnisse über den Umgang mit trigonometrischen Funktionen, Summen und Integralen, sowie mit komplexen Zahlen. Daher eignet sie sich nicht direkt für den Unterricht. Um den Schülerinnen und Schülern aber das Prinzip einer Fourier-Analyse näher zu bringen, genügt es, diese auf experimentelle Weise durchzuführen. Dies wird durch die hier verwendeten dynamischen Arbeitsmaterialien ermöglicht. Musik Anwendungen der Fourier-Analyse findet man sowohl in der Musik, als auch in der Physik und dem alltäglichen Umgang mit Radio, CD-Player und Fernseher. In der Musik nutzt man diese Methode zum Beispiel zur Analyse von Klängen. Dabei nimmt man die Klänge mit einem Mikrophon auf und setzt den Schwingungsverlauf mithilfe eines Analog-Digital-Wandlers in mathematisch erfassbare Zahlenwerte um. Derartige digitalisierte Schwingungsverläufe können dann zum Beispiel auf eine CD gebrannt werden, wobei sie beim Abspielen als Überlagerung von Sinusschwingungen verschiedener Frequenzen reproduziert werden. Physik In der Physik wird die Fourier-Analyse unter anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Schwingungen zu zerlegen. Zum Beispiel nützt man dies um die Eigenfrequenzen eines Messgerätes zu berechnen. Denn um eine Verzerrung des Messvorgangs durch die Resonanzen der Eigenfrequenzen zu umgehen, darf das Messgerät keine Eigenfrequenzen innerhalb des Messbereichs aufweisen. Auch bei Radio und Fernsehen kommt die Fourier-Analyse zum Einsatz. Hier müssen die Signale erst digitalisiert und in ihre Einzelkomponenten zerlegt werden, bevor sie mit einer Trägerwelle gesendet werden können. Treten bei der anschließenden Überlagerung der Einzelfrequenzen Störungen auf, so sind sie zum Beispiel im Fernsehen als Bildstörungen wahrnehmbar. Dies tritt unter anderem auf, wenn Moderatoren Kleidungsstücke mit sehr feinen Streifen tragen und kann als flimmernde Bildstörung wahrgenommen werden. Der Verlaufsplan Schwingungen stellt eine Anregung dar und kann natürlich an die jeweiligen Unterrichtsbedingungen angepasst werden. Im Idealfall stehen Ihnen die für jeden Block vorgeschlagenen Unterrichtsstunden hintereinander zur Verfügung. Dies lässt sich eventuell durch das Tauschen von Unterrichtsstunden mit den Kolleginnen und Kollegen erreichen. Ist dies nicht der Fall, können die Blöcke auch in aufeinander folgenden Mathematikstunden behandelt werden. Die Arbeitsblätter können auch im Rahmen von Hausübungen zu Ende bearbeitet werden, damit alle Schülerinnen und Schüler beim nächsten Unterrichtsblock auf dem gleichen Wissensstand sind. Falls nicht alle über einen heimischen Internetanschluss verfügen, lassen sich die Hausübungen auch in Partner- oder Kleingruppenarbeit erledigen. Beim Abspielen der Hörbeispiele ist die Verwendung von Kopfhörern zu empfehlen, da sich die Lernenden sonst gegenseitig stören würden. Dynamische Arbeitsblätter "Schwingungen in Musik und Mathematik" Um mit den interaktiven Applets arbeiten zu können, benötigen Sie Java (Version 1.4.2 oder höher). Die Unterrichtsmaterialien eignen sich für den fächerübergreifenden Unterricht zwischen den Fächern Mathematik, Musikerziehung und Physik. Sie können in Zusammenarbeit mit den entsprechenden Fachlehrkräften zu einem Projekt ausgebaut oder ergänzt werden. So könnte Ihnen zum Beispiel die Musiklehrerin oder der Musiklehrer bei der Durchführung der beiden angeführten musikalischen Experimente in Block 2 (siehe Verlaufsplan Schwingungen und Hintergrundinfos für Lehrkräfte und Experimentiervorschläge ) behilflich sein, während die Physiklehrkraft Experimente zur Veranschaulichung von mechanischen Schwingungen durchführen könnte (Fadenpendel, Stimmgabeln, gekoppelte Pendel, ... ). Selbstständiges und erforschendes Lernen Durch die Kombination der dynamischen Arbeitsblätter mit den Hörbeispielen erleben die Schülerinnen und Schüler eine direkte Verbindung zwischen den Fächern Mathematik und Musik. So werden Informationen aus ganz verschiedenen Fachbereichen gesammelt und miteinander verknüpft. In dieser Unterrichtseinheit geschieht dies vor allem durch selbstständiges und erforschendes Lernen. Durch das Experimentieren mit den Materialien können im individuellen Lerntempo Erfahrungen gesammelt werden, welche in den Plenumsphasen mit den Mitschülern diskutiert und bestätigt werden können. Ergebnissicherung: Das Heft ist unentbehrlich! Zur Ergebnissicherung dient das Heft. Das schriftliche Festhalten der Beobachtungen und Erkenntnisse ermöglicht eine bessere Strukturierung der Ergebnisse und ein späteres Nachvollziehen des Unterrichtsgeschehens. Außerdem kann man als Lehrkraft so die Arbeitsfortschritte einzelner Schülerinnen und Schüler einsehen und gegebenenfalls unterstützend eingreifen. So wird gewährleistet, dass möglichst alle die Lernziele erreichen und vom Unterricht profitieren. Die grafische Darstellung einer harmonischen Schwingung lässt sich von der gleichförmigen Kreisbewegung ableiten, indem man diese auf eine normal zur Rotationsachse liegende Ebene projiziert, in der ein rechtwinkliges Koordinatensystem liegt. Bewegt sich ein Punkt P auf einer kreisförmigen Bahn mit Radius r , so lässt sich jedem Phasenwinkel phi im Intervall von 0 bis 2 pi der Wert der zugehörigen Auslenkung y zuordnen. Diese Werte werden entlang der Ordinaten-Achse eines Koordinatensystems aufgetragen, wodurch eine Sinuskurve entsteht. Für dieses Experiment benötigen Sie ein Klavier (Flügel oder Pianino). Es soll den Schülerinnen und Schülern verdeutlichen, dass jeder "natürliche" Ton durch die Überlagerung von Teiltönen (Partialtönen) entsteht. Drücken Sie (oder eine Schülerin oder ein Schüler) stumm die Taste des Tones C (in der großen Oktave). Betätigen Sie kurz und kräftig die Taste C 1 (in der Kontra-Oktave) und halten Sie die erste Taste währenddessen gedrückt. Lassen Sie die Klasse aufmerksam zuhören, was nach dem Auslassen der zweiten Taste passiert: Die Saite der Taste C wurde durch die tiefere Saite der Taste C 1 in Schwingung versetzt - der Ton C ist leise wahrnehmbar. Wiederholen Sie diesen Vorgang auch mit dem Stumm-drücken der Tasten c, g (beide in der kleine Oktave), c 1 , e 1 und g 1 (alle in der ersten Oktave). Dabei sind die entsprechenden Töne immer leiser und ihre Wahrnehmung wird somit schwieriger. Möglicherweise sind die letzten beiden Töne auch gar nicht mehr wahrnehmbar. Erklären Sie Ihren Schülerinnen und Schülern, dass jeder Ton des Klaviers durch Überlagerung seiner Partialtöne entsteht. Dies bedeutet für den Ton C 1 , dass er sich aus folgenden Tönen zusammensetzt: C 1 , C, G, c, e, g, b, c 1 , d 1 , e 1 , ... , wobei hier nur die ersten zehn Partialtöne aufgezählt sind. Theoretisch besteht ein natürlicher Ton aus unendlich vielen Partialtönen, wobei nur eine bestimmte Anzahl wahrnehmbar ist. Das Phänomen einer Schwebung tritt bei der Überlagerung zweier Sinusschwingungen gleicher Schwingungsrichtung mit ganzzahligen Frequenzen f sub~1~~ beziehungsweise f sub~2~~ und gleichem Nullphasenwinkel phi sub~0~~ auf. Der Einfachheit halber wählen wir dabei für den Nullphasenwinkel den Wert Null. Die Frequenzen dürfen dabei jedoch keine ganzzahligen Vielfachen voneinander sein. Ändert sich die Amplitude einer Schwingung periodisch, so nennt man dieses Phänomen in der Akustik eine Schwebung und ihre Frequenz Schwebungsfrequenz f sub~S~~. Liegt die Schwebungsfrequenz im Bereich zwischen 1 Hz und 8 Hz, so werden die einzelnen Schwebungen deutlich als Lautstärkeschwankungen wahrgenommen, was Musiker zum exakten Stimmen ihrer Instrumente nutzen. Stimmen die Amplituden A sub~1~~ und A sub~2~~ der beiden Sinusschwingungen überein, so spricht man von einer "vollkommenen Schwebung". Das heißt, die beiden Schwingungen löschen einander immer wieder aus und die Amplitude A sub~r~~ der resultierenden Schwingung schwankt zwischen den Werten 0 und A sub~1~~ + A sub~2~~. Besitzen die Amplituden der beiden Einzelschwingungen verschiedene Werte, so spricht man von einer "unvollkommenen Schwebung". Die Amplitude A sub~r~~ der resultierenden Schwingung schwankt dabei zwischen den Werten / A sub~1~~ - A sub~2~~ / und A sub~1~~ + A sub~2~~. Ein Klavierstimmer nützt die vielen Obertöne eines Klavierklanges um die Intervalle "rein" zu stimmen. Da die erste Oberschwingung eine doppelt so hohe Frequenz wie ihre Grundschwingung hat, klingt der erste Oberton genau eine Oktave höher als der Grundton. Bei einem einzeln erklingenden Ton nimmt das menschliche Ohr die auftretenden Partialtöne nicht getrennt, sondern als Klanggemisch wahr. Spielt der Klavierstimmer diesen Ton jedoch gleichzeitig mit dem etwas verstimmten Ton im Intervallabstand einer Oktave, so bilden sich Schwebungen zwischen der ersten Oberschwingung des tieferen und der Grundschwingung des höheren Tons. Durch die Veränderung der Saitenspannung lässt sich die Frequenz des höheren nun exakt an die des tieferen Tons anpassen, die Schwebung verschwindet und die Oktave klingt "rein". Für dieses Experiment benötigen Sie zwei Sopranblockflöten: Lassen Sie zwei Ihrer Schülerinnen oder Schüler kräftig denselben Ton auf den beiden Blockflöten spielen, zum Beispiel den Ton d 1 , bei dem auf der Vorderseite der Flöten lediglich das zweite Griffloch von oben verschlossen werden muss. Im Normalfall klingen die beiden Töne nun nicht "rein", da sie durch leicht unterschiedliche Frequenzen erzeugt werden. Ihre Schülerinnen und Schüler sollen nun versuchen, durch Veränderung des Anblasedrucks die Töne anzugleichen. Dabei hält ein Lernender den Luftstrom konstant (mittlere Lautstärke) während der andere seinen Anblasedruck variiert. Sobald die beiden Frequenzen übereinstimmen, klingt der Ton "rein", was deutlich hörbar ist. Das Angleichen der beiden Töne erfordert einige Sensibilität von den Schülerinnen und Schülern. Möglicherweise gibt es aber jemanden, der das Instrument gut beherrscht. Dies würde das "Reinstimmen" der beiden Blockflöten erheblich erleichtern.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Musik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner