• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Minkowski-Diagramme mit Derive

Unterrichtseinheit

Dieser Artikel beschreibt, wie der rechnerische und zeichnerische Aufwand für die Erstellung und Interpretation von Minkowski-Diagrammen im Physikunterricht mithilfe des „Rechen- und Zeichenknechtes Computer“ reduziert, somit der inhaltlichen Diskussion mehr Zeit gewidmet und der Umgang mit einem CAS geübt werden kann.Will man Aufgaben zur Relativitätstheorie mithilfe des Minkowski-Diagramms zeichnerisch bearbeiten, so müssen Parallelen gezeichnet und deren Schnittpunkte mit Achsen oder anderen Geraden bestimmt werden. Je nach Sorgfalt sind die damit erzielten Werte brauchbar oder kaum brauchbar. Eine rechnerische Kontrolle ist auf jeden Fall angebracht. Warum überträgt man dann die Arbeit nicht gleich dem Computer?! Die Genauigkeit seiner Zeichnungen ist kalkulierbar, für die rechnerische Kontrolle der Ergebnisse steht er ebenfalls zur Verfügung und gleichzeitig lernen die Schülerinnen und Schüler ihre anderweitig erworbenen mathematischen Kenntnisse oder auch den Umgang mit entsprechender Mathematiksoftware anzuwenden. Ein geeignetes Werkzeug kann zum Beispiel ein Computeralgebrasysteme wie Derive sein.Die hier beschriebene Unterrichtseinheit setzt voraus, dass der Unterricht zur Relativitätstheorie bereits bis hin zu den Minkowski-Diagrammen gediehen ist. Auch eine zeichnerische Umsetzung ist schon durchgeführt worden, so dass die ersten Teile der Unterrichtseinheit aus physikalischer Sicht eine Wiederholung sind. Es wird nicht vorausgesetzt, dass die Schülerinnen und Schüler reichlich Übung im Umgang mit dem Computeralgebrasystem (CAS) Derive haben, obwohl dies nicht schaden könnte. Lehrkräften, die im Umgang mit Derive noch nicht so geübt sind, wird die Erstellung von Minkowski-Diagrammen mithilfe einer Anleitung im PDF-Format Schritt für Schritt erläutert. Die an die Schülerinnen und Schüler gestellten Anforderungen sind auch von einem Grundkurs zu bewältigen. Wenn man den letzten Teil der Unterrichtseinheit mit der Behandlung der Erhaltungssätze sehr ausführlich behandeln möchte, dann benötigt man zu den in der Kurzinformation angegebenen 10-12 Stunden noch etwa vier zusätzliche Unterrichtstunden. Vorgeschlagen wird eine Mischung aus lehrerzentriertem, fragend-entwickelndem und schülerzentriertem Unterricht. Vorschlag für den Unterrichtsverlauf (Teil 1) Typische Probleme der Speziellen Relativitätstheorie (Stunde 1 bis 8) Vorschlag für den Unterrichtsverlauf (Teil 2) Betrachtung der Erhaltungssätze für Impuls und Energie (Stunde 9 und 10 beziehungsweise 9 bis 12) Die Schülerinnen und Schüler sollen das Computeralgebrasystem Derive als universelles mathematisches Werkzeug kennen lernen. mit Derive eine Anleitung für die Erzeugung von Minkowski-Diagrammen entwickeln. Aufgaben aus der Relativitätstheorie sowohl grafisch als auch rechnerisch mit Derive lösen können. die Bedeutung von Minkowski-Diagrammen erkennen. erkennen, dass die Erhaltungssätze der Mechanik in der Relativitätstheorie eine neue Bedeutung bekommen. Thema Minkowski-Diagramme mit Derive Autor Rainer Wonisch Fach Physik Zielgruppe Jahrgangstufe 12 oder 13, Grund- oder Leistungskurs Zeitraum 10-12 Stunden Technische Voraussetzungen Computer mit Beamer (Lehrerdemonstration), Rechner in aus reichender Anzahl für Partner- oder Gruppenarbeit Software Derive Sie erklären am Lehrercomputer (Demonstration per Beamer) die Schritte zur Erzeugung eines Minkowski-Diagramms mit t' - und x' -Achse, aber ohne deren Einteilung. Ich schlage den Wert 0,5 c für die Relativgeschwindigkeit vor, da das Diagramm dabei relativ übersichtlich bleibt. Sie blenden den Beamer aus und fordern die Schülerinnen und Schüler auf, ein solches Diagramm selbst zu erzeugen. Falls es unbedingt nötig ist, geben Sie Hilfestellungen. Ansonsten lassen Sie die Jugendlichen sich selbst helfen. Sie wiederholen zusammen mit den Schülerinnen und Schülern die Erstellung der Achseneinteilung für die t' -Achse. Bei der Umsetzung in die Sprache von Derive geben Sie eine mögliche Lösung an, falls die Schülerinnen und Schüler nicht durch die Erfahrungen aus dem Mathematikunterricht selbst einen brauchbaren Vorschlag machen. Die Jugendlichen erhalten den Auftrag, die Rasterpunkte für die t' -Achse und außerdem für die x' -Achse einzuzeichnen. Wenn alle fertig sind, lassen Sie eine Schülerin oder einen Schüler aus einer Arbeitsgruppe den Lösungsweg seiner Gruppe am Lehrercomputer (Demonstration per Beamer) erklären. Geben Sie den Auftrag, die Gitterlinien für das x-t -System einzuzeichnen. Warten Sie, bis sich der Lösungsweg herumgesprochen hat. Geben Sie den Auftrag, die Gitterlinien für das x'-t' -System einzuzeichnen. Diesmal werden Sie wahrscheinlich nicht warten können, bis sich der Lösungsweg herumgesprochen hat. Helfen Sie bei den Gruppen, deren Ideen am weitesten fortgeschritten sind, und benutzen Sie die Mitglieder dieser Gruppen dann als Multiplikatoren. Sie stellen folgende Aufgabe (siehe auch minkowski_derive_einfuehrung.pdf ): Gegeben seien zwei Inertialsysteme S und S'. S' bewegt sich gegenüber S mit der Geschwindigkeit v = 0,5 c. Aufgabe 1.1 Im System S sind verschiedene Ereignisse gegeben. A (3Ls/1s); B (3Ls/2s); C (3Ls/3s) Bestimme für die Ereignisse A, B, C die Ereigniskoordinaten im System S' zeichnerisch mithilfe eines Minkowski-Diagramms. Beschreibe Deine Vorgehensweise. Während der jetzt folgenden intensiven Diskussionen unter den Schülerinnen und Schülern "verraten" Sie einer Gruppe, dass ein Schieberegler eingesetzt werden kann. Dann warten Sie ab, ob sich diese Möglichkeit herumspricht. Wenn die Jugendlichen diese Möglichkeit schon kennen, wird es etwas weniger spannend sein. Zum Abschluss lassen Sie die verschiedenen Ansätze vortragen. Sie stellen folgende Aufgabe (siehe minkowski_derive_einfuehrung.pdf ): Aufgabe 1.2 Im System S' bewegt sich ein Körper mit der Geschwindigkeit u' = 0,5 c. Wie groß ist seine Geschwindigkeit u im System S? (zeichnerische Lösung) Wenn genügend Lösungen vorhanden sind, lassen Sie eine Gruppe ihre Vorgehensweise erklären. Sie stellen, je nach Situation, entweder für zu Hause oder für den Unterricht die Aufgabe, die wesentlichen Schritte für die Erstellung eines Minkowski-Diagramms mit Derive als Arbeitsanweisung zusammenzustellen. (Ein mögliches Ergebnis finden Sie unter Punkt 10: minkowski_diagramm.dfw beziehungsweise minkowski_derive.pdf ) Sie stellen nun die folgende Aufgabe: Aufgabe 2 Ein Raumschiff mit v = 0,8 c sendet (aus seiner Sicht) jede Sekunde ein Funksignal aus. In welchem zeitlichen Abstand werden diese Signale im System S registriert? Kläre diese Frage zeichnerisch mithilfe eines Minkowski-Diagramms und zusätzlich rechnerisch. Ein allgemeines Aufstöhnen wird die Antwort sein, da Sie in gemeiner Weise eine andere Relativgeschwindigkeit gewählt haben. Sichten Sie gemeinsam mit den Schülerinnen und Schülern die bei Schritt 9 erstellten Arbeitsanweisungen und verallgemeinern Sie die beste Anweisungsfolge so, dass man mit ihrer Hilfe für jeden Wert von v mit einigen Mausklicks das gewünschte Minkowski-Diagramm erzeugen kann. Eine mögliche Lösung für die Anweisungsfolge mit Kommentaren finden Sie in der Derive-Datei minkowski_diagramm.dfw . Für die Bearbeitung von Aufgabe 2 stellen Sie im Derive-Ausdruck #2 die richtige Geschwindigkeit ein und erzeugen dann mithilfe der Derive-Anweisungen das entsprechende Minkowski-Diagramm. Die Datei kann dann, unter neuem Namen gespeichert, für die weitere Bearbeitung fortgesetzt werden. Für die grafische Lösung von Aufgabe 2 müssen wegen der Unabhängigkeit der