• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Funktion einer galvanischen Zelle

Unterrichtseinheit

Das hier vorgestellte Flash-Programm zeigt den Aufbau einer galvanischen Zelle aus einer Zink- und einer Kupferhalbzelle. Die chemischen Abläufe bei einer Stromentnahme werden dynamisch dargestellt.Die Beamerprojektion der Animation unterstützt das Unterrichtsgespräch und soll genutzt werden, um die im vorhergehenden Experiment demonstrierte Erzeugung elektrischer Energie in einer Teilchenmodellanimation zu veranschaulichen. Dabei wird deutlich, durch welche chemischen Vorgänge der Strom erzeugt wird. Neben den an den Elektroden stattfindenden Reaktionen wird auch die Diffusion der Ionen durch das Diaphragma dargestellt. Dadurch wird der Ladungstransport von Halbzelle zu Halbzelle innerhalb der Lösungen gewährleistet. Mithilfe der projizierten Animation werden die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickelt. Die Materialien der Unterrichtseinheit werden durch einen Beitrag aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt: Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Was können Chemikerinnen und Chemiker für einen korrosionsarmen Zahnersatz tun?Am Präsentationsrechner können Lehrerinnen und Lehrer die Flash-Folie als Unterrichtsmedium im Unterrichtsgespräch einsetzen. Das Experiment verdeutlicht den Lernenden die technische Möglichkeit zur Gewinnung elektrischer Energie aus chemischen Reaktionen. Die Animation lässt sich ebenfalls in einer selbstständigen Computer-Schülerarbeit einsetzen, zum Beispiel als Analyseinstrument beim Schülerpraktikum. Die in den Schülergruppen am Rechner erarbeiteten Ergebnisse zur Funktion des galvanischen Elements lassen sich abschließend im Schülervortrag computergestützt präsentieren und erläutern. Hinweise zum Einsatz der Animation im Unterricht Screenshots veranschaulichen die Funktionen der interaktiven Flash-Animation. Während der Präsentation werden die Reaktionsgleichungen an der Tafel fixiert. GDCh-Wochenschau-Artikel zum Thema Unfreiwillig trägt fast jeder Mensch eines oder mehrere galvanische Elemente im Mund. Wie finden Chemikerinnen und Chemiker einen korrosionsarmen Zahnersatz? Die Schülerinnen und Schüler sollen den Aufbau einer galvanischen Zelle aus zwei Halbzellen mit verschiedenen Metallelektroden, die in entsprechende Metallsalzlösungen eintauchen, beschreiben. anhand der Animation zur galvanischen Zelle erkennen, dass beim Verbinden beider Halbzellen mittels eines elektrischen Leiters zeitgleich und kontinuierlich in der einen Halbzelle ein Oxidations- und in der anderen ein Reduktionsvorgang an den Metallelektroden abläuft. erkennen, dass der Elektronenübergang zwischen beiden Teilvorgängen durch den elektrischen Leiter vermittelt wird. die dynamischen Teilchenmodellszenarien an den Elektroden in Reaktionsgleichungen umsetzen. aus der Animation ableiten, dass die Kombination und räumliche Trennung geeigneter Reduktions- und Oxidationsmittel chemische Energie speichert und diese durch Anschluss eines Verbrauchers in nutzbare elektrische Energie umgewandelt werden kann. Thema Funktion einer galvanischen Zelle Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Klasse 9/10, Jahrgangsstufe 12 (Wiederholung) Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer, Flash-Player (ab Version 8, kostenloser Download) Beschriftung der Zelle Die Animation beginnt die Präsentation mit einem Einblick in den Aufbau und die chemische Zusammensetzung eines galvanischen Elements. Ein Zinkblech taucht in eine Zinksulfatlösung und ein Kupferblech in eine Kupfersulfatlösung ein. Beide Systeme (Halbzellen) sind durch ein poröses Diaphragma voneinander getrennt (kombiniert). Die Beschriftung der Darstellung (Abb. 1, Platzhalter bitte anklicken) lässt sich über das obere Icon in der Buttonleiste (rechts außen) ein- beziehungsweise ausblenden. Stromfluss Durch Anklicken des Schalters (rechts unten in Abb. 2) wird der Stromkreis geschlossen (alternativ über die Space-Taste). Durch ein erneutes Anklicken des Schalters wird der Stromkreis unterbrochen und die Teilchensymbole werden ausgeblendet. Bei geschlossenem Stromkreis stoppt die Space-Taste die Bewegung der Teilchensymbole beziehungsweise startet sie bei erneuter Betätigung. Die Animation zeigt die chemischen Vorgänge an den Metallblechen (Elektroden) und den dadurch entstehenden Stromfluss. Die leuchtende Glühlampe zeigt den Verbrauch elektrischer Energie an. Anhand der projizierten Animation lassen sich die Teilgleichungen sowie die Redoxgleichung für den Gesamtumsatz an der Tafel entwickeln. Um jeder Schülerin und jedem Schüler die Elektrodenvorgänge deutlich vor Augen zu führen, lässt sich die Animation nach dem Stoppen über die Space-Taste mithilfe der Pfeil-Tasten langsam vor- oder zurückspulen. So kann jeder Elektrodenvorgang in angemessenem Tempo visualisiert werden. Die Teilvorgänge werden parallel zu diesem Vorgehen an der Tafel fixiert. Anode: Zinkatome werden oxidiert In der Zinkhalbzelle werden Zinkatome oxidiert und gehen als Zink-Ionen in Lösung. Dabei werden zwei Elektronen über das Zinkblech zum Verbraucher abgeführt: Zn (s) → Zn 2+ (aq) + 2e - Kathode: Kupferionen werden reduziert In der Kupferhalbzelle werden dem Kupferblech zugeführte Elektronen auf die Kupferionen der Lösung übertragen. Durch die Reduktion dieser Kupferionen scheidet sich elementares Kupfer auf der Kathodenoberfläche ab: Cu 2+ (aq) + 2e - → 2 Cu (s) Darstellung des Ladungstransports Die Animation zeigt neben den Reaktionen an den Elektroden auch die Diffusion von Ionen durch das Diaphragma und damit den Ladungstransport in der Lösung, der die Aufrechterhaltung der Elektroneutralität in beiden Halbzellen gewährleistet. Die Erzeugung elektrischer Energie findet nur statt, wenn der Transport elektrischer Landungen im gesamten System (im gesamten Stromkreis) möglich ist: im metallischen Leiter und im Elektrolyten. Da positiv geladene Kupferionen an der Kupferelektrode entladen werden, wandern negativ geladene Sulfationen in die Zinkhalbzelle. Gleichzeitig wandern positiv geladene Zinkionen aus der Zinkhalbzelle in die Kupferhalbzelle. "Alterung" des Galvanischen Elements Durch die Veränderungen an den Elektroden (die allerdings in der Animation nicht gezeigt werden) lässt sich die Alterung des apparativen Systems erläutern und die Stromabnahme prognostizieren. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einen für diese Unterrichtseinheit relevanten Artikel stellen wir hier kurz vor. Der vollständige Beitrag steht als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Potentialdifferenz im Mund Metallische Werkstoffe höchst unterschiedlicher Art sind aus der modernen Zahnheilkunde nicht fortzudenken. Mit zunehmendem Lebensalter und einem immer breiter werdenden Angebot dieser Werkstoffe ist die Wahrscheinlichkeit groß, dass im Mund Legierungen unterschiedlicher Zusammensetzung auftauchen. Sind sie hinsichtlich ihres Korrosionsverhaltens deutlich verschieden (also edler oder unedler), kann es bei direktem metallischen Kontakt zur Ausbildung eines Lokalelementes im Mund kommen - jeder unfreiwillige Biss auf ein Stück Aluminiumfolie mit einem Zahn, der eine metallische Krone oder ein Inlay aufweist, erinnert mit dem kribbelnden Gefühl im Mund an die auftretende Potentialdifferenz (elektrische Spannung). Der dann fließende Strom steht in direktem Zusammenhang mit der Korrosion und schließlich der Auflösung des unedleren Materials. Falls es bei der Einbringung von Zahnersatz zu ähnlichen Phänomenen kommt, ist wegen der lang andauernden Einwirkung und der oftmals biologisch bedenklichen Wirkung der freigesetzten Metalle die potentiell negative Auswirkung bedenklich. Durch sorgfältige Planung und Verarbeitung lassen sich derartige Fehler allerdings weitgehend vermeiden. Korrosion im Mund Galvanische Elemente bilden sich aber auch in anderer und kaum vermeidbarer Weise aus: Jeder metallische Werkstoff im Mund kann Bestandteil eines Belüftungselements werden. In ihm findet die korrosive Metallauflösung vor allem in für die Luft und den darin enthaltenen Sauerstoff schlecht zugänglichen Spalten statt, während die kathodische Sauerstoffreduktion an gut zugänglichen Oberflächen abläuft. Damit verbundene Phänomene wie Lochfraß oder Risskorrosion sind in der Technik wohlbekannt. Offenbar ist also jeder metallische Werkstoff im Mund - sofern er Kontakt mit Speichel hat - der Korrosion ausgesetzt. Dieses elektrochemische Phänomen kann mit elektrochemischen Methoden gut studiert werden. Die Artikel beschreibt (sehr detailliert), wie Chemikerinnen und Chemiker die Anfälligkeit verschiedener Legierungen untersuchen - ein wichtiger Schritt auf dem Weg zum korrosionsarmen Zahnersatz.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Galvanische Zellen - Ermittlung einer Spannungsreihe

Unterrichtseinheit

Die hier vorgestellte Flash-Lernumgebung kann das Unterrichtsgespräch unterstützen oder als Grundlage für eine selbstständige Erarbeitung des Themas dienen.Das Programm zur Elektrochemie besteht aus zwei Teilen: Im ersten Abschnitt werden Aufbau und Funktion galvanischer Zellen am Beispiel des Zink-Kupfer-Elements verdeutlicht. Im zweiten Teil können aus einer vorgegebenen Auswahl von Halbzellen beliebige galvanische Zellen zusammengestellt, deren Spannungen virtuell gemessen und gespeichert werden. Im Auswertungsteil der Lernumgebung können die Schülerinnen und Schüler daraus selbstständig eine Spannungsreihe entwickeln.Mit der interaktiven Simulation können Schülerinnen und Schüler in einer selbstständigen Arbeitsphase im Computerraum der Schule oder auch am heimischen Rechner arbeiten - entweder im Rahmen einer Hausaufgabe, zur Wiederholung des im Unterricht Gelernten oder zur Prüfungsvorbereitung. Alternativ zu diesen Einsatzmöglichkeiten können Lehrerinnen und Lehrer mit ihrer Lerngruppe auch im Unterrichtsgespräch eine Spannungsreihe virtuell entwickeln (Beamer-Präsentation im Fachraum). Inhalte und Funktionen Die Entwicklung einer Spannungsreihe mithilfe der Lernumgebung wird hier Schritt für Schritt erläutert und per Screenshot dargestellt. Die Schülerinnen und Schüler sollen Aufbau und die Funktion galvanischer Zellen erkunden. mithilfe virtueller Experimente eine Spannungsreihe aufstellen. Thema Galvanische Zellen - Ermittlung einer Spannungsreihe Autor Dr. Ralf-Peter Schmitz Fach Chemie Zielgruppe Sekundarstufe II Zeitraum 1 Stunde Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Informationen zum Aufbau Im ersten Teil der Lernumgebung werden Aufbau und Funktion einer vorgegebenen galvanischen Zelle untersucht. Mit der Maus "entdeckt" man verschiedene Details. Beim Anklicken der verschiedenen sensitiven Flächen innerhalb der Apparatur wird jeweils ein kleines Informationsfenster eingeblendet (Abb. 1, Platzhalter bitte anklicken). Chemische Vorgänge Betätigt man im ersten Programmteil den Schalter (Ein/Aus), werden die chemischen Vorgänge an den Elektroden als Animation dargestellt (Abb. 2). Dazu muss das Multimeter zuvor auf "Strommessung" umgeschaltet werden. Die gemessene Stromstärke wird von dem Gerät angezeigt. Anhand der animierten Vorgänge an den Elektroden lassen sich die Begriffe Oxidation, Reduktion, Donator-Halbzelle, Akzeptor-Halbzelle und die Richtung des Stromflusses erläutern. Schaltet man das Multimeter auf die Spannungsmessung um, so werden an den Elektroden die Unterschiede im Lösungsbestreben beider Metalle in ihren Metallsalzlösungen und der daraus resultierende Elektronendruck veranschaulicht. Kombination der Halbzellen Der zweite Programmteil bietet eine virtuelle Experimentieroberfläche: Über den Button "Halbzellenauswahl" (Abb. 3) öffnet sich ein Fenster, in dem man vorgegebene Halbzellen auswählen kann (bitte Scrollbalken beachten). Durch die Bestätigung der Auswahl (OK-Button) werden die gewählten Halbzellen in der Apparatur dargestellt. Spannungsmessung Nach dem Betätigen des Schalters öffnet sich ein Ergebnisfenster (Abb. 4, Platzhalter bitte anklicken). Neben der aktuellen Versuchsnummer werden darin die Halbzellen-Kombination und die messbare Spannung des galvanischen Elements angezeigt. Reaktionen im Trickfilm Auf der Basis der angezeigten Spannung (Abb. 4) müssen die Lernenden die Frage nach der Donator-Halbzelle (unten im Ergebnisfenster) beantworten. Als Hilfestellung können sich Schülerinnen und Schüler die elektrochemischen Vorgänge per Klick auf den Button "Trickfilm" auf der Teilchenebene zeigen lassen (Abb. 5). Speichern der Messwerte Nachdem die Frage zur Donator-Halbzelle per Kick in die jeweilige Klickbox beantwortet ist, betätigt man den "merken?"-Button. Dadurch werden die Werte der aktuellen Messung im Programm für die spätere Auswertung gespeichert. Über die Messwertanzeige (Klick auf Messdaten, oben rechts) kann jederzeit überprüft werden, welche Halbzellen-Kombinationen bereits erfasst sind (Abb. 6). Aufstellung der Spannungsreihe Nach der Aufnahme aller gewünschten Messwerte wird im Bereich Auswertung eine Redox- beziehungsweise Spannungsreihe entwickelt. Unter dem Messdaten-Fenster (Abb. 7) können Halbzellen-Symbole eingeblendet werden (Klick auf "Symbole"). Diese sollen per "drag and drop" verschoben und entsprechend den Spannungsdifferenzen in der linken Skala positioniert werden. Die Halbzelle, die gegenüber sämtlichen anderen Halbzellen als Donator-Halbzelle wirkt, wird dem Wert Null zugeordnet. Dieser Hinweis wird den Schülerinnen und Schülern über die einblendbare Aufgabe mitgeteilt. Freie Texteingabe Abb. 8 zeigt eine abgeschlossene Auswertung. Die Spannungsabstände liest man an der Skala ab. Die "Spannungslineale" wurden über die Toolbox erzeugt, skaliert und positioniert. Damit wird der Spannungsabstand jeweils zwischen zwei Halbzellen (die gemessene Spannung im Messwert-Fenster) auch optisch veranschaulicht. Im Textfenster kann eine Beschreibung zur Spannungsreihe erstellt werden. Abschließend drucken die Lernenden die Bildschirmseite als Protokoll aus.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Rund um den Wasserstoff

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Funktionsweise einer Brennstoffzelle kennen, wobei auf die verschiedenen Herstellungsverfahren des Wasserstoffs in Bezug auf die Nachhaltigkeit eingegangen wird. Außerdem wird Wasserstoff hinsichtlich einer möglichen zukünftigen Antriebstechnologie beleuchtet. Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet werden. Thematisch orientiert sie sich dabei an den aktuell auch politisch stark diskutierten Themen der Nachhaltigkeit und der Sicherung der Energieversorgung. Im Detail wird hier auf elektrochemische Prozesse im Alltag und Energiewandlungssysteme eingegangen. Besonderes Augenmerk wird dabei auf die Funktionsweise der Wasserstoffbrennstoffzelle für Personenkraftwagen gelegt. Die schon lange bekannte Elektrolyse von Wasser, als ein zukünftig wichtiges Herstellungsverfahren des Wasserstoffs, wird in diesem Zusammenhang ebenfalls betrachtet. Die Aspekte der Nachhaltigkeit werden in weiterführenden Aufgabenstellungen diskutiert. Hierbei lernen die Schülerinnen und Schüler verschiedene Herstellungsverfahren in Hinblick auf die Umweltverträglichkeit zu bewerten. In einigen Aufgabenstellungen wird dabei die eigene Recherchefähigkeit entwickelt und verbessert. Energieträger der Zukunft Vor allem hinsichtlich des stetig steigenden Bedarfs an Energie und der Aktualität in der Gesellschaft gewinnt Wasserstoff als möglicher Energieträger der Zukunft an Relevanz. Die fossilen Brennstoffe stehen zunehmend in der Kritik, weswegen eine frühzeitige Sensibilisierung der Schülerinnen und Schüler für dieses Thema wichtig ist. Hinsichtlich der Dringlichkeit der Energiewende und dem damit verbundenen Vorsatz der deutschen Bundesregierung, die Kohlenstoffdioxidemissionen zu reduzieren, sollte diese Thematik ebenfalls in den Schulunterricht eingebunden werden. Curriculum und Vorwissen Die Unterrichtseinheit ist ideal für den Chemieunterricht der Sekundarstufe II geeignet. Sie kann für den Kontext "Energie und chemische Reaktionen" genutzt werden und bezieht sich dabei vor allem auf die Rahmenlehrpläne der Länder Berlin, Brandenburg und Nordrhein-Westfalen. Die Einheit kann aber ebenso fächerübergreifend als Exkurs im Fach Physik eingesetzt werden. Für die Bearbeitung der Aufgaben sollte ein gewisses chemisches Grundlagen-Wissen, wie beispielsweise das Aufstellen von Reaktionsgleichungen sowie eine grundlegende textsortenspezifische Lesekompetenz von Fachtexten, vorhanden sein. Weiterhin sind keine Vorkenntnisse notwendig, da die Arbeitsblätter relevante Informationen zur Bearbeitung der Aufgaben liefern. Unterrichtsablauf und Lehrinhalte In der ersten Doppelstunde wird zunächst in das Thema Wasserstoff eingeleitet, wobei in erster Linie auf die Darstellung im Labor sowie die Herstellung durch Elektrolyse von Wasser eingegangen wird. Wahlweise kann hier auch der Hofmannsche Zersetzungsapparat besprochen werden. Im weiteren Verlauf werden verschiedene großtechnische Herstellungsmethoden in Hinblick auf den Umwelteinfluss besprochen. Insbesondere sollte dabei die kritische Betrachtung der Nutzung von Energie behandelt werden. Im Anschluss erarbeiten sich die Schülerinnen und Schüler allgemeine Informationen über die Wasserstoff-Brennstoffzelle in Still- oder Paararbeit. An dieser Stelle kann die Funktionsweise anhand eines veranschaulichenden Videos thematisiert werden. Schüleraktivierung und Binnendifferenzierung Die Unterrichtseinheit bietet ausreichend Möglichkeiten, darbietenden Unterricht und aktive Mitgestaltung durch Schülerinnen und Schüler zu variieren. Sie ist realitätsnah gestaltet und bietet außerdem höchste Aktualität. Mögliche Differenzierung: Mit den Arbeitsaufträgen kann flexibel umgegangen werden. Es besteht die Möglichkeit, aus verschiedenen Schwierigkeitsstufen zu wählen und einzelne Aufgaben herauszunehmen oder als Hausaufgabe zu vergeben. Die Bewertungsaufgabe ( Arbeitsblatt 2 , Aufgabe 5) kann als Grundlage für eine methodische Diskussion herangezogen werden. Weiterführend zu dieser Unterrichtseinheit können Lithium-Ionen-Batterien als Pendant zur Brennstoffzelle oder weitere Energiespeicherformen thematisiert und ergänzt werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Vorgänge bei der Wasserelektrolyse. lernen die komplexe Funktionsweise einer Brennstoffzelle kennen. bewerten die Relevanz der angewandten Chemie hinsichtlich der Energieversorgung. können Phänomene der Stoff- und Energieumwandlung bei chemischen Reaktionen erklären. Medienkompetenz Die Schülerinnen und Schüler stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler können kritisch hinterfragen. können in einer Diskussion das Für und Wider betrachten. können ihr Wissen auf fächerübergreifende Problemstellungen anwenden.

  • Chemie
  • Sekundarstufe II

Die Chemie der Zink-Kohle-Batterie

Unterrichtseinheit

Eine Flash-Animation veranschaulicht die chemischen Vorgänge, die in einer Zink-Kohle-Batterie bei einer Stromentnahme ablaufen. Das hier vorgestellte Flash-Programm bietet Schülerinnen und Schülern einen Einblick in den Aufbau einer Zink-Kohle-Batterie und stellt in einer Animation die chemischen Vorgänge während der Stromentnahme stark vereinfacht dar. Die Flash-Folie lässt sich im Unterricht per Beamer-Projektion einsetzen, um den Aufbau und die Funktion einer Zink-Kohle-Batterie kennenzulernen, zu verstehen und die Teilreaktionen in Reaktionsgleichungen zu fassen. Am heimischen Rechner können Schülerinnen und Schüler das frei zugängliche Angebot nutzen, um den Unterrichtsstoff zu wiederholen. Die Materialien der Unterrichtseinheit werden durch Beiträge der Gesellschaft Deutscher Chemiker e. V. (GDCh) ergänzt: Artikel aus der GDCh-Wochenschau-Artikel zum Thema stellen den seit fast 100 Jahren in Autos eingesetzten Bleiakkumulator sowie die noch sehr junge Technologie der Lithium-Batterien und ihre Einsatzmöglichkeiten vor. Betrachtung der Teilvorgänge und Aufstellen der Teilgleichungen Das "Innenleben" einer handelsüblichen Batterie kann den Schülerinnen und Schülern an aufgesägten Batterien gezeigt werden. Welche chemischen Vorgänge laufen ab? Der Zinkbecher fungiert als Elektronendonator. Zink wird oxidiert. Das ist aus der äußeren Beschriftung mit dem Minus-Symbol ersichtlich. Doch welcher Stoff wird reduziert? Dies wird in der hier vorgestellten Animation veranschaulicht, indem zum einen die Bestandteile der Batterie mithilfe von Formeln benannt werden (Ausgangsstoffe) und zum anderen die chemischen Veränderungen vereinfacht szenisch dargestellt werden (Produkte). Dabei werden die Oxidation von Zink, die Leitung der Elektronen über einen elektrischen Leiter hin zum Verbraucher und die Reduktion von Mangandioxid zeitlich nacheinander animiert vorgestellt, um den Fokus der Schülerinnen und Schüler verstärkt auf die Teilvorgänge zu konzentrieren. Anhand dieser "zeitlichen Akzentuierung" lassen sich leicht Teilgleichungen zu den Redoxvorgängen aufstellen. Unterrichtsgespräch und selbstständige Schülerarbeit Wird die Animation im Unterrichtsgepräch als Arbeitsmittel eingesetzt, werden ein kontinuierliches und zeitgleiches Prozedere im gesamten Redoxsystem und der kontinuierliche Verbrauch der Ausgangsstoffe thematisiert. Daneben können Schülerinnen und Schüler den Aufbau und die Funktion der Zink-Kohle-Batterie in einer selbstständigen Schülerarbeit am Rechner erarbeiten. Steuerung und Inhalte der Flash-Animation Die Animation kann über den Cursor oder die Tastatur gesteuert werden. Die Teilschritte der Reaktion werden hier per Screenshot vorgestellt und kurz erläutert. GDCh-Wochenschau-Artikel zum Thema Bei der Behandlung des Themas bietet sich ein Blick auf weitere Batterietypen an: klassischer Bleiakkumulator und die junge Technologie der Lithium-Ionen-Batterie Die Schülerinnen und Schüler sollen den Aufbau und die Organisation einer Zink-Kohle-Batterie beschreiben. anhand der Animation zur Zink-Kohle-Batterie erkennen, dass bei der Stromentnahme durch Anschluss eines Verbrauchers innerhalb der Batterie kontinuierlich stoffliche Veränderungen in den beiden Teilen eines Redoxsystems ablaufen. die dynamischen Teilchenmodellszenarien in Reaktionsgleichungen umsetzen. aus der Animation ableiten, dass durch die Kombination und räumlich Trennung geeigneter Reduktions- und Oxidationsmittel chemische Energie gespeichert und durch Anschluss eines Verbrauchers in elektrische Energie umgewandelt werden kann. Die Flash-Animation kann mithilfe der Maus durch Anklicken der Buttons und des Schalters gesteuert werden. Alternativ kann dafür aber auch die Tastatur des Rechners genutzt werden. Diese Möglichkeit unterstützt insbesondere die "mausfreie" Präsentation während des Unterrichtsgesprächs durch die Lehrperson oder im Rahmen eines Schülervortrags. Hier die verschiedenen Steuerungsfunktionen im Überblick: Buttons (Animation) Für Start und Stopp der Animation können die für diese Funktionen üblichen Icons in der Flash-Folie verwendet werden. Ein-und Ausschalter (Animation) Über die Betätigung des Ein- und Ausschalters neben der Glühlampe (Abb. 1, Platzhalter bitte anklicken) startet man die Animation oder setzt sie zurück ("Reset"). Computer-Tastatur Alternativ zu den Buttons kann auch die Space-Taste der Tastatur zum Starten oder Stoppen der Animation genutzt werden. Mit den Pfeiltasten der Tastatur können Sie die Animation schrittweise vor oder auch zurücklaufen lassen. Die Animation beginnt mit der Bewegung zweier Elektronen (Abb. 1, Platzhalter bitte anklicken) über den elektrischen Leiter hin zum Verbraucher. Es ist sehr wichtig, dass die Lehrperson den Schülerinnen und Schülern hier klarmacht, dass diese beiden Elektronen in dem Modell nur exemplarisch dargestellt und bewegt werden. In Wirklichkeit fließen im gesamten Leiter Elektronen vom Minus- zum Pluspol. Die Elektronen entstehen bei der Oxidation von Zinkatomen des Zinkbechers. Daraus lässt sich die erste Teilgleichung (Oxidation von Zink) ableiten: Zn (s) → Zn 2+ (aq) + 2 e - Die Elektronen wandern über die Kohleelektrode in das leitfähige Gemisch aus Kohlenstoff und Braunstein (Abb. 2a). Dort wird Mangan(IV)dioxid reduziert. Unter Aufnahme eines Protons entsteht Mangan(III)oxidhydroxid (Abb. 2b): 2 MnO 2 (s) + 2 H 2 O (l) + 2e - → 2 MnO(OH) (s) + 2 OH - (aq) Die Ammonium-Ionen geben jeweils ein Proton an Hydroxid-Ionen ab (Abb. 2c): 2 OH - (aq) + 2 NH 4 + (aq) → 2 H 2 O (l) + 2 NH 3 (g) Ammoniak diffundiert innerhalb in der Batterie und bildet mit den bei der Oxidation des Zinkbechers entstandenen Zink-Ionen Aminkomplexe (Abb. 2d): Zn 2+ (aq) + 2 NH 3 (g) → [Zn(NH 3 ) 2 ] 2+ (aq) Folgende Sekundärreaktionen führen zur Auflösung des Zinkbechers und somit zur Alterung der Batterie: Zn 2+ (aq) + 2 OH - → Zn(OH) 2 (s) Zn(OH) 2 (s) → ZnO (s) + H 2 O (l) Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Für diese Unterrichtseinheit relevante Artikel stellen wir hier kurz vor. Die vollständigen Beiträge stehen als PDF-Downloads zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Die Karriere des Bleiakkumulators Der klassische Bleiakkumulator wird seit fast 100 Jahren als einziger elektrischer Energiespeicher für den Starter in Kraftfahrzeugen eingesetzt und ist mitverantwortlich für den Erfolg des Automobils. Der Erfolg der Bleibatterie ist in erster Linie auf den im Vergleich zu anderen Batteriesystemen konkurrenzlos niedrigen Preis zurückzuführen, der durch niedrige Rohstoffkosten, eine einfache und weitgehend automatisierte Fertigungstechnik und einen etablierten effizienten Recyclingprozess erreicht wird. Funktionsweise Die Arbeitsweise des Bleiakkumulators wird ausführlich beschrieben. Neben den Entladereaktionen werden auch die "Nebenwirkungen" erläutert. Neben der Rolle des bei der Entladungsreaktion entstehenden und auf der Elektrode ausfallenden Bleisulfats (Reduzierung der Elektroden-Porosität und dadurch Behinderung der Transportvorgänge in den Elektroden und Korrosionseffekte) werden auch die Folgen von Nebenreaktionen dargestellt (Wasserverlust und Gasbildung durch Wasserzersetzung). Zudem werden die grundsätzlichen Unterschiede zwischen zwei Batterietypen aufgezeigt: Geschlossene Batterien (Vented/flooded batteries) Diese haben einen aufschraubbaren Zellstopfen für die Wassernachfüllung und Öffnungen im Deckel für das Entweichen von Gasen. Verschlossenen Batterien (Valve Regulated Lead Acid batteries) Dieser Batterietyp ist fest verschlossen und verfügt über ein Ventil, das sich bei Überdruck öffnet um die entstandenen Gase freizusetzen. Warum Lithium? Lithium ist das leichteste Metall im Periodensystem und steht am negativen Ende der elektrochemischen Spannungsreihe. Die daraus resultierende hohe theoretische Kapazität und die in Kombination mit verschiedenen Kathodenmaterialien realisierbaren hohen Zellspannungen machen es zum idealen Anodenmaterial. Lithium- und Lithium-Ionen-Batterien Der Artikel beschreibt Aufbau und Funktion primärer (nicht wiederaufladbarer) und sekundärer (wiederaufladbarer) Lithium-Batterien. Zudem wird die Lithium-Ionen-Batterie vorgestellt. In diesem System können sowohl das Kathoden- als auch das Anodenmaterial Lithium reversibel einlagern. Die negative Elektrode enthält an Stelle metallischen Lithiums nun Kohlenstoff als Speichermedium, die positive ein Lithium-Übergangsmetalloxid. Beim Ladeprozess werden Lithium-Ionen aus dem Metalloxid ausgelagert, zur negativen Elektrode transportiert und dort in das Gitter des Kohlenstoffs eingelagert. Beim Entladeprozess verläuft der Prozess umgekehrt. Lithium-Polymer-Zelle Eine Variante der Lithium-Ionen-Zelle ist die Lithium-Polymer-Zelle. Elektrodenmaterialien und Zellchemie sind identisch. Es wird aber an Stelle des flüssigen Elektrolyten eine Polymermatrix verwendet, die den Flüssigelektrolyten vollständig aufsaugt und auslaufsicher fixiert. In Lithium-Polymerzellen mit (Fest-)Polymerelektrolyt wird als Elektrolyt wird ein Polymer mit einem darin gelösten Lithiumsalz eingesetzt, das keine flüssigen Lösungsmittel mehr enthält. Der Ionentransport erfolgt komplett über die Polymermatrix. Vielfältige Einsatzmöglichkeiten Lithium-Batterien sind, verglichen mit den konventionellen Systemen, eine sehr junge Technologie. Trotz ihrer erst relativ kurz zurückliegenden Markteinführung zeigen sie im Bereich der Gerätebatterien bereits das größte Marktwachstum und beginnen die etablierten Systeme zu verdrängen. Sie werden in Camcordern, Mobiltelefonen und tragbaren Computern eingesetzt. Zukünftige Fahrzeugkonzepte, wie zum Beispiel das Hybridauto, benötigen leistungsfähigere Batterien. Auch hier können Lithium-Batterien in Zukunft eine bedeutende Rolle spielen. Neue Materialien, Nanokomposite und neue Zellkonzepte bieten Entwicklungspotenzial für weitere Verbesserungen und vielfältige Anwendungen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Energiespeicher in Stromversorgungssystemen

Unterrichtseinheit

Der Ausbau erneuerbarer Energien macht gleichzeitig auch die Weiterentwicklung von Speichertechnologien notwendig, da Stromproduktion und Stromnachfrage im Zeitverlauf schwanken. Gerade beim Thema Erneuerbare Energien spielen Speichertechnologien eine bedeutsame Rolle. Denn häufig ist die Menge der Stromproduktion aus Solar- oder Windkraft nicht genau vorhersehbar und entspricht nicht immer der Nachfrage. Speichertechnologien sind aus diesem wichtig, um überschüssigen Strom (beispielsweise bei starkem Wind) zwischenzuspeichern und in Zeiten höherer Nachfrage in das Netz einzuspeisen. Ohne sie erscheint ein weiterer Ausbau Erneuerbarer Energien kaum denkbar. Ziel dieser Unterrichtseinheit ist es, den Schülerinnen und Schülern zu vermitteln, dass der Ausbau erneuerbarer Energien ebenso eine parallele Weiterentwicklung von Möglichkeiten zur Energiespeicherung erfordert. Die Lernenden sollen im Internet verschiedene Speicherformen und ihre Funktionsweise recherchieren und die Ergebnisse dann im Plenum präsentieren. Energiespeicher in Stromversorgungssystemen Der Text des VDE bietet zusammenfassende Informationen zu verschiedenen Formen von Energiespeichern und kann als Ausgangsbasis für die Internetrecherche dienen. Die Schülerinnen und Schüler sollen lernen, dass Stromversorgungssysteme mit einem hohen Anteil an regenerativen Energien wie Solar- oder Windkraft aufgrund des schwankenden Angebots Energiespeicher benötigen. im Internet Informationen zu Energiespeichern recherchieren und dabei verschiedene Energieformen unterscheiden (mechanisch, chemisch). in Partner- oder Gruppenarbeit das Funktionsprinzip einzelner Speichertechnologien genauer erarbeiten. ihre Ergebnisse den Mitschülerinnen und Mitschülern in geeigneter Form präsentieren. Thema Energiespeicher in Stromversorgungssystemen Autor Antje Schmidt Fach Physik, Technik Zielgruppe Klasse 8 bis 10 Zeitraum 2-3 Stunden Technische Voraussetzungen Computer mit Internetzugang (im Idealfall ein Computer für 2 Personen) In einem Stromversorgungsnetz muss die erzeugte Leistung zu jeder Zeit dem Bedarf entsprechen. Insbesondere die meisten erneuerbaren Energien (Wind, Sonne, Laufwasser) sind jedoch nicht gleichmäßig verfügbar. Zudem werden keine Vorräte gebildet, und sie sind in ihrer Intensität im Voraus nicht exakt planbar. Daher stellt sich die Herausforderung, wie mit Schwankungen zwischen Stromangebot und -nachfrage umzugehen ist. Erforderlich sind flexible Lösungen, die kurzfristig Ausgleich schaffen können. Geplant ist der Ausbau erneuerbarer Energien bis 2020 auf bis zu 40 % der gesamten Stromerzeugung. Dies kann bei einem Überangebot (zum Beispiel bei Starkwind) dazu führen, dass thermische Kraftwerke zum Ausgleich gedrosselt oder abgeschaltet werden müssen, da erneuerbare Energien als CO 2 -freie Energiequelle Vorrang haben. Wenn solche thermischen Kraftwerke nur im Teillastbetrieb laufen, erhöhen sich der Verschleiß und die Aufwendungen für Wartung und Instandhaltung. Insgesamt sind dadurch steigende Stromerzeugungskosten zu erwarten. Ideal wäre es daher, Speichermöglichkeiten für Strom aus erneuerbaren Energiequellen zu haben, um den Strom dann abzurufen, wenn er gebraucht wird und Angebotsschwankungen abzufedern. Solche Energiespeicher können einen Überschuss an erzeugter Energie für einige Tage oder Wochen zwischenspeichern. Prinzipiell sind solche Technologien verfügbar, jedoch sind bis zur Marktreife noch hohe Investitionen für Forschung und Entwicklung erforderlich. Im Folgenden werden einige Speichertechnologien vorgestellt. Diese Wasserkraftwerke verbinden zwei Wasserbecken unterschiedlicher Höhe. Ist das Angebot an elektrischer Energie größer als die Nachfrage (in der Regel nachts), kann der Überschuss an Energie genutzt werden, um Wasser aus dem unteren Becken in das obere Becken zu pumpen. Bei Bedarf lässt man das Wasser zurück in das untere Becken fließen und so eine Turbine antreiben. Der mit der Turbine verbundene Motor-Generator kann dann die gespeicherte Energie wieder in Elektrizität wandeln und in das Stromnetz einspeisen. Der Wirkungsgrad liegt derzeit im Bereich 70 bis 80 %, da zum Hochpumpen mehr Energie benötigt wird als beim Herunterfließen des Wassers wieder gewonnen werden kann. Im Vergleich zu anderen Speichertechnologien ist die Leistung deutlich höher und die Generatoren können etwa 4 bis 8 Stunden Strom erzeugen. Pumpspeicher sind jedoch an bestimmte topografische Voraussetzungen gebunden. Abgesehen von den Landschaftseingriffen beim Bau solcher Anlagen sind geeignete Standorte in der Regel zu weit entfernt von Gebieten mit hohem Windpotenzial wie Küstengegenden. Diese auch als CAES-Kraftwerke bezeichneten Energiespeicher (CAES = Compressed Air Energy Storage) arbeiten nach dem Prinzip, ein Luftreservoir in einer unterirdischen Kaverne (meist ein ausgehöhlter Salzstock) zu verdichten. In Spitzenzeiten wird die so gespeicherte Energie zum Antrieb von Gasturbinen genutzt, indem man die komprimierte Luft sich wieder ausdehnen lässt. Eine solche Anlage dient im Wesentlichen zur Netzregelung, da sie zur Abfederung von Spitzenlasten eingesetzt wird. Ein wichtiges Merkmal ist die Fähigkeit, das ein solches Werk schnell gestartet werden kann (innerhalb von Minuten stehen 100 % der Leistung zur Verfügung). Weltweit gibt es derzeit zwei diabate CAES-Anlagen, davon eine in den USA und eine in Deutschland. Die deutsche Anlage in norddeutschen Huntorf hat die Aufgabe, Strom in Schwachlastzeiten vom Kernkraftwerk Unterweser zwischenzuspeichern. Daneben sichert sie die Stromversorgung des Kernkraftwerks im Fall eines Netzzusammenbruchs ab. Druckluftspeicher sind an bestimmte geologische Voraussetzungen gebunden (Salzstöcke), die in Norddeutschland häufig vorkommen. Damit können sie als Speicher für den weiteren Ausbau von Windkraftanlagen in der Nordsee dienen und zukünftig eine größere Bedeutung erlangen. Um elektrische Energie über längere Zeit zu speichern (mehrere Tage bis Wochen), kommen Systeme infrage, die Wasserstoff als Energieträger nutzen. Dazu wird mithilfe von Elektrolyse überschüssige elektrische Energie in Wasserstoff gewandelt, der dann verdichtet und in unterirdischen Kavernen gespeichert werden kann. Somit bieten insbesondere Wasserstoffspeicher die technische Möglichkeit, fluktuierende erneuerbare Energiequellen wie Sonne und Wind bei Bedarf auszugleichen. Aufgrund der höheren Energiedichte kann mit Wasserstoff in Kavernen im Vergleich zu Druckluftspeichern die 60-fache Nutz-Energiemenge gespeichert werden. Wasserstoff-Speichersysteme bieten zwei Vorteile: zum einen eignen sie sich für Szenarien, bei denen die Energie relativ selten, das heißt im Schnitt weniger als einmal pro Woche, benötigt wird. Zum anderen muss der Wasserstoff nicht zwingend in elektrische Energie zurückgewandelt werden, sondern es ist auch eine direkte Nutzung des Wasserstoffs etwa als Fahrzeugantrieb (Brennstoffzellen) oder in der industriellen Produktion denkbar. Grob lassen sich elektrochemische Speicher in zwei Gruppen einteilen: mit internem und mit externem Speicher. Zur ersten Gruppe zählen übliche Batterien für tragbare Geräte wie Laptops, Handys oder MP3-Player. In diesen Systemen wird die Energie dort gespeichert, wo auch die elektrochemische Reaktion stattfindet. Bei Systemen mit externem Speicher kann das Speichermedium getrennt der Reaktionseinheit gelagert werden, beide können unabhängig voneinander dimensioniert werden. Blei-Säure-Akkumulatoren Sie finden derzeit die größte Verwendung. Genutzt werden sie als Starterbatterien in Verbrennungsmotoren, als Traktionsbatterien in Elektrofahrzeugen sowie für die Notstromversorgung. Im Bereich erneuerbare Energien dienen Blei-Säure-Akkumulatoren als Zwischenspeicher für Photovoltaik- oder Windkraftanlagen. Lithium-Ionen-Batterien Schon seit einiger Zeit werden Lithium-Batterien erfolgreich in Laptops und Handys als Energiespeicher genutzt. Ihr Vorteil liegt in einer geringen Selbstentladungsrate und einer hohen Energiedichte. Sie gelten auch als vielversprechend für Elektrofahrzeuge (siehe auch Energiespeicherung im Verkehrssektor). Redox-Flow-Batterien Zur Langzeitspeicherung oder Spannungsregulierung bieten sich Redox-Flow-Batterien an. Da hier das Seichermedium getrennt von der Umwandlungseinheit ist, kann die Energiemenge flexibel dimensioniert werden. In zwei Tanks werden die Flüssigkeiten, bestehend aus in flüssigen Elektrolyten gelösten Salzen, getrennt gelagert. Bei Bedarf werden die Flüssigkeiten mittels Pumpen der zentralen Reaktionseinheit für den Lade- oder Entladeprozess zugeführt. Diese Batterien haben den Vorteil, dass sie sich praktisch nicht entladen und daher sehr lange Energie speichern können. Für die zukünftige Entwicklung des Verkehrssektors werden erneuerbare Energien eine zunehmende Bedeutung haben. Viele Autokonzerne bringen derzeit Elektrofahrzeuge auf den Markt. Man unterscheidet drei Varianten: Hybridfahrzeug (HEV) Diese Fahrzeugart besitzt einen Speicher von etwa 1 kWh und lädt diesen nur während der Fahrt auf. Mithilfe des Elektroantriebs lässt sich eine Einsparung von Kraftstoff von bis zum 20% erzielen. Plug-in Hybrid (PEHV) Hier handelt es sich um ein Kraftfahrzeug mit Hybridantrieb, dessen Elektroantrieb über eine Steckdose geladen werden kann. Der Speicher ist größer als bei einem reinen Hybridfahrzeug und enthält 5 bis 10 kWh. Die Reichweite des Elektromotors beträgt 30 bis 70 km, bei längeren Strecken erfolgt der Antrieb über Kraftstoff wie Benzin, Erdgas oder auch Biokraftstoffe. Elektrofahrzeug (EV) Ein reines Elektrofahrzeug hat derzeit eine Reichweite von 100 bis 300 km bei einem Speicher von 14 bis 40 kWh. Auch hier lässt sich die Batterie über Steckdosen gewöhnlicher Hausanschlüsse laden. Zeiten, in denen das Fahrzeug nicht benötigt wird, zum Beispiel während der Arbeitszeit oder in den Nachtstunden, können zum Aufladen genutzt werden. Als geeignete Speichertechnologie erweist sich dabei vorzugsweise die Lithium-Ionen-Batterie, da sie eine hohe Energiedichte besitzt. Viele der genannten Speichersysteme weisen ein erhebliches Entwicklungspotenzial auf. Teilweise ist noch Forschungs- und Entwicklungsarbeit notwendig, um die erforderliche Marktreife zu erreichen. Insbesondere die Batterieentwicklung als eine Schlüsseltechnologie für Elektrofahrzeuge wird eine große Rolle spielen. Bedeutsam für die Etablierung von Speichersystemen allgemein sind zudem planbare energiewirtschaftliche Rahmenbedingungen, wie sie beispielsweise Anreizsysteme bieten. Parallel zum Einsatz von Energiespeichern ist der Ausbau der Netzkapazitäten erforderlich, um die Menge an erzeugtem Strom durch regenerative Energieträger über lange Distanzen zu übertragen und lokale Netzengpässe zu entspannen. Der Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) hat im Jahr 2008 eine Studie veröffentlicht zum Thema "Energiespeicher in Stromversorgungssystemen". In ausführlicher Form behandelt die Studie die verschiedenen Energiespeicher und ihre Rolle bei der Entkoppelung von Angebot und Bedarf an elektrischer Energie. Interessierte Lehrkräfte können die Studie direkt beim VDE bestellen (250 Euro für Nichtmitglieder): VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V. Stresemannallee 15 60596 Frankfurt am Main service@vde.com

  • Technik / Sache & Technik / Physik / Astronomie / Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Zum Link