Mikrogravitation – Stahlkugel und Luftblase in Glycerin
Unterrichtseinheit
Schülerinnen und Schüler entwickeln für ein Fallkapselsystem eine Versuchsanordnung, mit der sie die Bewegung einer Stahlkugel und einer Luftblase in Glycerin mit und ohne Gravitation untersuchen können. Sie erstellen Videofilme und werten diese aus.Ein ins Wasser gefallener Stein sinkt nach unten, während eine dabei entstehende Luftblase nach oben steigt. Beide Bewegungen werden durch die Gravitationskraft verursacht. Die Auswirkungen, die ein plötzlicher Wegfall der Gravitationskraft auf die Sink- und Steigbewegung von Objekten in Flüssigkeiten hat, können Schülerinnen und Schüler mit einem Fallkapselsystem untersuchen. Als Beispiel wird die Bewegung einer Stahlkugel und einer Luftblase in Glycerin betrachtet. Mikrogravitations-Experimente können in der Schule mit einem System durchgeführt werden, dessen Aufbau in dem Beitrag Mikrogravitation - Experimente im freien Fall ausführlich beschrieben wird.Schülerinnen und Schüler verbinden mit dem Begriff Schwerelosigkeit häufig bewegungsloses Schweben im Raum. Dies lässt sich mit dem Fallkapselsystem schwer realisieren, weil frei bewegliche Objekte beim Startvorgang nahezu unvermeidlich einen Impuls erhalten und sich somit im Raum gleichförmig bewegen. Ein bewegungsloser Schwebezustand lässt sich jedoch leicht herstellen, wenn man den Körper in eine Flüssigkeit einbettet, denn dadurch wird der Anfangsimpuls des Objekts durch Reibung schnell abgebaut. Aufbau, Ergebnisse und Deutung des Versuchs Videobilder dokumentieren die Veränderungen des Verhaltens von Stahlkugel und Luftblase bei Eintritt der Mikrogravitation. Neben der Deutung der Effekte finden Sie hier weiterführende Fragen, die die Lernenden zu eigenständigem Experimentieren anregen. Die Schülerinnen und Schüler sollen ein Experimentiermodul für eine Fallkapsel konstruieren können, mit dem sie die Sinkbewegung einer Stahlkugel und die Steigbewegung einer Luftblase in Glycerin beobachten können. die Bewegung von Luftblase und Stahlkugel vor und nach dem Start der Fallkapsel mit einer Digitalkamera filmen können und aus den Videofilmen mit einem Computerprogramm Videobilder extrahieren können. die Bewegung von Stahlkugel und Luftblase in Glycerin bei normaler Gravitation mit den Kräften der Gravitation, des Auftriebs und der Reibung erklären können. erklären können, warum Stahlkugel und Luftblase bei Mikrogravitation bis zum Stillstand abgebremst werden. Thema Bewegung einer Stahlkugel und einer Luftblase in Glycerin bei normaler Gravitation und bei Mikrogravitation Autor Dr. Volker Martini Fach Physik Zielgruppe Jahrgangsstufen 9-11 Zeitraum 2 Doppelstunden oder freie Zeiteinteilung außerhalb des Unterrichts Technische Voraussetzungen Mikrogravitation - Experimente im freien Fall mit Digitalkamera; Computerprogramm zum Extrahieren von Videobildern aus einem Videofilm (MAGIX Video deluxe 15 oder vergleichbare Software) Der Versuchsaufbau ist in Abb. 1 dargestellt: Stahlkugel (1), Drahtsperre (2), Glycerin (3), Luftblase (4), Luftkammer (5), Zuflussrohr (6). Das quaderförmige Gefäß aus durchsichtigem Plastik ist mit Glycerin gefüllt. Am Boden befindet sich eine Luftkammer mit zwei röhrenförmigen Öffnungen, von denen eine seitlich und die andere oben angebracht ist. Durch die seitliche Öffnung fließt Glycerin in die Kammer, welches die darin befindliche Luft durch die obere Öffnung drückt. Dort entstehen Luftblasen, die im Glycerin aufsteigen. Die Anzahl der pro Sekunde gebildeten Luftblasen hängt davon ab, wie schnell das Glycerin in die Kammer fließt. Dies lässt sich durch Röhrchen mit verschiedenen Querschnitten regulieren. In den oberen Teil des mit Glycerin gefüllten Gefäßes ragt eine Röhre, durch welche die Stahlkugel fallen kann. Die Röhre ist vor dem Start des Experiments durch einen lose angebrachten Sperrdraht verschlossen. In der Startposition des Fallkapselsystems lässt man Luftblasen im Glycerin aufsteigen und startet die Videokamera. Dann entfernt man den Sperrdraht und die Stahlkugel fällt in das Glycerin. Man wartet noch einen kurzen Moment, bis die Stahlkugel etwa die halbe Strecke im Glycerin zurückgelegt hat und lässt dann das Fallkapselsystem frei fallen. Sinkende Stahlkugel und aufsteigende Luftblase Abb. 2 zeigt Videobilder von Luftblase und Stahlkugel kurz vor und nach dem Start des Fallkapselsystems. Links ist ein Maßstab zu sehen. Auf dem ersten Bild, das 0,6 Sekunden vor dem Start aufgenommen wurde, befinden sich Luftblase und Stahlkugel seitlich gegeneinander versetzt ungefähr in der Bildmitte. Auf den drei folgenden Videobildern, die in einem zeitlichen Abstand von je 0,2 Sekunden aufgenommen wurden, ist zu erkennen, dass die Stahlkugel mit konstanter Geschwindigkeit sinkt. Auch die aufsteigende Luftblase bewegt sich mit konstanter Geschwindigkeit. Das vierte Bild wurde zum Zeitpunkt des Starts aufgenommen. Vergleicht man dieses Bild mit den beiden folgenden, so sieht man, dass Stahlkugel und Luftblase gleich zu Beginn der einsetzenden Mikrogravitation abrupt gestoppt werden und sich nicht mehr bewegen. Entstehende Luftblase Am unteren Rand der Videobilder sieht man die Austrittsöffnung der Luftkammer mit einer sich neu bildenden Luftblase. Anfangs vergrößert sich die Luftblase gleichmäßig von Bild zu Bild. Nach dem Start des Fallkapselsystems wächst sie schnell an und wird größer als die zuvor aufgestiegenen Luftblasen. Verhalten der Stahlkugel bei normaler Gravitation Nach dem Eintauchen der Stahlkugel in das Glycerin erfährt sie neben der Gravitationskraft eine Auftriebskraft, die ebenfalls auf die Gravitation zurückzuführen ist. Beide entgegengesetzt gerichteten Kräfte wirken in ihrer Summe nach unten. Hinzu kommt eine nach oben gerichtete Reibungskraft, die im Gegensatz zu den beiden erstgenannten Kräften geschwindigkeitsabhängig ist. Kurz nach dem Eintauchen der Stahlkugel in das Glycerin stellt sich ein Gleichgewicht der Kräfte ein, bei dem die im Experiment beobachtete gleichbleibende Geschwindigkeit erreicht wird. Verhalten der Luftblase in Glycerin bei normaler Gravitation Auch für die aufsteigende Luftblase besteht ein Gleichgewicht zwischen der nach oben wirkenden Auftriebskraft und der diesem Fall nach unten wirkenden Reibungskraft. Die auf die eingeschlossene Luft wirkende Gravitationskraft kann man vernachlässigen. Dies hat zur Folge, dass sich die Luftblase ebenfalls mit konstanter Geschwindigkeit bewegt. Stahlkugel und Luftblase in Glycerin bei Mikrogravitation Nach dem Start des Fallkapselsystems entfallen die Gravitationskraft und die durch sie bedingte Auftriebskraft. Die einzig verbleibende Reibungskraft bremst Stahlkugel und Luftblase schnell ab. Entstehende Luftblase bei Mikrogravitation Die Luftblase, die sich an der Austrittsöffnung der Luftkammer bildet, wächst zunächst gleichmäßig an, weil infolge des hydrostatischen Drucks Glycerin durch die seitliche Öffnung in die Kammer gepresst wird. Die unter erhöhtem Druck stehende Luft tritt durch die obere Öffnung aus, weil hier der hydrostatische Druck wegen der höheren Lage etwas geringer ist als in der seitlichen Öffnung. Nach dem Start des Fallkapselsystems verschwindet mit dem Wegfall der Gravitation auch der hydrostatische Druck im Glycerin. Die in der Luftkammer nach wie vor unter Druck stehende Luft bläht die Luftblase weiter gegen einen geringeren Widerstand auf, der jetzt im Wesentlichen von der Oberflächenspannung des Glycerins herrührt. Wegen der fehlenden Auftriebskraft bewegt sie sich nicht mehr nach oben. Die folgenden Fragen geben den Schülerinnen und Schülern Anregungen für vertiefende Untersuchungen. Von besonderer Bedeutung sind Fragen, die durch eigenständiges Experimentieren beantwortet werden können: Mit welcher Geschwindigkeit sinkt die Stahlkugel? Wie groß ist die Viskosität des verwendeten Glycerins, wenn man das Reibungsgesetz von Stokes zugrunde legt? Welche Temperatur hat das Glycerin? Gilt das Reibungsgesetz von Stokes auch für die Luftblase? Wie ändert sich das Verhalten von Stahlkugel und Luftblase, wenn man das Glycerin mit Wasser verdünnt? Die aufsteigenden Luftblasen verursachen in der Flüssigkeit eine Strömung. Wie lässt sich diese nachweisen? Beeinflusst die Strömung das Sinkverhalten der Stahlkugel? Wie ändert sich die Strömung in der Flüssigkeit beim Übergang zur Mikrogravitation? Verwendet man statt Glycerin Wasser, so sind die Luftblasen kurz nach dem Verlassen der Luftkammer nicht kugelförmig. Welche Formen treten auf und wie ändern sich diese Formen beim Übergang zur Mikrogravitation? Wenn die Luftblasen im Glycerin die Oberfläche erreichen, bilden sich halbkugelförmige Luftblasen, die auf der Oberfläche schwimmen. Was geschieht mit diesen Luftblasen beim Übergang zur Mikrogravitation? Neues entdecken So erfahren Schülerinnen und Schüler beispielhaft die unschätzbare Bedeutung von Experimenten, wenn es darum geht, komplexe Vorgänge besser verstehen zu können. Zudem ist die Chance groß, dass sie bei der Untersuchung der Fragen auch auf ganz neue Effekte stoßen.
-
Astronomie
/
Physik
-
Sekundarstufe I,
Sekundarstufe II