Lichtgeschwindigkeit vom Bezugssystem Parallelen zu t = -x durch mindestens zwei Rasterpunkte auf der t' - oder der x' -Achse gezeichnet werden. Die Differenz der Schnittwerte mit der t -Achse ist der gesuchte Zeitunterschied. Die Schülerinnen und Schüler werden vermutlich konkrete Zahlenwerte für die Punkte auf der t' -Achse benutzen. Man kann aber auch allgemein mit den Komponenten der Punkte P arbeiten. Wie man auf die Komponenten eines Vektors zugreifen kann, erläutert der folgende Auszug aus der Derive-Hilfe: "Mit dem Infixoperator SUB kann man ein Element aus einem Vektor oder einer Matrix herausgreifen. Wenn v ein Vektor ist, liefert v SUB n das n-te Element von v. Als Alternative zum Schreiben von SUB in der Eingabezeile, kann dieser Operator durch einen Klick auf das Abwärts-Pfeil-Zeichen auf der Mathematik-Symbolleiste eingegeben werden. Im Algebra-Fenster werden tiefer gestellte Indizes in der Standard-Index-Notation angezeigt. Zum Beispiel wird [a, b, c, d] SUB 2 angezeigt als und weiter vereinfacht zu b." Das Aufstellen der Geradengleichung in Punkt-Richtungs-Form ist der eleganteste Weg. Wenn die Jugendlichen diese Form nicht kennen oder verdrängt haben, müssen Sie einen kurzen mathematischen Einschub machen. Daraus ergibt sich ein Signalabstand von 3 Sekunden. Rechnerisch erhält man die Werte für t , in dem man für x den Wert 0 einsetzt. Entweder für ein Beispiel: oder für eine Folge von Werten: Benutzt wurde in beiden Fällen die Substitution für eine Variable. Sie erreichen diese Möglichkeit über Vereinfachen > Variablen-Substitution . Aufgabe 3 Sie stellen nun die folgende Aufgabe: Gegeben seien die beiden Inertialsysteme S und S' mit der Relativgeschwindigkeit v. Im System S' wird das folgende Experiment durchgeführt: Zwei Körper gleicher Masse bewegen sich mit gleichem Betrag der Geschwindigkeiten aufeinander zu. Zum Zeitpunkt t' = 2 s treffen sie sich völlig unelastisch an der Stelle x' = 0, so dass sie vereint liegen bleiben. Es sei Formuliere für diesen Vorgang den Impulserhaltungssatz im System S'. Formuliere für diesen Vorgang den Impulserhaltungssatz im System S. Versuche auch eine zeichnerische Lösung. Die Schülerinnen und Schüler werden sofort fragen, welchen Wert sie für die Relativgeschwindigkeit v benutzen sollen. Stellen Sie es ihnen einfach frei. Für Ihre eigene Bearbeitung schlage ich v = 0,6 c vor. Es ergibt sich also u' sub~1~~ = 0,6 c ; u' sub~2~~ = 0,6 c . Die Weltlinien beider Körper im System t'-x' werden bis zum Zusammentreffen gezeichnet. Mithilfe der Musteranweisungsfolge (siehe Derive-Datei minkowski_diagramm.dfw ) kann man das entsprechende Minkowski-Diagramm zeichnen. Endpunkt für die beiden Weltlinien soll der Punkt (0,2) auf der t' -Achse sein: Zwei Sekunden vorher war der sich in +x' -Richtung bewegende Körper an einer um 2Ls 0.6 in Richtung der -x' -Achse liegendem Ort gewesen. #14 und mit konkreten Werten #15 beschreiben Ausgangspunkt und Endpunkt im Minkowski-Diagramm: Für den sich in -x' -Richtung bewenden Körper gelten analog die beiden folgenden Ausdrücke: Auch wenn die Schülerinnen und Schüler ohne Ihre Hilfe dieses Ergebnis erzielt haben, werden sie misstrauisch sein, ob es überhaupt richtig sein kann. Dazu sieht es zu ungewohnt aus. Falls Sie es nicht von vorn herein schon gemacht haben sollten, dann führen Sie den Versuch auf einer Fahrbahn (am besten einer Luftkissenbahn) vor und bitten die Jugendlichen, für beide Körper das s-t -Diagramm zu zeichnen. Und zwar in der Form, in der sie früher solche Diagramme gezeichnet haben und zusätzlich mit vertauschten Achsen, wie bei den Minkowski-Diagrammen. Danach wird man den Ergebnissen nicht mehr ganz so misstrauisch gegenüber stehen. Die Geschwindigkeit der beiden Körper im System S kann aus den von Derive berechneten Werten der Anfangs- und Endpunkte der beiden Weltlinien bestimmt werden. Die folgenden Derive-Ausdrücke liefern das Ergebnis: Daraus ergeben sich die Geschwindigkeiten: Für die Geschwindigkeiten im System S' gilt laut Voraussetzungen der Aufgabe Formulierung des Impulssatzes für das System S': Daraus ergibt sich da die beiden Massen auf jeden Fall gleich sind. Formulierung des Impulssatzes für das System S: Setzt man die Zahlen des Beispieles ein, so erhält man: Diese Aussage ist offensichtlich falsch. Fragen Sie die Schülerinnen und Schüler nach Erklärungshypothesen. Mögliche Hypothesen sind: Die berechneten Werte für u sub~1~~ und u sub~2~~ sind falsch. Bei hohen Geschwindigkeiten bleibt die Masse nicht konstant. Der Impulssatz gilt nicht bei hohen Geschwindigkeiten. Alle diese Hypothesen führen zu einer intensiven, weiterführenden Betrachtung: Die erste lässt sich durch Anwendung der Additionsformel für relativistische Geschwindigkeiten kontrollieren. Die zweite Hypothese beruht auf Kenntnissen der Schülerinnen und Schüler, die sie populärwissenschaftlichen Zeitschriften oder Fernsehsendungen entnommen haben. Die dritte Hypothese lässt sich mithilfe der Überlegungen zu Hypothese 2 kontrollieren. Untersuchung von Hypothese 1 Für die Untersuchung der ersten Hypothese erscheint folgende mehrgleisige Vorgehensweise sinnvoll: Die Additionsformel für relativistische Geschwindigkeiten wird gemeinsam im Unterricht aus der Verallgemeinerung des Beispieles der Aufgabe 1.2 hergeleitet. Eine alternative Herleitung aus den Lorentztransformationen wird als Kurzreferat vergeben. Zur Herleitung mithilfe von Derive können Sie die für Aufgabe 1 erstellte Derive-Datei weiter benutzen. Öffnen Sie die Datei und gehen dann wie folgt vor. Zuerst heben Sie die Festlegungen für u' und v auf: Wir wählen wieder t' = 2 s. Man erhält die Weltlinie des sich mit u' bewegenden Körpers durch vektorielle Addition der Weltlinie des Systems t'-x' von 0 bis 2 s und einer Parallelen zur x' -Achse, deren Länge durch die Geschwindigkeit u' bestimmt ist. Bestimmung des Rasterpunktes auf der t'-Achse: Der Ortsvektor zum entsprechenden Punkt auf der x' -Achse muss auf die richtige Länge gebracht werden: Die beiden Ortsvektoren werden addiert: Die Geschwindigkeit u erhält man, indem man die erste Komponente des Vektors ( x -Wert) durch die zweite Komponente ( t -Wert) dividiert: Vereinfacht man diesen Ausdruck, so erhält man die Additionsformel für relativistische Geschwindigkeiten: In Nicht-Derive-Schreibweise erhält man die bekannte Formel: Nachdem auch das Kurzreferat gehalten wurde, kann man mit der Formel die Ergebnisse für u sub~1~~ und u sub~2~~ bestätigen. Damit ist Hypothese 1 zu verwerfen. Untersuchung von Hypothese 2 Zur Überprüfung der zweiten Hypothese lassen Sie die Schülerinnen und Schüler die folgende Internetseite studieren. Dort findet sich eine Bestätigung der Hypothese mit: Untersuchung von Hypothese 3 Verbleibt noch die dritte Hypothese. Lassen Sie die Jugendlichen die Impulse vor und nach dem Stoß unter Berücksichtigung der obigen Formel berechnen. Mit Derive könnte das folgendermaßen aussehen: Offensichtlich stimmt hier irgendetwas nicht. Entweder ist die Rechnung falsch oder der Impulssatz gilt nicht oder er kann so nicht angewendet werden. Wenn Sie kein Buch für die Schülerinnen und Schüler haben, das dieses Problem zu lösen hilft, dann lassen Sie die folgende Seite aus dem Internet bearbeiten. Sie ist sehr übersichtlich und verwendet das auch hier eingesetzte Beispiel. Die Darstellung ist zwar etwas allgemeiner aber dennoch gut verständlich. Zur Kontrolle des Verständnisses kann man dann die Rechung auf das hier vorgestellte Zahlenbeispiel anwenden. Relativistische Energie und Ruheenergie Infos auf der Website des Zentralen Informatikdienstes (Außenstelle Physik) der Uni Wien.

  • Astronomie / Physik
  • Sekundarstufe II

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Zeit und Relativitätstheorie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Themenkomplex Zeit und Relativitätstheorie (allgemeine und spezielle Relativitätstheorie). Wissenschaftliche Ergebnisse und Methoden können eine hohe Motivationskraft in sich tragen. Die in diesem Beitrag vorgeschlagenen Kontexte sind virtuelle Realitäten, generiert mit in der Astrophysik gebräuchlichen Visualisierungsmethoden. Ihr didaktischer Zweck in der Einstiegsphase besteht darin, Vorerfahrungen bei relativistischen Effekten zu schaffen, die das normale, klassisch geprägte Vorstellungsvermögen übersteigen. Das zentrale Problem bei solchen Visualisierungsmethoden ist die Darstellung dreidimensionaler Objekte auf einer zweidimensionalen Projektionsebene, die man sich als Filmleinwand oder Kamerabild vorstellen kann. Beim so genannten relativistischen Rendering werden Bilder schnell bewegter Objekte mit einer ruhenden Kamera beziehungsweise ruhende Objekte mit einer schnell bewegten Kamera aufgenommen. Wie relativistische, das heißt schnell bewegte, Objekte dem Betrachter erscheinen, kann gemäß den Gesetzen der Speziellen Relativitätstheorie berechnet werden. Neben der Längenkontraktion sind die endliche Laufzeit von Lichtsignalen und die Lichtaberration zwei Effekte, die die Geometrie solcher Abbildungen bestimmen. Schülerzentrierte Unterrichtsmethoden und kooperative Arbeitsformen Die Schülerinnen und Schüler sollen einige geometrische Effekte bei verschiedenen Fluggeschwindigkeiten der Kamera durch das Brandenburger Tor erkennen und in dieser Phase nur ansatzweise miteinander vergleichen - vorzugsweise als vorbereitende Hausaufgabe in Partner- oder Gruppenarbeit. Als Grundlage dienen das Arbeitsblatt (lorentz_modul_1_ab.pdf) sowie MPEG-Filme, die den Schülerinnen und Schülern für die Hausarbeit, zum Beispiel über den Dateiaustausch eines virtuellen Klassenraums von lo-net, dem Lehrer-Online-Netzwerk, zur Verfügung gestellt werden können. Neben dem "klassischen" Arbeitsblatt steht auch ein Online-Arbeitsblatt mit aktiven Links auf die Filme zur Verfügung. Filmsequenzen Die folgenden Abbildungen zeigen jeweils ein Einzelbild der Simulationsflüge mit unterschiedlichen Geschwindigkeiten der Kamera durch das stilisierte Brandenburger Tor. Zu jeder Geschwindigkeit steht ein komprimierter MPEG-Film zur Verfügung. Auf Details zu den Filmen werden wir zu einem späteren Zeitpunkt eingehen (siehe Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Bei der Besprechung der Hausaufgabe wird unter anderem folgender Problemfragenkomplex entwickelt: Problemfrage 1.1 Warum sehen schnell bewegte Körper so aus wie in den Computersimulationen? Problemfrage 1.2 Welche Aussagen macht die Newtonsche Mechanik zu diesem Problem? Dieses Modul behandelt Standardstoff des Physikunterrichts. In der Diskussion der virtuellen Realitäten werden Szenen aus dem Alltag angesprochen, die physikalisch eine verwandte Problemstellung enthalten, wie zum Beispiel Koffer auf einem Rollband oder das Ablesen einer Hinweistafel von einem sich bewegenden Laufband aus, zum Beispiel im Flughafen. Zwischen bewegtem Objekt und bewegtem Beobachter (fliegender Kamera) wird differenziert. Ausgehend von der Fragestellung des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird folgende Problemfrage entwickelt: Wie kann die Bewegung beziehungsweise die Bahn eines sich mit konstanter Geschwindigkeit bewegenden Objektes bezüglich eines Koordinatensystems beschrieben werden? Als Lernvoraussetzung ist der Begriff des Inertialsystems notwendig. Ebenso das Relativitätsprinzip Galileis: Alle Inertialsysteme sind (bezüglich der Gesetze der Mechanik) gleichwertig. Als Zusatz kann Newtons Relativitätsprinzip angesprochen werden: "The motion of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line." Der Begriff der Gleichwertigkeit kann, je nach Vertiefungsabsicht, verschieden gefasst werden. Von Gleichwertigkeit sprechen wir, wenn grundlegende physikalische Gesetze in allen Inertialsystemen gleichermaßen gelten oder später formal mathematisch vertieft: Gesetze unter den Transformationen sind, die von einem Inertialsystem zu einem anderen Inertialsystem führen. Im Hinblick auf die spätere Ableitung der Lorentztransformation wird ein Ereignis in zwei Inertialsystemen beschrieben und die Galileitransformation als vermittelnde Abbildung eingeführt (Abb. 8, Platzhalter bitte anklicken). Die Grafik zeigt zwei Inertialsysteme S und S', die gegeneinander mit der Geschwindigkeit V bewegt sind. Der Punkt P = P(x, y, z) = P(x', y', z') bezeichnet ein Ereignis zur Zeit t . Mit x, y, z, t werde ein Ereignis im Inertialsystem S charakterisiert; das gleiche Ereignis werde in einem anderen Inertialsystem S' durch die Koordinaten x', y', z', t' beschrieben. V beschreibt die Relativgeschwindigkeit zwischen S und S'. In diesem Fall bewegt sich das System S' mit der Geschwindigkeit bezüglich System S in die positive Richtung der gemeinsamen x -Achsen. Keine Mathematisierung der Sachverhalte In diesem Abschnitt sollen die Schülerinnen und Schüler einen ersten Einblick in Laufzeiteffekte bei Beobachtungen von schnell bewegten Objekten erhalten. Da noch keine relativistischen Werkzeuge zur Verfügung stehen, wird rein klassisch argumentiert. Auf eine Mathematisierung der Sachverhalte wird in diesem Stadium weitgehend verzichtet. Die Arbeit mit den interaktiven Materialien (Online-Arbeitsblätter, Java-Applets) ermöglicht den Schülerinnen und Schülern eigene Beobachtungen. Verzicht auf Visualisierung inkorrekter klassischer Effekte Sowohl die in Modul 1. Einstieg in das Thema verwendeten Computerfilme als auch die für diesen Abschnitt empfohlenen Java-Applets zeigen die relativistische (zumindest geometrische) Realität. Es wird bewusst davon Abstand genommen, die Effekte der Newtonschen Mechanik bei hohen Geschwindigkeiten zu visualisieren, obwohl auch dazu Java-Applets existieren. Dies hat mehrere Gründe: Sowohl Retardierung als auch Aberration (Erläuterung der Begriffe siehe weiter unten) treten im klassischen und im relativistischen Fall auf, wenn auch mit unterschiedlicher Intensität. Bei einer Konstellation von ruhendem Objekt und nahezu darauf zu fliegender Kamera sind klassische und relativistische Laufzeiteffekte bis nahe an die Lichtgeschwindigkeit aufgrund der perspektivischen Darstellung trotz Lorentzkontraktion kaum zu unterscheiden, wenn man von der Bildgröße bei gleicher Kameraposition absieht. Die Größe des Bildes ist nicht nur abhängig vom momentanen Standort der Kamera, sondern auch von deren Geschwindigkeit und damit von der Lorentzkontraktion der Bildweite. Die Untersuchung der letzteren wird Gegenstand von Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes sein. Im relativistischen Fall sind die Beobachtungen für die Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" identisch. Insbesondere wenn die Unterrichtseinheit auf Level 1 absolviert werden soll, schaffen zusätzliche klassische Varianten virtueller Realitäten (un-)vermeidbare Verwirrung, da dann auch andere Anflug- beziehungsweise Vorbeiflugwinkel notwendig werden. Dies geht zu Lasten eines zügigen Fortschritts in Richtung der Ableitung der speziellen Lorentztransformation (Modul 5. Ableitung der speziellen Lorentztransformation ). Die einzelnen Untermodule des Moduls 3 "Messen versus Beobachten" behandeln die folgenden Themen: Grundlagen zu Messen und Beobachten, Zentralperspektive, klassische Retardierung Frontaler Anflug auf ein Objekt, klassische Retardierung Seitlicher Vorbeiflug an einem Objekt, Aberration Für den hier präsentierten schnellen Weg zur algebraischen Herleitung der Lorentztransformation ist es nicht notwendig, zuvor einen Überblick über Längen- und Zeitmessverfahren zu geben. Allerdings ist zu empfehlen, diese Problematik später bei der Diskussion der Längenkontraktion aufzugreifen (im Anschluss an Modul 6.3 Längenkontraktion ). Eine Diskussion von Retardierungseffekten, das heißt Effekten, die auf der endlichen Laufzeit des Lichtes beruhen, ist allerdings unumgänglich, da diese infolge der Kameraposition beim Durchflug des Brandenburger Tores den Hauptbeitrag zu den beobachtbaren Formänderungen leisten. Retardierungseffekte treten immer auf, sowohl bei klassischer als auch bei relativistischer Betrachtung. Im klassischen Fall ist ihre Ausprägung davon abhängig, ob sich die Kamera oder das Objekt bewegt. Im relativistischen Fall gilt dies nicht, da die Form der Lorentztransformation genau dies als Folge von Einsteins zweitem Postulat (Konstanz der Lichtgeschwindigkeit, siehe auch Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) "verhindert". Ausgehend von den virtuellen Realitäten des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird die scheinbare Formänderung des Brandenburger Tores als Funktion der Fluggeschwindigkeit und der Position der Kamera ins Bewusstsein gehoben. Daraus ergibt sich unter anderem die Frage nach der genauen Form und Größe des ruhenden Tores. Nach deren mehr oder weniger intensiven Behandlung - je nach angestrebtem Level - wird die Beobachtung eines den Gesetzen der klassischen Mechanik unterworfenen bewegten Objektes in das Zentrum des Interesses gerückt. Problemfrage 3.1.1 Welche Informationen können über die exakte Geometrie des Tores und der Kamera aus der perspektivischen Ansicht gewonnen werden, wenn die Kamera ruht oder sich mit geringer Geschwindigkeit ( V = 0,01 c ) bewegt? Problemfrage 3.1.2 Wie sieht ein Beobachter beziehungsweise eine Kamera ein fernes und relativ einfach geformtes Objekt, wie zum Beispiel einen Würfel? Messen und Beobachten Als Lernvoraussetzung ist die Kenntnis des Messvorganges als Vergleich mit einem Eichnormal notwendig. Es wird geklärt, dass Messen und Beobachten unterschiedlich sind: Von (Ab-)Messen sprechen wir, wenn die Koordinaten der Randpunkte eines Objektes, also im Prinzip dessen Umriss, gleichzeitig bestimmt werden. Von Beobachten sprechen wir, wenn wir ein Abbild eines Objektes betrachten, wie zum Beispiel ein Netzhautbild oder einen Kamerafilm. Dabei werden die Bildpunkte von Lichtstrahlen erzeugt, die gleichzeitig auf der Netzhaut oder dem Film eintreffen. Lösung von Problemfrage 3.1.1 Es wird mitgeteilt, dass die Tordurchflüge im Prinzip mit einer Lochkamera aufgenommen worden sind. Die Abbildungsgesetze der Lochkamera werden von den Schülerinnen und Schülern selbstständig memoriert und zur Ausmessung einiger Bilder in dem folgenden Online-Arbeitsblatt benutzt: Online-Arbeitsblatt Die Schülerinnen und Schüler werten Bilder der Simulationsflüge durch das Brandenburger Tor mit einem interaktivem Messtool aus. Das Messtool funktioniert nicht im Internetexplorer, bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Lösung von Problemfrage 3.1.2 Aus den Überlegungen zum Problemkreis Messen wird gefolgert: Es gibt zwei Arten, die Position eines Objektes zu beschreiben. Die momentane Position der Oberfläche eines Objektes zum Zeitpunkt t sowie die retardierte Position, bei der die endliche Ausbreitungsgeschwindigkeit des Lichtes vom Objekt zum Beobachter mit zu berücksichtigen ist. Anschließend wird ein Würfel betrachtet, der mit der Geschwindigkeit V an einer Kamera vorbei fliegt, wobei eine Momentaufnahme gemacht werden soll. Dabei werden alle Lichtstrahlen erfasst, die gleichzeitig bei der Kamera eintreffen. Die dabei angestellten Betrachtungen sind auf dem Informationsblatt (lorentz_modul_3_1_info.pdf) zusammengefasst. Dieses Beispiel kann vertieft werden. Im klassischen Fall besitzt das Licht die Geschwindigkeit c nur im stationären Bezugssystem des Beobachters. Aufgrund des Galileischen Relativitätsprinzips besitzt von einem Objekt ausgehendes Licht unterschiedliche Geschwindigkeiten, zum Beispiel c + V in Bewegungsrichtung und c - V in der entgegen gesetzten Richtung. Das hier vorgestellte Beispiel sollte nach Einführung der Lorentzkontraktion unter relativistischen Gesichtspunkten erneut aufgegriffen werden (frühestens im Anschluss an Modul 6.3 Längenkontraktion ). Der Trick der unendlich weit entfernten Kamera in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung hat Wesentliches verborgen beziehungsweise nicht geklärt. Die dem Beobachter beim Vorbeiflug zugewandte Seite des Würfels ist unverzerrt als ebene Fläche abgebildet worden. Dies ist bei endlichem Kameraabstand falsch, da streng genommen alle Punkte des Objektes unterschiedlich weit von der Blende der Kamera entfernt sind. Die unten verlinkten Applets rechnen relativistisch. Bei einem Anflug auf ein Objekt sind klassische und relativistische Rechnung aufgrund der Perspektive kaum zu unterscheiden. Der relativistische Fall ist bezüglich der Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" nicht unterscheidbar, das heißt ein Applet beschreibt beide Fälle, da kein gekachelter Boden als Referenz vorhanden ist. Die im Einstieg beobachtete Wölbung horizontaler und vertikaler Kanten beziehungsweise die Verbiegung von Flächen ist ein Rätsel geblieben. Um das Problem zu akzentuieren, können statt des Brandenburger Tores Java-Applets von einfachen Drahtgittermodellen betrachtet werden. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Erklärung der Randwölbungen in den Raum. Es wird vorgeschlagen den Effekt der endlichen Lichtlaufzeit nur bei einem Stab zu besprechen, der sich gemäß der klassischen Mechanik mit seiner Breitseite auf eine Kamera zu bewegt, die sich mittig vor ihm befindet. Es genügt, die Diskussion auf die Stabenden zu beschränken. Von jedem Punkt der sichtbaren Stabseite fällt ein Lichtstrahl in die Kamera. Licht von der Stabmitte muss den kürzesten Weg und von den Stabenden den längsten Weg zurücklegen. Aufgrund der endlichen Lichtgeschwindigkeit, im klassischen Fall V + c (beziehungsweise im relativistischen Fall c ), muss Licht, das zum gleichen Zeitpunkt bei der Kamera eintrifft, zu unterschiedlichen Zeitpunkten ausgesandt worden sein, wenn sein Weg unterschiedlich lang ist. Die Überlegung verläuft völlig analog zu den Überlegungen des Beispiels in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , wo der Effekt der klassischen Retardierung bei einem vorbei fliegenden Würfel betrachtet worden ist. Punkte mit zunehmendem Abstand von der Stabmitte werden dem Betrachter daher weiter entfernt erscheinen, was insgesamt den Eindruck einer Stabwölbung erzeugt. Damit ist auch geklärt, weshalb die Stärke der Wölbung geschwindigkeits- und abstandsabhängig sein muss. Drahtrahmen Java-Applet zum frontalen Anflug auf einen quadratischen Rahmen (relativistisch). Zwei Linien Java-Applet zum frontalen Anflug auf zwei horizontale Linien (relativistisch). Gitter aus 9 Punkten Java-Applet zum frontalen Anflug auf ein Gitter aus neun Punkten (relativistisch). Die Rückseite des Brandenburger Tores ist grün eingefärbt. Obwohl die fliegende Kamera einen Öffnungswinkel von 60 Grad in horizontaler Richtung und 51,33 Grad in vertikaler Richtung besitzt, wird die grüne Rückseite der Pfeiler beim Durchflug mit hohen Geschwindigkeiten sichtbar (Abb. 9, Platzhalter bitte anklicken). Um den Einfluss von Retardierung und Aberration zu verdeutlichen, können Java-Applets mit Drahtgittermodellen eingesetzt werden. Unter Aberration versteht man den Effekt, dass zwei unterschiedlich schnell bewegte Beobachter ein und dasselbe Objekt nicht an seinem realen Ort wahrnehmen, sondern an zwei verschiedenen scheinbaren Orten, deren Lage von der jeweiligen Geschwindigkeit des Beobachters abhängt. Aberration tritt sowohl bei klassischer als auch relativistischer Rechnung auf. Ein Analogmodell dafür stellt zum Beispiel "Schnürlregen" dar. Wenn man im Regen steht, kommen die Tropfen bei Windstille genau senkrecht von oben. Fährt man jedoch mit dem Fahrrad im Regen, so scheinen die Tropfen von schräg vorne zu kommen, wobei der Winkel von der eigenen Geschwindigkeit abhängt. Erklärbar ist der Effekt dadurch, dass ein Objekt einer vorbei fliegenden Kamera Lichtstrahlen hinterher sendet, die die Flugbahn der Kamera kurz vor deren Blende schneiden und dann auf dem sich nähernden Kamerafilm auftreffen. Die Formel für den Aberrationswinkel wird hier weder angesprochen noch abgeleitet. Weitere allgemeine Informationen zum Thema Aberration finden Sie hier: Die bereits im Einstieg (Modul 1. Einstieg in das Thema ) beobachtete Sichtbarkeit der grünen Rückseite des Brandenburger Tores ist bisher nicht geklärt. Um das Problem zu vereinfachen, können statt des Tores einfache Drahtgittermodelle betrachtet werden. Die Visualisierung geschieht wiederum mithilfe von Java-Applets. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Sichtbarkeit der Rückseite eines Objektes in den Raum. Die folgenden Java-Applets verdeutlichen sowohl die bereits bekannte Retardierung als auch die Aberration. Letztere wird aus Gründen der Elementarisierung im klassischen Fall nur im Ruhesystem des Drahtrahmens qualitativ erklärt. Eine Lochkamera bewegt sich mit hoher Geschwindigkeit. Bestimmte Lichtstrahlen, die von der Rückseite des Drahtrahmens in Richtung der wegfliegenden Kamera ausgesandt werden und die Flugbahn vor der Kamera schneiden, werden durch die bewegte Blende dringen und dann vom Film "eingefangen". Eine Herleitung der Aberrationsformel erfordert eine genaue Berechnung des Auftreffpunktes des Lichtstrahls auf der Bildebene und kann in Level 3 frühestens im Anschluss an Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes in Angriff genommen werden. Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an einem Quadrat (relativistisch). Zwei Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an zwei Quadraten (relativistisch). Es ist üblich, der Begründung von Einsteins zweitem Postulat zur Konstanz der Lichtgeschwindigkeit im Unterricht einen Abschnitt über die verschiedenen historischen Methoden zur Bestimmung der Lichtgeschwindigkeit voranzustellen (siehe Links und Literatur ), woraus das Postulat als Konsequenz von Messungen gefolgert wird. Diese saubere physikalische Fundierung ist allerdings an dieser Stelle der Unterrichtseinheit nicht zwingend notwendig, weshalb eine Alternative vorgeschlagen wird. Einstein schreibt selbst in seiner Biografie (Albert Einstein, Autobiographisches, 1946): "Nach zehn Jahren Nachdenkens fand ich ein Prinzip, auf das ich schon mit 16 Jahren gestoßen bin. Wenn ich einem Lichtstrahl mit Lichtgeschwindigkeit nacheile, so sollte ich diesen Lichtstrahl als ruhend wahrnehmen. So etwas scheint es aber nicht zu geben. Intuitiv klar schien es mir von vornherein, dass sich für einen solchen Beobachter alles nach denselben Gesetzen abspielen müsse wie für einen relativ zur Erde ruhenden Beobachter." Diese ursprünglich intuitive Erkenntnis war offensichtlich mit ein Anstoß zu Einsteins Postulat zur Konstanz der Lichtgeschwindigkeit. Wir werden sie in verfremdeter Form als Kontext zur Motivation des zweiten Postulats einsetzen (siehe unten). Die Originalformulierung der Einsteinschen Postulate, entnommen aus seiner Publikation von 1905, lautet: P1' Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden. P2' Jeder Lichtstrahl bewegt sich im "ruhenden" Koordinatensystem mit der bestimmten Geschwindigkeit c , unabhängig davon, ob dieser Lichtstrahl von einem ruhenden oder bewegten Körper emittiert ist. Verständnis der Galileitransformation Kenntnis des Galileischen Relativitätsprinzips Wissen, dass Messungen einen konstanten Wert für die Geschwindigkeit des Lichtes liefern. Es wird ein Gedankenexperiment ("Einsteins Traum") vorgestellt, das anregen soll, die Konsequenzen der Galileitransformation zu durchdenken. Das Gedankenexperiment liefert den Anstoß zur Problemfrage in Modul 5. Ableitung der speziellen Lorentztransformation , da die Galileitransformation dem experimentellen Resultat der Konstanz der Lichtgeschwindigkeit widerspricht. Einsteins Traum "Einstein sieht sich im Traum auf einem Lichtstrahl durch die Galaxis reiten. In der Hand hat er eine wundersame Lichtquelle, heller als tausend Sonnen, mit der er Lichtpulse aussenden kann. Als er einen langen Lichtpuls in Flugrichtung schickt, materialisiert sich auf diesem zweiten Strahl ein Spiegelbild von ihm selbst, Zweistein. Mit wehenden Haaren und Lichtquelle unter dem Arm, mit der Zweistein die Sterne anblinkt. Auch Zweistein blinkt irgendwann in Flugrichtung. Dreistein erscheint auf diesem Strahl ... " Die Schülerinnen und Schüler sollen überlegen, wie schnell das Licht aus der Lichtquelle von N-Stein ist. Modifizierung der Postulate für den Unterricht Für die Einsteinschen Postulate wird eine gegenüber der Originalformulierung modifizierte Form empfohlen. Sie werden als Lösung der Diskrepanz zwischen Messung und Konsequenzen der Galileitransformation betrachtet: P1 Alle Inertialsysteme sind bezüglich aller Gesetze der Physik gleichberechtigt. P2 Die Lichtgeschwindigkeit im leeren Raum hat immer und überall den konstanten Wert c . In der Speziellen Relativitätstheorie werden Beobachtungen untersucht, die von zwei verschiedenen Beobachtern gemacht werden, die bezüglich zueinander eine konstante Geschwindigkeit besitzen. Die einzig verwendbaren Bezugssysteme sind daher Inertialsysteme. In der Allgemeinen Relativitätstheorie spielen hingegen beschleunigte Bezugssysteme eine wichtige Rolle, da ihr Ziel die Verallgemeinerung der Newtonschen Gravitationstheorie ist. Die Raumzeit der klassischen Mechanik Newtons trägt eine affine Struktur, da eine gleichförmige Bewegung in jedem Inertialsystem als Gerade beschrieben wird (Gültigkeit des Trägheitssatzes). Infolge des ersten Postulates von Einstein (P1') (siehe Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) muss also auch die neue Transformation der Speziellen Relativitätstheorie, die Lorentztransformation, eine affine Transformation sein. Postulat (P1') bestimmt die Gestalt dieser Transformation zwischen Inertialsystemen bis auf eine universelle Konstante völlig. Durch Postulat (P2') wird diese Konstante eindeutig festgelegt. Im Unterricht beschränkt man sich auf Inertialsysteme, die sich nur durch eine Relativbewegung unterscheiden, wie sie bereits in Modul 2. Die spezielle Galileitransformation eingeführt worden ist. Die Transformation zwischen Ereignissen ist in diesem Fall linear in x und t beziehungsweise x' und t' , was zur speziellen Lorentztransformation führt. Kenntnis des experimentell ermittelten konstanten Wertes der Lichtgeschwindigkeit Kenntnis des Begriffs der linearen Bewegung Fähigkeit zur mathematischen Beschreibung der Bahnkurve linearer Bewegungen Kenntnis des ersten Newtonschen Axioms (Trägheitssatz) Einsicht, dass die Annahme der Gültigkeit der Galileitransformation den Betrag der Lichtgeschwindigkeit vom gewählten Inertialsystem abhängig macht. Wissen, dass das Postulat (P1) die Gültigkeit des Relativitätsprinzips Galileis auf alle Gesetze der Physik erweitert. Das Gedankenexperiment "Einsteins Traum" aus Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat liefert den Anlass, die Galileitransformation als modifizierungsbedürftig einzustufen, da alle Messungen die Konstanz der Lichtgeschwindigkeit bestätigen. Welche Form muss eine neue Transformation aufweisen? Man wird nur im oberen Leistungsbereich mit einem zweiparametrigen linearen Ansatz für die gesuchte Transformation starten und durch Widerspruchsbeweis zeigen, dass nur diese lineare Gestalt Postulat (P1) erfüllt und damit alle Transformationen von dieser Gestalt sein müssen. Wenn, wie es die Regel ist, die Zeit drängt, kann die Lehrkraft alternativ als Impuls die Frage nach der Transformation eines Ereignisses (x, t) durch folgenden Vorschlag initiieren: Diese Transformation muss eine gleichförmige Bewegung, wir wählen die einfachste Form, x = v t , in eine gleichförmige Bewegung überführen. Für zwei Zeitpunkte t 1 und t 2 gilt dann: Die Gleichförmigkeit ist für alle Zeiten t genau dann erhalten, wenn gilt. Damit ist ein korrekter Ansatz entwickelt. Ein Beispiel für eine Tafelanschrift zur Ableitung der Lorentztransformation liefert das folgende PDF. In den folgenden Ausführungen wird statt k das in der Literatur übliche gamma verwendet, was nur für einen höheren Leistungslevel zu empfehlen ist. Die Schülerinnen und Schüler sind mit den folgenden Inhalten vertraut: Ein Punktereignis wird im Bezugssystem S durch die Koordinaten (x, t) , genauer (x, y, z, t) , und im System S' durch die Koordinaten (x', t') , genauer (x', y', z', t') , beschrieben. Stimmen die Ursprünge der beiden Systeme S und S' zur Zeit t = t' = 0 überein, dann ist die Beziehung zwischen (x, t) und (x', t') durch die Lorentztransformation gegeben: wobei Welches Ergebnis liefert die Lorentztransformation bei Transformation eines (Punkt-)Ereignisses (x, t)? Es werden zwei verschiedene Punktereignisse betrachtet. Benötigt werden nur die Ergebnisse für Ereignis 1: Ereignis 2: Anschließend wird der räumliche und zeitliche Abstand der Ereignisse im System S' berechnet: Algebraisch ist damit auch die Relativität der Gleichzeitigkeit bewiesen: Für jeden Beobachter ist Gleichzeitigkeit eine Funktion des verwendeten Bezugssystems. Ein Verständnis für die Implikationen aus den Gleichungen (A1) und (A2) kann erst nach weiterer eingehender Diskussion erzielt werden. Dies soll in den beiden folgenden Modulen geschehen. Es wird der Spezialfall betrachtet, das heißt es werden zwei aufeinander folgende Ablesungen einer Uhr im System S mit den Ablesungen von zwei verschiedenen Uhren im System S' verglichen, weshalb das Problem der Synchronisation verschiedener Uhren angeschlossen werden sollte. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Zeitspannen? Eine Uhr ruhe im System S im Punkt Zwei verschiedene Ablesungen der Uhr definieren eine Zeitspanne und sollen als zwei Ereignisse angesehen werden: Ereignis 1: Ereignis 2: Die Zeitkoordinaten dieser Ereignisse für das System S', das relativ zu S die Geschwindigkeit V hat, sind im Prinzip bereits in Modul 6.1 Punktereignisse und ihre Transformation bestimmt worden. Falls 6.1 nicht behandelt worden ist, rechnet man analog dazu neu. Es ergibt sich also: woraus folgt womit eine Verknüpfung der entsprechenden Zeitintervalle in S und S' gefunden ist. Das Ergebnis wird durch Zahlenbeispiele vertieft. Es wird der Spezialfall betrachtet, das heißt es werden die Koordinaten der Endpunkte eines Stabes in System S' zur Zeit gleichzeitig bestimmt. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Längen? Die gleichzeitige Messung zur Zeit der Endpunkte eines Stabes in S', wird durch die zwei Punktereignisse und beschrieben, das heißt es gilt in S' Das gesuchte Ergebnis ergibt sich sofort für aus den allgemeinen Abstandsgleichungen (siehe Gleichungen (A1) und (A2) in Modul 6.1 Punktereignisse und ihre Transformation ): Falls Modul 6.1 Punktereignisse und ihre Transformation nicht behandelt worden ist, rechnet man analog dazu neu. Angeschlossen werden sollte eine Diskussion der Messzeitpunkte in beiden Systemen, das heißt unter anderem, dass die Messung der Stabenden im System S nicht gleichzeitig stattfindet. Bisher sind bei den Auswertungen der virtuellen Realitäten aus Modul 1. Einstieg in das Thema (Flüge durch das Brandenburger Tor) wichtige Daten der Aufnahmen, wie Kameraposition und Bildgröße des Objektes, nicht bearbeitet worden. Ursache für unterschiedliche Bildgrößen bei gleicher Kameraposition und verschiedenen Anfluggeschwindigkeiten auf ein Objekt ist die Lorentzkontraktion der Bildweite. Dies bedeutet, dass die Projektionsebene näher an die Blende heran gerückt ist, was das Bild vergrößert. Im Lochkameramodell ist die Kamera lorentzkontrahiert. Die Schülerinnen und Schüler haben Modul 3.1 absolviert und kennen die Lorentzkontraktion (Modul 5. Ableitung der speziellen Lorentztransformation ). Es wird den Schülerinnen und Schülern die Kameraposition des jeweils ersten - und bei Bedarf auch letzten - Bildes der Computerfilme zum Durchflug des Brandenburger Tores mitgeteilt (Tab. 1). Die Beobachtung, dass die Startbilder in der Größe recht ähnlich sind, führt direkt zu der Problemfrage. Tab. 1: Infos zur Bildauswertung Geschwindigkeit Kameraposition Startbild in LE (Längeneinheiten) Kameraposition Endbild in LE (Längeneinheiten) 0,01 c 70 -2 0,50 c 46 -2 0,90 c 24 -7 0,95 c 16 -12 0,99 c 8 -28 Warum sind unterschiedliche Startpositionen gewählt worden beziehungsweise warum sind bei den verschiedenen Flügen die Bilder des Tores bei identischer Kameraposition unterschiedlich groß? Hinweise zum Einsatz der Materialien Falls eine genügend schnelle Internetanbindung und genügend Speicherplatz vorhanden sind, kann die Lehrkraft die Originaleinzelbilddateien der Filme im Schulnetz zur Auswertung speichern. Andernfalls wird auf die interaktiven Online-Materialien zurückgegriffen, die ausgewählte und skalierte Einzelbilder zur Ausmessung am Bildschirm bereitstellen. Schon ein rein optischer Vergleich dieser Bilder zeigt die mit wachsender Geschwindigkeit abnehmende Größe des Tores. In beiden Fällen werden die in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung beim Ausmessen von Bilddaten gewonnenen Erfahrungen genügen, um die Bildweite für einige Fälle zu berechnen. Ein Vergleich der erhaltenen Werte bestätigt die Lorentzkontraktion der Lochkamera (Bildweite). Online-Arbeitsblätter Die interaktiven Funktionen der Arbeitsblätter arbeiten nicht im Internetexplorer. Bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Beachten Sie auch die Hinweise am Ende der Seiten zur Nutzung des Messtools. Brandenburger Tor 1 Kameraposition 8 LE (LE = Längeneinheiten) Brandenburger Tor 2 Kameraposition 16 LE Brandenburger Tor 3 Kameraposition 21,47 LE Die Schülerinnen und Schüler sollen ein Gefühl für das Wesen und die Eigenschaften der Zeit gewinnen, insbesondere die Begriffe Gleichzeitigkeit und Geschwindigkeit der Zeit näher kennen lernen. die Herkunft unseres natürlichen Zeitsystems (Jahr, Monat, Tag, Stunde, Minute) und den Begriff der Weltzeit verstehen. im Rahmen einer Gruppenarbeit zum Uhrenbau die Begriffe von Zeitmessung und Uhr durchleuchten und eigene weiterführende Ideen verwirklichen. mithilfe des Computers den Uhrenbau dokumentieren und den Mitschülerinnen und Mitschülern vorstellen (zum Beispiel mit einer PowerPoint-Präsentation). die Uhren testen und die Ergebnisse auswerten und beurteilen. einen kurzen Einblick in das Thema "Relativität der Zeit" erhalten, die mit einem Java-Applet veranschaulicht werden kann (Klasse 8). Thema Was ist Zeit? Wie messe ich sie? Autorinnen Ulrike Endesfelder, Kirsten Kalberla Fach Naturwissenschaften, Physik, Technik, Projektarbeit/Projekttag Zielgruppe Klasse 5-8 Zeitraum etwa 2 Doppelstunden Die Unterrichtseinheit zum Uhrenbau eignet sich für den Unterricht im Fach Naturwissenschaften oder Physik, aber zum Beispiel auch für Projekttage. Sie basiert auf einem Angebot der flowventure-Erlebnispädagogik. flowventure wurde im Rahmen der UN-Dekade "Bildung für nachhaltige Entwicklung" ausgezeichnet und bietet für Schulklassen kommerzielle Programme an (siehe Zusatzinformationen). Erste Doppelstunde Die Lernenden werden abwechslungsreich in die Thematik eingeführt und erstellen danach an Bastelstationen in Gruppenarbeit verschiedene Uhrenmodelle. Zweite Doppelstunde Nachdem jede Gruppe ihre Uhr vor der Klasse präsentiert hat, werden alle Uhren zeitgleich getestet. Die gesammelten Daten werden in Heimarbeit ausgewertet. Russell Standard Durch Raum und Zeit mit Onkel Albert: Eine Geschichte um Einstein und seine Theorie, Fischer Verlag (2005), ISBN-13: 978-3596800155 Urike Endesfelder ist Diplom Physikerin und Referentin bei flowventure-Erlebnispädagogik . Die Schülerinnen und Schüler sollen ohne experimentellen Beweis akzeptieren, dass die Lichtgeschwindigkeit für jeden Beobachter konstant ist (vor dieser Situation standen zunächst auch viele Naturwissenschaftler zur Zeit der Veröffentlichung der Relativitätstheorie). aus der vorgegebenen Konstanz der Lichtgeschwindigkeit in Verbindung mit geometrischen Überlegungen eine Gleichung für die Zeitdilatation herleiten (kann auch durch die Lehrerin oder den Lehrer vorgegeben werden). durch Anwendung dieser Gleichung die Auswirkung der Zeitdilatation erkennen und feststellen, dass diese bei "normalen" Geschwindigkeiten äußerst gering ist. Thema Die Einsteinsche Zeitdilatation Autor Manfred Amann Fach Physik Zielgruppe ab Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit), Internetanschluss, Java Runtime Environment , aktiviertes JavaSkript Gerald Kahan Einsteins Relativitätstheorie zum leichten Verständnis für jedermann 2004 Dumont-Verlag (Nachdruck) ISBN 3-8321-1852-7 Kahans Buch ist besser als so manche aktuelle Einsteinjahr-Literatur und sehr gut für interessierte Schülerinnen und Schüler mit mathematischen und physikalischen Grundkenntnissen geeignet. Nigel Calder Einsteins Universum 1980 Umschau-Verlag, Lizenzausgabe Deutscher Bücherbund Auch dieses Buch stellt in seinen Veranschaulichungen nach meinem Empfinden einen Großteil der aktuellen Einsteinliteratur in den Schatten, ist aber leider nur noch antiquarisch erhältlich, zum Beipsiel über amazon.de. Die Grundzüge der Speziellen Relativitätstheorie (SRT) basieren auf einer einfachen Formel. Nein, nicht E = mc², sondern v = s/t. Ausgehend von zwei einfachen Annahmen lieferten revolutionäre Gedankenexperimente über die Laufzeit von Licht, gemessen von zueinander bewegten Beobachtern, verblüffende neue Erkenntnisse über Raum und Zeit. Und mithilfe des guten alten Pythagoras (Link zur Lernumgebung "Die Satzgruppe des Pythagoras" des Autors bei Geogebra.org) sind auch die zugehörigen Formeln für die Zeitdilatation und die Längenkontraktion schnell hergeleitet. In der Lernumgebung zur Kinematik der Speziellen Relativitätstheorie können Lehrende und Schülerinnen und Schüler mithilfe der Maus am Monitor Darstellungen und Konstellationen kontinuierlich verändern. Bestimmte Fragestellungen lassen sich so dynamisch verfolgen und überprüfen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. So wird die Relativität der Gleichzeitigkeit am Beispiel der Beobachtung eines Lichtblitzes erkundet, der in der Mitte einer fliegenden Rakete gezündet wird. Die Geschwindigkeit des Raumschiffs können die Lernenden dabei variieren. Die Schülerinnen und Schüler sollen die Bedeutung der Postulate der Speziellen Relativitätstheorie verstehen. die Notwendigkeit einer präzisen Definition von Ort und Zeit eines Ereignisses einsehen. die Relativität der Gleichzeitigkeit als zwingende Konsequenz der Postulate erkennen. die Formel für die Zeitdilatation herleiten und anwenden können. die Formel für die Längenkontraktion herleiten und anwenden können. die Zitate aus Originalarbeiten richtig deuten und dem Gelernten zuordnen können. Thema Kinematik der Speziellen Relativitätstheorie Autor Claus Wolfseher Fach Physik Zielgruppe Oberstufe Zeitraum mindestens 5 Unterrichtsstunden oder freie Zeiteinteilung bei selbstständiger Bearbeitung außerhalb des Unterrichts Technische Voraussetzungen Internetbrowser mit aktiviertem JavaScript, Java Runtime (JRE Version 1.4 oder höher, kostenfrei) Kinematik der SRT - prägnant und kompakt Weder für die Lehrkraft noch für die interessierten Schülerinnen und Schüler ist es befriedigend, wenn Formeln vom Himmel fallen, insbesondere wenn es um die populäre Relativitätstheorie geht. Andererseits sehen zeitlich knapp kalkulierte Lehrpläne meist nur eine Mitteilung oder einen Hinweis auf die Gleichungen der Zeitdilatation oder der Längenkontraktion vor. Intention der hier vorgestellten interaktiven Lerneinheit ist es daher, die Kinematik der Speziellen Relativitätstheorie möglichst prägnant und kompakt zu erläutern, ohne auf die Herleitung der zugehörigen Formeln zu verzichten. Die Schülerinnen und Schüler erfahren dabei auch, dass mathematische Grundkenntnisse fundamental, ja hier sogar ausreichend sind, um zu neuen Erkenntnissen zu gelangen. Die erarbeiteten Formeln sollten in Anwendungsaufgaben (beispielsweise Durchqueren der Atmosphäre von Myonen oder Reise zu ?-Centauri) gefestigt werden. In der Unterrichtspraxis führte die Lerneinheit stets automatisch zu Diskussionen, die auf das Zwillingsparadoxon, das Hafele-Keating-Experiment und die Kausalitätsproblematik abzielten und von der Lehrkraft aufgenommen werden konnten. Anknüpfungspunkt für die Dynamik der SRT Auf diese Weise erhalten die Lernenden trotz der Einschränkungen des alltäglichen Unterrichtbetriebs einen über bloße Mitteilungen hinausgehenden Einblick in die SRT, der als Basis für weiterführende, eigenständige Forschungen und als Anknüpfungspunkt für die Dynamik der SRT dienen kann. Einsatzmöglichkeiten und Aufbau der Materialien Die Konzeption der Texte, Zusatzinformationen, Lösungen und die Interaktivität der Lernumgebung werden hier skizziert. Die Schülerinnen und Schüler sollen die Axiome der Speziellen Relativitätstheorie kennen. die Galilei-Transformation rechnerisch und grafisch anwenden und interpretieren können. Raum-Zeit-Diagramme konstruieren und interpretieren können. die Lorentz-Transformation rechnerisch und grafisch anwenden und interpretieren können. die wichtigsten Phänomene der SRT wie Längenkontraktion und Zeitdilatation angeben und interpretieren können. Geschwindigkeiten relativistisch addieren können. die relativistische Massenzunahme wiedergeben und in Beispielen anwenden können. die Beziehung von Masse und Energie in Einsteins berühmter Äquivalenzformel deuten und die Abhängigkeit der Gesamtenergie und der kinetischen Energie von der Geschwindigkeit beschreiben können. die Äquivalenz von Masse und Energie und die Möglichkeiten der Anwendung verstehen. Thema Online-Kurs "Spezielle Relativitätstheorie" mit GeoGebra Autor Andreas Lindner Fach Physik Zielgruppe Jahrgangsstufe 12 Zeitraum 4-6 Stunden (bei Vertiefung entsprechend mehr) Technische Voraussetzungen Internetbrowser, Java Runtime (JRE Version 1.4 oder höher, kostenfrei); die Mathematiksoftware GeoGebra ist zum Betrachten der Arbeitsblätter nicht Voraussetzung, kann aber zum Erstellen eigener Konstruktionen kostenfrei aus dem Internet heruntergeladen werden. Der Onlinekurs besteht (zurzeit) aus 25 HTML-Seiten mit 13 interaktiven GeoGebra-Applets. Eine ausführliche Besprechung der Kursinhalte würde den hier gegebenen Rahmen sprengen. Aus diesem Grund beschränken wir uns auf allgemeine Hinweise zum Einsatz der Materialien. Generell eignet sich der Online-Kurs zum Einzelstudium, als Ergänzung des traditionellen Unterrichts oder als zusammenfassende Wiederholung des Unterrichtsthemas. Abhängig von dem zur Verfügung stehenden Zeitrahmen bewährt sich neben der Nutzung der Applets ein händisches Rechnen von Aufgabenstellungen, zum Beispiel im Bereich der Längenkontraktion oder der Zeitdilatation. Anschließend können die Ergebnisse mit den interaktiven Arbeitsblättern des Online-Kurses verglichen werden, um die Einsicht zu vertiefen. Auch bei einer intensiveren Auseinandersetzung mit den Minkowski-Diagrammen sollte ein händisches Konstruieren oder ein Konstruieren am Computer durch die Schülerinnen und Schüler angestrebt werden. Gestaltung, Nutzung und Inhalte des SRT-Kurses Hier finden Sie Hinweise zur formalen Aufbereitung der GeoGebra-Applets, zur Nutzung des Online-Kurses sowie eine Übersicht der einzelnen Kapitel und Unterkapitel. Fast alle Zugänge zur Lorentztransformation im Unterricht arbeiten mit einem exzessiven Vorlauf an geometrischen Betrachtungen von Minkowskidiagrammen. Dieser Beitrag stellt eine bedenkenswerte Alternative vor. Computergenerierte Bildsequenzen und Filme, die relativistische Effekte simulieren, bieten in Verbindung mit Java-Applets und interaktiven JavaScript-Messtools faszinierende Möglichkeiten, um nicht nur Interesse für dieses Teilgebiet der modernen Physik zu wecken, sondern auch Kernaussagen der Speziellen Relativitätstheorie anschaulich zu vermitteln. Die naive Annahme, dass bei hohen Geschwindigkeiten alle Körper nur lorentzkontrahiert erscheinen, wird durch einen simulierten Flug durch ein fiktives Brandenburger Tor widerlegt. Ein Klick auf die Grafik mit der gewohnten Ansicht des Gebäudes (oben links) zeigt weitere geometrische Effekte, die durch Retardierung und Lichtaberration zustande kommen. Schülernahe Erklärungen sind möglich. Der modulare Aufbau der Unterrichtseinheit, die in drei verschiedenen Level durchgeführt werden kann, bietet interessante methodische Differenzierungsmöglichkeiten. Eine kurze Übersicht liefert dieses Die Lorentztransformation - Fundament der SRT . Die Autorin dankt Prof. Dr. Hanns Ruder von der Theoretischen Astrophysik der Universität Tübingen und seinen Mitarbeiterinnen und Mitarbeitern, insbesondere Frau PD Dr. Ute Kraus und Herrn Thomas Müller, die die Originaldateien der Simulationsfilme für diese Unterrichtseinheit zur Verfügung gestellt zu haben. Da die Unterrichtseinheit inhaltlich einen weiten Bogen spannt, von der Galileitransformation über die Ableitung der Lorentztransformation bis hin zu Zeitdilatation und Längenkontraktion, beschränkt sich die folgende Liste auf Groblernziele, die jedoch levelabhängig (schnell, genauer, exakt) mit unterschiedlichen Feinlernzielen zu belegen und daher in unterschiedlicher Intensität zu realisieren sind. Die Schülerinnen und Schüler sollen die Galileitransformation verstehen. das Relativitätsprinzip der klassischen Mechanik kennen (Galileisches Relativitätsprinzip). erkennen, dass die Galileitransformation modifizierungsbedürftig ist. in der Lage sein, die Position eines ruhenden Objektes aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchfluges durch ein Tor mit nichtrelativistischer Geschwindigkeit; siehe Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ). Einblick in Retardierungseffekte gewinnen (Level 1: Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , Level 2 und 3: Module 3.1 Grundlagen, Zentralperspektive, klassische Retardierung und 3.2 Frontaler Anflug auf ein Objekt, klassische Retardierung ). Einblick in den Effekt der Lichtaberration erhalten (nur Level 3: Modul 3.3 Seitlicher Vorbeiflug an einem Objekt, Aberration ). wissen, das Einsteins erstes Postulat eine lineare Gestalt der speziellen Lorentztransformation (bezüglich x und t ) erzwingt (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). erkennen, wie die Postulate Einsteins in die Herleitung der speziellen Lorentztransformation eingehen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). eine elementarisierte Ableitung der Lorentztransformation kennen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). die Begriffe Punktereignis, Abstand und Gleichzeitigkeit verstehen (nur Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). den Begriff des Raum-Zeit-Kontinuums verstehen (erkennen, das räumliche und zeitliche Abstände nicht als voneinander unabhängig angesehen werden können; Level 1: Module 6.1 Punktereignisse und ihre Transformation und 6.2 Zeitdilatation , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). die Begriffe Längenkontraktion und Zeitdilatation kennen und die Fähigkeit erlangen, die entsprechenden mathematischen Relationen aus der speziellen Lorentztransformation herzuleiten (Level 1: Module 6.2 Zeitdilatation und 6.3 Längenkontraktion , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). in der Lage sein, die Lorentzkontraktion einer schnell bewegten Kamera aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchflugs durch ein Tor mit relativistischen Geschwindigkeiten; nur Level 3, Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Thema Die Lorentztransformation - Fundament der Speziellen Relativitätstheorie Autorin Dr. Sigrid M. Weber Fach Physik Zielgruppe Sek II Zeitraum variabel, je nach Vertiefung und medientechnischen Vorkenntnissen der Schülerinnen und Schüler; als Anhaltspunkt für Level 1: mindestens 6 Stunden plus Hausaufgabenphase (zur Bearbeitung der Aufgaben in Modul 1. Einstieg in das Thema und 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ) Technische Voraussetzungen Computer in ausreichender Anzahl für Einzel oder Partnerarbeit, ggf. Beamer, Browser mit Java -Plugin und Plugin zum Abspielen von MP4-Filmen ( QuickTime Player ) sowie aktiviertem JavaSkript. Alternativ zu den Plugins: Plattformabhängige Applikationen zum Ausführen von Java-Applets (Java Engine mit Appletviewer) und zum Abspielen von MP4-Filmen ( QuickTime Player ). Unterrichtsplanung Das Die Lorentztransformation - Fundament der SRT verschafft Ihnen einen Überblick über die möglichen unterschiedlichen Anforderungsniveaus der Unterrichtseinheit, das sind die Level "schnell", "genauer", "exakt", sowie die in den jeweiligen Modulen eingesetzten digitalen Medien. Die Schülerinnen und Schüler sollen das Computeralgebrasystem Derive als universelles mathematisches Werkzeug kennen lernen. mit Derive eine Anleitung für die Erzeugung von Minkowski-Diagrammen entwickeln. Aufgaben aus der Relativitätstheorie sowohl grafisch als auch rechnerisch mit Derive lösen können. die Bedeutung von Minkowski-Diagrammen erkennen. erkennen, dass die Erhaltungssätze der Mechanik in der Relativitätstheorie eine neue Bedeutung bekommen. Thema Minkowski-Diagramme mit Derive Autor Rainer Wonisch Fach Physik Zielgruppe Jahrgangstufe 12 oder 13, Grund- oder Leistungskurs Zeitraum 10-12 Stunden Technische Voraussetzungen Computer mit Beamer (Lehrerdemonstration), Rechner in aus reichender Anzahl für Partner- oder Gruppenarbeit Software Derive; Infos zur Software finden Sie in der (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:355022) im Mathematik-Portal von Lehrer-Online Die hier beschriebene Unterrichtseinheit setzt voraus, dass der Unterricht zur Relativitätstheorie bereits bis hin zu den Minkowski-Diagrammen gediehen ist. Auch eine zeichnerische Umsetzung ist schon durchgeführt worden, so dass die ersten Teile der Unterrichtseinheit aus physikalischer Sicht eine Wiederholung sind. Es wird nicht vorausgesetzt, dass die Schülerinnen und Schüler reichlich Übung im Umgang mit dem Computeralgebrasystem (CAS) Derive haben, obwohl dies nicht schaden könnte. Lehrkräften, die im Umgang mit Derive noch nicht so geübt sind, wird die Erstellung von Minkowski-Diagrammen mithilfe einer Anleitung im PDF-Format Schritt für Schritt erläutert. Die an die Schülerinnen und Schüler gestellten Anforderungen sind auch von einem Grundkurs zu bewältigen. Wenn man den letzten Teil der Unterrichtseinheit mit der Behandlung der Erhaltungssätze sehr ausführlich behandeln möchte, dann benötigt man zu den in der Kurzinformation angegebenen 10-12 Stunden noch etwa vier zusätzliche Unterrichtstunden. Vorgeschlagen wird eine Mischung aus lehrerzentriertem, fragend-entwickelndem und schülerzentriertem Unterricht. Vorschlag für den Unterrichtsverlauf (Teil 1) Typische Probleme der Speziellen Relativitätstheorie (Stunde 1 bis 8) Vorschlag für den Unterrichtsverlauf (Teil 2) Betrachtung der Erhaltungssätze für Impuls und Energie (Stunde 9 und 10 beziehungsweise 9 bis 12)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Die Sinusfunktion: Schwingungen und Schwebungen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Das Ziel dieser Einführung ist es, ohne größeren Zeitaufwand die vorgegebenen Lernziele auf einem neuen Weg zu erreichen und dabei ein besseres Verständnis der Sinusfunktion als Schwingungsfunktion zu vermitteln.Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler verstehen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden. erhören über das physikalische Phänomen Schwebung ein Additionstheorem. Untersuchung periodischer Vorgänge Nachdem die Schülerinnen und Schüler mit der Beschreibung der Natur durch Potenzfunktionen bereits mehr oder weniger vertraut sind, sollen als neue Funktionsklasse nicht gleich die Sinusfunktionen, sondern erst einmal beliebige periodische Vorgänge untersucht werden. Direkt am Phänomen können Amplitude und Periodenlänge als wichtigste Begriffe erfahren werden (Experimentvorschläge finden Sie auf den Arbeitsblättern 1 und 2). Dabei erscheint mir das Wort Periodenlänge (und nicht Periodendauer, Periode oder Schwingungsdauer) für die Beschreibung der Periode im Mathematikunterricht als am besten geeignet. Hier legt man sich nicht schon im Voraus auf zeitliche Perioden fest. Der Frequenzbegriff ist vom mathematischen Standpunkt aus erst einmal nicht nötig. Auch auf den Begriff der Winkelgeschwindigkeit verzichte ich, auch wenn seine konsequente Verwendung durchaus denkbar ist. Phasenunterschiede sind für das Phänomen an sich primär nicht von großer Bedeutung und werden deshalb vorerst nicht behandelt. Daher wird auch nur die Sinusfunktion und nicht zusätzlich auch noch die Kosinusfunktion eingeführt. Die Sonnenaufgangskurve als nichtphysikalisches Sicherungselement Die Begriffe Amplitude und Periodenlänge sollen erst hinreichend gesichert werden, bevor sich die harmonische Schwingungsfunktion als wichtigste periodische Funktion herauskristallisiert. Dazu eignen sich insbesondere Experimente aus der Akustik. Hier kann man Amplitude und Periodenlänge direkt hören und mit dem Oszilloskop sogar sichtbar machen. Als nichtphysikalische Sicherungselemente bieten sich insbesondere tages- und jahreszeitliche Perioden an. Ich habe mich für die Änderung der Sonnenaufgangszeit im Laufe des Jahres entschieden, weil dieses Problem zum Beispiel im Herbst höchst aktuell und schülernah ist. Die Sonnenaufgangskurve weicht zwar mit zunehmender geographischer Breite von einer Sinuskurve ab, diese Abweichungen betragen in Deutschland jedoch weniger als fünf Prozent. Definition der Funktion Erst nach der beschriebenen Einführung wird die Kreisbewegung ins Spiel gebracht und es erfolgt eine Beschränkung auf die rein harmonischen Schwingungen. Das klassische Experiment dazu ist die synchrone Projektion von Federpendel und Kreisbewegung eines Stiftes. Vor der Definition von sin(x) sollen die Schülerinnen und Schüler erkennen, dass die harmonische Schwingungsfunktion keine Potenzfunktion sein kann. Das erste Mal in ihrer mathematischen Laufbahn können sie eine funktionale Abhängigkeit nicht aus den bekannten Rechenoperationen zusammenstellen. Eine neue Funktion muss definiert werden. Das hört sich einfacher an, als es ist, denn man bekommt bei einer solchen Definition sehr viele Freiheiten mit auf den Weg. Die Kurvenform ist zwar mehr oder weniger festgelegt, doch stehen die Achsenbeschriftungen noch völlig frei. Um hier zu steuern, werden die Schülerinnen und Schüler vorher in einem Arbeitsblatt die harmonische Schwingungskurve für eine Projektion eines Punktes auf einer Kreisbahn mit festem Radius genau zeichnen (Arbeitsblatt 4). Dadurch liegt es nahe, die neue Funktion im Bogenmaß zu definieren, nur der Radius sollte noch normiert werden. Argumente im Winkelmaß führte ich erst später ein. Um schnell von der Kreisbewegung zum Graphen der Sinusfunktion zu gelangen, bietet sich das Applet von Walter Fendt an (siehe externe Links auf der Startseite dieser Unterrichtseinheit). Wer etwas mehr Zeit hat, kann seine Schülerinnen und Schüler natürlich auch auf die herkömmliche Art und Weise die Projektion des Einheitskreises mithilfe des oben genannten Arbeitsblattes durchführen lassen, diesmal allerdings vor dem Hintergrund einer echten Bewegung. Kartierung der Funktion Nach der Definition wird die Funktion zu Hause punktweise kartiert und erst anschließend mit der Taschenrechnertaste "sin" in Verbindung gebracht und als Ganzes möglichst genau gezeichnet. Damit die Schülerinnen und Schüler wirklich das Gefühl einer eigenen Definition haben, soll die Namensgebung sehr offen gestaltet werden. Ein weiterer Vorteil eines vorerst anderen Namens besteht darin, dass die Lernenden bei der Kartierung der Funktion nicht zum "Mogeln" mit dem Taschenrechner gedrängt werden. Einsatz des Computers Die "nackte" Sinusfunktion reicht zur Beschreibung der harmonischen Schwingungen noch nicht aus, sie muss verschoben, gestreckt und gestaucht werden. Dabei sollen die Schülerinnen und Schüler lernen, zu vorgegebenen Funktionen der Art f(x) = A sin(B x) + C den zugehörigen Funktionsgraphen skizzieren zu können und umgekehrt zu festen Periodenlängen, Amplituden und Verschiebungen die zugehörige Funktion nennen zu können. Phasenverschiebungen werden aus den genannten Gründen nur kurz behandelt. Bei dieser Vorgehensweise bietet es sich außerdem an, auch die Überlagerung von Schwingungen und damit das Additionstheorem am Phänomen der Schwebung zu erfahren. Die Lernenden sollen das Additionstheorem hören (langsame Amplitudenschwankungen bei ähnlicher Frequenz wie die Grundtöne) und dann mithilfe eines CAS, eines Funktionenplotters oder eines geeigneten Java-Applets den Funktionsgraphen ermitteln. Abb. 1 (Platzhalter bitte anklicken) zeigt die Darstellung einer Schwebung mit dem CAS Derive, die durch Addition von sin(12x) und sin(13x) entsteht (verwendbare Online-Materialien wie zum Beispiel Java-Applets finden Sie unter den externen Links auf der Startseite dieser Unterrichtseinheit). Dabei werden die Begriffe Amplitude und Periodenlänge nochmals gesichert und gefestigt. Der Unterricht zur Trigonometrie basiert im Wesentlichen auf Aufgaben, bei dem es um Eigenschaften von Dreiecken geht. Die Einführung der Sinusfunktion bleibt ein Anhängsel. Erst in neuerer Zeit werden in Schulbüchern die periodischen Funktionen in diesem Zusammenhang besprochen. In dieser Unterrichteinheit soll der Spieß umgedreht werden: Die Sinusfunktion wird vor der Trigonometrie als logische Konsequenz aus der Untersuchung von Schwingungen eingeführt, die Trigonometrie folgt als praktische Anwendung. Dabei entstehen völlig neue Aufgabentypen, die die Vielfalt der Aufgabenkultur bereichern. In dieser Einheit sind dies einerseits komplexe Arbeitsblätter mit offenen Fragestellungen unter Einbeziehung des Computers, andererseits kleine Erkennungsaufgaben, wie man sie von den Parabeln kennt. Mathematik und Physik werden meist nur von Physiklehrkräften fächerübergreifend vermittelt. Damit vergeben die Mathematikerinnen und Mathematiker eine große Chance, Anschauliches mit rein Mathematischem zu verknüpfen. Mit dieser Unterrichtseinheit soll auch Nichtphysikern die Möglichkeit gegeben werden, fächerübergreifend zu arbeiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I

Materialsammlung Trigonometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Trigonometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner