Erweitern von Brüchen - eine interaktive Einführung
Unterrichtseinheit
In dieser Unterrichtseinheit zum Erweitern von Brüchen eröffnen dynamische Arbeitsblätter den Schülerinnen und Schülern einen experimentellen, interaktiven und neuartigen Zugang zum grundlegenden Verständnis des Erweiterns von gemeinen Brüchen.Eine wichtige Voraussetzung für das Verständnis des Erweiterns von gemeinen Brüchen ist die Einsicht, dass ein und dieselbe Zahl durch verschiedene wertgleiche Brüche dargestellt werden kann. Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine Javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Voraussetzungen, Einstieg, Vertiefung, Individualisierung Hinweise zur Nutzung der dynamischen Arbeitsblätter mit Screenshots Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur (Modul 1), Naturwissenschaftliches Arbeiten (Modul 2) Die Schülerinnen und Schüler erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. erfahren durch Experimentieren das Erweitern eines Bruchs visuell. entdecken das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig. wenden die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele an. Die Schülerinnen und Schüler sollen die Darstellung von Bruchteilen anhand von unterteilten Rechtecken bereits kennen. Beispielhafte Aufgaben für die Grundlegung dieser Kenntnisse finden sich auf der Mathematikseite des Autors: Bruchteile eines Ganzen Um das interaktive Online-Arbeitsblatt nutzen zu können, benötigen Sie das kostenlose Plugin Java Runtime Environment . Bruchteile eines Ganzen zeichnen Um das interaktive Online-Arbeitsblatt nutzen zu können, benötigen Sie das kostenlose Plugin Java Runtime Environment . Diese Webseiten können in einer der Vorstunden zum Erweitern verwendet werden. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die dynamische Veranschaulichung realisiert werden kann, muss Java 1.4 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Funktionsweise des dynamischen Arbeitsblatts Mit dem Button "Neu erstellen" werden auf dem Online-Arbeitsblatt 1 (Abb. 1, Platzhalter bitte anklicken) zwei wertgleiche Brüche erzeugt. Der erste der beiden Brüche kann nun mit den beiden Elementen "Zähler" und "Nenner" im dynamischen Arbeitsblatt eingestellt werden. Dadurch wird der Bruch als farbiger Bruchteil eines Rechtecks dargestellt. Das Ziehen am Element "Erweiterungszahl einstellen" ermöglicht eine feinere Unterteilung des blau eingefärbten Bruchteils des Rechtecks. Der Bruchteil bleibt also gleich, nur die Darstellung ändert sich. Diese grundlegende mathematische Einsicht wird für die Schülerinnen und Schüler visuell erfahrbar. Gleichzeitig ändert sich die Darstellung des zweiten Bruchs. Somit kann die Erweiterungszahl als Lösung der Aufgabe entnommen und in das vorgesehene Feld eingetragen werden. Der Button "Ergebnis prüfen" dient zur Kontrolle des Ergebnisses. Erarbeitungsphase Die Schülerinnen und Schüler sollen zunächst einige Aufgaben auf diese Weise bearbeiten und die Ergebnisse auf dem von der Lehrkraft bereitgestellten Notizblatt (brueche_erweitern_notizblatt.pdf) festhalten. Sie sind beim Lösen der Aufgaben durch die dynamische Veranschaulichung aufgefordert, zu beobachten und herauszufinden, wie man die Erweiterungszahl bestimmt, ohne dabei die Veranschaulichung zu benutzen. Ihre Entdeckung sollen die Schülerinnen und Schüler auf dem Notizblatt schriftlich fixieren und anschließend Aufgaben ohne Veranschaulichung lösen, um ihre Regel anzuwenden und zu überprüfen. Zusammenfassung Im nächsten Unterrichtsschritt stellt eine Schülerin oder ein Schülerin den gefundenen allgemeinen Zusammenhang in einem kurzen Statement vor. Die Lehrkraft fixiert die Ergebnisse auf einer Folie, die dem Arbeitsblatt (brueche_erweitern_arbeitsblatt.pdf) der Schülerinnen und Schüler entspricht. Im Anschluss daran übernehmen diese den Eintrag in ihr Arbeitsblatt. Online-Arbeitsblatt Nun folgt eine Phase der Vertiefung durch Variation der Aufgabenstellung. Die Schülerinnen und Schüler sollen dabei die Aufgaben von Online-Arbeitsblatt 2 bearbeiten (Abb. 2, Platzhalter bitte anklicken). In der javascript-basierten algebraischen Übung muss ein Zähler oder ein Nenner ergänzt werden. Lehrerrolle Die Funktionsweise des interaktiven Arbeitsblatts ist einfach. Die Schülerinnen und Schüler geben die gesuchte Zahl für x ein und betätigen anschließend den Button "Lösung prüfen". Mit "Neue Aufgabe erstellen" wird per Zufallsgenerator eine neue Erweiterungsaufgabe erstellt. Im Rahmen des Differenzierungsprozesses kann die Lehrkraft in diesem Unterrichtsabschnitt die Arbeitsweise und Ergebnisfindung der Schülerinnen und Schüler gezielt beobachten. Sollten bei der Bearbeitung der Aufgaben schwächere Schülerinnen oder Schüler auf Schwierigkeiten stoßen, so kann die Lehrkraft helfend zur Seite stehen und gemeinsam mit ihnen noch einmal die Aufgaben des ersten interaktiven Arbeitsblatts bearbeiten. Wettbewerb als spielerisches Element und Anreiz für leistungsstärkere Schüler Für alle anderen Schülerinnen und Schüler bietet das interaktive Arbeitsblatt einen Wettbewerb, bei dem derjenige der Sieger ist, der die meisten Punkte erreicht. Als besonderer Anreiz besteht dabei die Möglichkeit, die erreichten Punkte in eine Bestenliste eintragen zu lassen und sich so mit Schülerinnen und Schüler anderer Schulen und anderen Ländern zu messen. Algebraische Gesetzmäßigkeiten erfahrbar machen Im Rahmen der Weiterentwicklung von Aufgaben und Aufgabenumgebungen darf der Beitrag, den motivierende Medien leisten können, nicht unterschätzt werden. Veranschaulichung und visuelles Erschließen von algebraischen Zusammenhängen durch dynamische Modelle spielen für die Motivierung des Lernens im Mathematikunterricht eine wichtige Rolle. Gesetzmäßigkeiten werden nicht als Faktum vorgegeben, sondern können intuitiv erfahren und eigenständig entdeckt werden. Interaktive Aufgabenstellungen fördern Eigentätigkeit Interaktive, dynamische Arbeitsblätter leisten in diesem Zusammenhang einen wichtigen Beitrag zur Schaffung von Lernumgebungen für selbstständiges, eigenverantwortliches und kooperatives Lernen. Sie versetzen Schülerinnen und Schüler in die Lage, durch Experimentieren und Beobachten Zusammenhänge zu entdecken und diese ihren Mitschülern mitzuteilen. Die Lehrkraft als wissensvermittelnde Instanz tritt damit in den Hintergrund, der selbstständige, eigenverantwortliche Wissenserwerb rückt stärker in den Mittelpunkt. Weiterentwicklung der Aufgabenkultur Weitere Informationen zu Modul 1 auf der SINUS-Transfer-Website Systematisches Probieren - ein unterrichtliches Prinzip Das Experimentieren, Beobachten, Vergleichen und Systematisieren spielt im gesamten naturwissenschaftlichen Unterricht und somit auch im Mathematikunterricht eine sehr wichtige Rolle. Die Besonderheiten und den Sinn der naturwissenschaftlichen Denk- und Vorgehensweise erschließen sich Schülerinnen und Schüler aber nur dann, wenn sie im Unterricht daran gewöhnt werden, zielgerichtet und systematisch zu experimentieren und zu beobachten. Dynamische Modelle als Ausgangspunkt Zu diesem Erschließungsprozess kann der Einsatz interaktiver dynamischer Webseiten wichtige Elemente beitragen. Die Schülerinnen und Schüler werden durch dynamische Modelle in die Lage versetzt, durch Experimentieren und Beobachten, mathematische Zusammenhänge selbst zu entdecken. Durch die Interaktivität der Arbeitsblätter, mit der Möglichkeit der sofortigen Rückmeldung an die Schülerinnen und Schüler, wird die Interpretation und Reflexion der gefundenen Ergebnisse zur Selbstverständlichkeit. So organisierter Mathematikunterricht leistet daher einen wesentlichen Beitrag zum Erlernen naturwissenschaftlicher Methoden. Naturwissenschaftliches Arbeiten Weitere Informationen zu Modul 2 auf der SINUS-Transfer-Website
-
Mathematik / Rechnen & Logik
-
Sekundarstufe I