• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Chemische Reaktionen erkennen

Unterrichtseinheit

In dieser Unterrichtssequenz für den Anfangsunterricht in Chemie lernen die Schülerinnen und Schüler die chemische Reaktion und ihre Bedeutung kennen. Anhand kleiner Versuche erkennen sie den Unterschied zwischen der chemischen Reaktion und dem physikalischen Vorgang.Die Schülerinnen und Schüler planen in dieser Unterrichtsstunde für den Chemie-Unterricht der Sekundarstufe I ausgehend von zwei einfachen Aufgaben Experimente, die sie anschließend durchführen. Dabei beschreiben sie die Aggregatzustände von Stoffen und erkennen sie, dass es Vorgänge gibt, die sich leicht rückgängig machen lassen, während das bei anderen nicht so einfach beziehungsweise gar unmöglich erscheint. Im Unterrichtsgespräch und begleitendem Informationstext erarbeiten sie in diesem Zusammenhang die Fachbegriffe "chemische Reaktion" und "physikalischer Vorgang". Im Sinne der individuellen Förderung durch Binnendifferenzierung im Fach Chemie stehen Arbeitsblätter mit unterschiedlichen Schwierigkeitsgraden zur Verfügung. Die Unterrichtssequenz eignet sich für den Anfangsunterricht in Chemie und kann durch die weiteren Einheiten zum Thema Feuer und Verbrennung wie Voraussetzungen für ein Feuer , Feuer löschen , Verbrennungsprodukte nachweisen und Was ist eine Flamme? fortgeführt werden. Das Thema "Chemische Reaktion erkennen" im Unterricht Im Anfangsunterricht Chemie der Sekundarstufe I geht es zunächst gar nicht um "wirkliche" Chemie, sondern eigentlich eher um Physik: Stoffeigenschaften und Trennverfahren. Diese bilden die Grundlage für das Verständnis der chemischen Reaktion als Stoffumwandlung. Im Kontext Feuer und Verbrennung wird das Basiskonzept chemische Reaktion schnell deutlich ausdifferenziert. Es macht daher Sinn, ein Grundverständnis für die chemische Reaktion schon vorher zu schaffen und die Kenntnisse aus den vorhergegangenen Unterrichtseinheiten dafür zu nutzen. Vorkenntnisse Die Lernenden kennen den Begriff "Stoff" und können Eigenschaften von Stoffen wie ihren Aggregatzustand benennen und untersuchen. Sie kennen verschiedene Trennverfahren. Die Kenntnis der Sicherheitsregeln im Chemieraum wird vorausgesetzt. Didaktische Analyse Zwei ganz alltägliche Vorgänge (Eis schmelzen und Streichholz verbrennen) werden zu Beginn genauer unter die Lupe genommen. Dadurch können die Lernenden einen entscheidenden Unterschied zwischen ihnen erkennen, wodurch die Einführung eines neuen Begriffs (chemische Reaktion) sinnvoll wird. Durch andere Beispiele die grundlegende Bedeutung der chemischen Reaktion anschießend gesichert. Methodische Analyse In den Versuchen in Stammgruppen können die Lernenden ihre Ideen und ihr Wissen teilen und (hoffentlich) ein motivierendes Erfolgserlebnis haben. Die Einführung des neuen Fachbegriffs und Basiskonzepts "Chemische Reaktion" erfolgt im Unterrichtsgespräch und durch einen Text. Zur Vertiefung dient ein Arbeitsblatt, das in Einzelarbeit gelöst wird. Während dieser Phase erhalten die Lernenden direkte Unterstützung durch die Lehrkraft, wenn nötig. Umgang mit Fachwissen Die Schülerinnen und Schüler grenzen Stoffumwandlungen als chemische Reaktionen von physikalischen Veränderungen ab. festigen ihr Wissen zum Thema Aggregatzustand. Kommunikation Die Schülerinnen und Schüler übernehmen bei Versuchen in Kleingruppen Initiative und Verantwortung verteilen, Aufgaben fair und erfüllen diese im verabredeten Zeitrahmen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I

Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik

Unterrichtseinheit

Dieses Unterrichtsmaterial regt die Lernenden zum Bau einer Rakete aus zwei Plastikflaschen, Natron und Essig an. An diesem Experiment wird neben der Problematik um den Plastikmüll zum Umweltschutz in der Schule der Antrieb einer Rakete durch das Rückstoßprinzip sowie die chemische Reaktion von Säure und Natriumhydrogencarbonat erläutert.Mit diesem Unterrichtsmaterial lernen die Schülerinnen und Schüler am Beispiel einer Rakete das Rückstoßprinzip als praktische Anwendung des 3. Newtonschen Axioms sowie die chemische Reaktion von Backpulver und Essig kennen. Sie bauen angeleitet durch ein Video selbstständig eine Rakete, erkennen ihren Antrieb und vertiefen die Phänomene der Chemie und Physik durch begleitende Arbeitsblätter. Gleichzeitig soll das Experiment auf den seit Jahren steigenden Verbrauch von Plastikflaschen aufmerksam machen, die nur zum Teil recycelt werden, während der Rest in Müllverbrennungsanlagen oder in der Umwelt landet. Das Material eignet sich je nach Lehrplan für den fächerverbindenden Unterricht in Chemie und Physik der Sekundarstufen I und II. Das Thema "Eine Rakete aus Plastikflaschen bauen: Upcycling in Chemie und Physik" im Unterricht Am Beispiel einer Rakete erarbeiten die Lernenden mit diesem Unterrichtsmaterial weitgehend selbstständig und praxisorientiert den Antrieb in einem Experiment. Diese Form der experimentellen Erarbeitung des Rückstoßprinzips im Unterricht eignet sich in besonderer Weise, um den Schülerinnen und Schülern der Sekundarstufen nachhaltig aufzuzeigen, warum Raketen eigentlich fliegen. Vorkenntnisse Zu den wesentlichen Voraussetzungen zur Durchführung dieser Unterrichtseinheit zählt, dass die Lernenden mit Lehrvideos arbeiten sowie ein chemisches beziehungsweise physikalisches Experiment aufbauen, durchführen und auswerten können. Didaktische Analyse In diesem Unterrichtsmaterial erarbeiten die Lernenden mit dem Rückstoßprinzip und einer chemischen Reaktion Phänomene der Fächer Physik und Chemie: Während das Rückstoßprinzip in Natur und Technik als praktische Anwendung des 3. Newtonschen Axioms ein physikalisches Phänomen ist, das in der Natur und Technik zur Fortbewegung dient, gilt die Verbindung von Backpulver mit Essig (Säure mit Natron) als ein Beispiel für eine Reaktion der Chemie. Darüber hinaus setzen sich die Schülerinnen und Schüler zum Umweltschutz mit ökologischen Problemen, die beim Recycling von Plastikflaschen entstehen, auseinander und lernen ein Experiment selbstständig vorzubereiten, durchzuführen und auszuwerten. Methodische Analyse Die Auswertung der Filme geschieht sowohl im Plenum als auch in Partnerarbeit. Die Vorbereitung, Durchführung und Auswertung des Experiments erfolgt in Partner- oder Gruppenarbeit, sodass die Lernenden möglichst eigenverantwortlich und selbstständig arbeiten können. Die Lehrkraft steht in diesen Phasen beratend zur Verfügung und sollte nur unterstützend eingreifen, wenn Fragen auftauchen. Fachkompetenz Die Schülerinnen und Schüler bereiten ein Experiment im Chemie- oder Physikunterricht selbstständig vor und führen es nach Anleitung durch. lernen das Rückstoßprinzip sowie die chemische Reaktion von Natron und Essig kennen. unterscheiden ökologisch sinnvolles Recycling von Plastikflaschen von unsinniger Müllverwertung. Medienkompetenz Die Schülerinnen und Schüler entnehmen einem Video im Unterricht die wesentlichen Informationen für den Bau einer Rakete. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konzentriert und zielführend kooperativ im Team zusammen.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Herstellung und Untersuchung von Nano-Goldpartikeln

Unterrichtseinheit

Lernende stellen im Schülerexperiment Nano-Goldpartikel her und erkennen die Farbe der Goldsole als größenabhängige Eigenschaft der Nanopartikel. Interaktive Lernumgebungen visualisieren die Reaktionen auf der Teilchenebene und ermöglichen die Untersuchung der Nanopartikel im virtuellen Elektronenmikroskop.Der erste Teil der fächerübergreifenden Unterrichtseinheit (Chemie und Physik) findet im Schul- oder Schülerlabor statt. Die Lernenden präparieren mithilfe einer Versuchsvorschrift unterschiedlich große Gold-Nanopartikel in Dispersion (Kolloidchemie). Die verschiedenen Größen der Goldpartikel werden schon bei der Präparation an der unterschiedlichen Farbe erkennbar. Der zweite Teil der Unterrichtseinheit findet im Rechnerraum statt. Die Schülerinnen und Schüler wiederholen die Präparation der Gold-Nanopartikel noch einmal im Rahmen eines virtuellen Experiments und können dabei beobachten, was auf der Teilchenebene passiert. Mithilfe eines interaktiven Lernmoduls lernen sie zudem Schritt-für-Schritt die Funktion und Betriebsweise eines Elektronenmikroskops kennen: Sie können ein virtuelles Transmissionselektronenmikroskop bedienen, die (virtuell und/oder real) hergestellten Partikel anschauen und sich davon überzeugen, dass den verschiedenfarbigen Goldsolen unterschiedlich große Nanopartikel zugrunde liegen. Kombination von Realexperiment und Computereinsatz Die Nanotechnologie und speziell die chemische Nanotechnologie bieten Schülerinnen und Schülern keinen unmittelbaren Zugang. Nanoplättchen, Nanostäbchen oder Nanopartikel lassen sich im Schülerexperiment zwar leicht herstellen, zum Beispiel durch Fällungen, jedoch lichtmikroskopisch nicht sichtbar machen. Ein Elektronenmikroskop wäre dafür erforderlich, aber eine solche Hochtechnologie-Apparatur ist für Schule und Schülerlabor viel zu teuer und zu empfindlich. Aus diesem Dilemma heraus entstand die vorliegende Unterrichtseinheit: Für die Präparation von Nanopartikeln sollen die Schülerinnen und Schüler vorzugsweise selbstständig experimentieren und damit die Faszination des Experiments erleben. Die Untersuchung der Produkte im virtuellen Elektronenmikroskop einer interaktiven Lernumgebung erfolgt nach dem Realexperiment im Rechnerraum der Schule. Eine Alternative: Außerschulische Lernorte Falls die räumlichen Möglichkeiten für das Schülerexperiment in der Schule nicht gegeben sind, kann dieser Teil der Unterrichtseinheit in einem außerschulischen Schülerlabor, zum Beispiel an einer Universität, stattfinden. Alternativ kann die Lehrperson den Versuch als Demonstrationsexperiment vorführen. In jedem Fall können die Schülerinnen und Schüler den Versuch am Rechner multimedial durchführen beziehungsweise wiederholen. Teil 1: Kolloidale Systeme Nach der (optionalen) Herstellung von Nano-Goldpartikeln werden die Vorgänge auf der Teilchenebene mithilfe einer Lernumgebung visualisiert. Teil 2: Das Transmissionselektronenmikroskop (TEM) Schülerinnen und Schüler lernen die Funktionsweise eines Elektronenmikroskops kennen und untersuchen virtuell die Größe von Nano-Goldpartikeln. Materialien Hier finden Sie Hinweise zum Einsatz der klassischen Arbeitsblätter und der Lernumgebungen sowie detaillierte Handreichungen zu den virtuellen Experimenten. Fachkompetenz - kolloidale Systeme Die Schülerinnen und Schüler sollen die Begriffe Kolloid und Nanopartikel und ihren Zusammenhang kennen. die Dimension nanoskaliger Materialien kennen und zu bekannten Materialien anderer Dimensionen in Beziehung setzen können. den Begriff kolloidale Dispersion kennen und kolloidale Dispersionen in Zweistoffsystemen je nach Aggregatzustand der dispersen Phase und des Dispersionsmittels klassifizieren können. Methoden zur Unterscheidung zwischen "echten" Lösungen, kolloidalen Dispersionen und grobdispersen Systemen kennen. die Synthese von Goldkolloiden durchführen. wissen, dass die optischen Eigenschaften der hergestellten Goldkolloide im Zusammenhang mit der Größe der Kolloide stehen. den Begriff Koagulation/Aggregation kennen. Fachkompetenz - Transmissionselektronenmikroskop Die Schülerinnen und Schüler sollen das TEM als Werkzeug zur Visualisierung von Nanopartikeln kennen. begründen, warum Nanopartikel nicht mithilfe eines Lichtmikroskops beobachtet werden können. den Aufbau und den Strahlengang des Elektronenstrahls im TEM kennen. wissen, warum im Vakuum gearbeitet werden muss. die Bilderzeugung im TEM als Wechselwirkung zwischen Elektronenstrahl und Probe kennen. elastisch und unelastisch gestreute Elektronen als Ursache für die verschiedenen Kontraste im elektronenmikroskopischen Bild kennen. Thema Herstellung und Untersuchung von Nano-Goldpartikeln Autoren Katrin Prete, Dr. Walter Zehren, Prof. Dr. Rolf Hempelmann Fächer Chemie, Physik Zielgruppe ab Klasse 9 Technische Voraussetzungen Möglichkeit für chemisches Experimentieren (optional); Rechner in ausreichender Anzahl (Partnerarbeit), mindestens ein Präsentationsrechner mit Beamer, Flash-Player 9 Dr. Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab. Umrechnung von Maßeinheiten Die Schülerinnen und Schüler müssen in der Lage sein, verschiedene Maßeinheiten (Meter, Millimeter, Nanometer) ineinander umzurechnen. Diese Kompetenzen werden im Fach Mathematik in Klasse 5 erworben. Aggregatzustände Die Lernenden benötigen Kenntnisse über Aggregatzustände und über die verschiedenen Typen chemischer Stoffgemische. Diese Kompetenzen werden im Fach Chemie in Klasse 8 erworben. Redox-Reaktionen Zum Verständnis der Synthese der Gold-Nanopartikel müssen die Schülerinnen und Schüler den erweiterten Redox-Begriff kennen: Redox-Reaktionen müssen als Elektronenübertragungsreaktionen bekannt sein. Dies wird im Fach Chemie in Klasse 9 thematisiert. Der erste Teil der Unterrichtseinheit behandelt einige Aspekte der Kolloid- und Nanochemie und besteht aus einem Experimentalteil und einer interaktiven Lernumgebung zur Herstellung von Goldsol, also einer Suspension von Gold-Nanopartikeln. Gold- und auch Silber-Nanopartikel zeigen einen interessanten Farbeffekt im sichtbaren Spektralbereich: Die resonante Anregung von Oberflächenplasmonen führt dazu, dass sich die Farbe des Metalls in Abhängigkeit von der Größe und Form der Nanoteilchen stark verändert (Abb. 1). Zum Beispiel sehen Suspensionen von kleinen Gold-Nanopartikeln in Wasser rot aus (im Gegensatz zu dem gelblichen Schimmer, den Gold normalerweise zeigt). Aggregiert man diese Partikel teilweise, so ändert sich die Farbe zu dunkelblau bis violett. Einstieg und Schülerexperiment Der erste Teil der Unterrichtseinheit gliedert sich in zwei Abschnitte. Zunächst erfolgt eine Einführung in das Thema kolloidale Systeme. Durch geeignete Aufgabenstellungen wird den Schülerinnen und Schülern zunächst die Dimension, also der Größenbereich, der Nanochemie nahe gebracht, und es werden die Begriffe Nanopartikel beziehungsweise Kolloid geklärt. Danach folgt eine Reihe von Experimenten, welche die Schülerinnen und Schüler mit den bis zur Klasse 9 erworbenen Vorkenntnissen in Eigenarbeit durchführen können. Der Einfluss des Zerteilungsgrades (des Dispersionsgrades) auf die Eigenschaften von Stoffen und die Unterscheidung zwischen echten Lösungen und kolloidalen Dispersionen können im Experiment selber entdeckt werden. Zum Abschluss werden Goldkolloide verschiedener Größen hergestellt. Die Herstellung von Goldkolloiden ist gleichzeitig die Überleitung zum zweiten Abschnitt des ersten Teils der Unterrichtseinheit, der Multimedia-Anwendung. Virtuelles Experiment, Visualisierung der Teilchenebene Die interaktive Lernumgebung zeigt zunächst noch einmal den zuvor durchgeführten Versuch zur Herstellung von Goldkolloiden. Dabei werden die Schritte der Reaktion auf der Teilchenebene visualisiert (Abb. 2, Platzhalter bitte anklicken), und den Schülerinnen und Schülern wird schließlich die unterschiedliche Farbe der Goldsole erklärt (Abb. 3). An die Animation zum Versuch schließt sich eine Wiederholungsphase an, in der die Lernenden interaktiv den Zusammenhang zwischen Partikelgröße und Farbe der Goldsole bearbeiten können (Abb. 4). Weiter geht es mit einer Übungsphase, in der Schülerinnen und Schüler das Gelernte anwenden. Methodenvielfalt Im ersten Teil der Unterrichtseinheit wird also mit verschiedenen Medien gearbeitet: Arbeitsblätter, Schülerexperimente und Multimedia-Anwendungen. Durch diese Methodenvielfalt wird auf die Heterogenität der Lernvoraussetzungen und der Interessen der Schülerinnen und Schüler eingegangen, wodurch möglichst viele Lernende erreicht und für die Beschäftigung mit dem Nanobereich motiviert werden sollen. Die einzelnen Schritte und Inhalte des gesamten virtuellen Experiments werden in einer Handreichung (tutorial_goldsole_virtuelles_experiment.pdf) ausführlich beschrieben und mit zahlreichen Screenshots dargestellt. Glühelektrischen Effekt, Kondensator Die Schülerinnen und Schüler müssen Kenntnisse über den Glühelektrischen Effekt und das Prinzip eines Kondensators besitzen (Physik, Oberstufen-Grundkurs). Linke-Hand-Regel Die Lernenden müssen in der Lage sein, mithilfe der Linke-Hand-Regel die magnetischen Feldrichtungen einer Spule zu bestimmen (Physik, Klasse 9). Lorentzkraft Die Schülerinnen und Schüler müssen Kenntnisse über die Bewegung von elektrischen Ladungsträgern im magnetischen Feld besitzen. Sie müssen die Richtung der Kraftwirkung der Lorentzkraft mit der Drei-Finger-Regel bestimmen können (Physik, Klasse 9). In einem interaktiven Lernmodul werden der Aufbau und die Funktionsweise des TEM Schritt-für-Schritt erläutert. Damit wird eine wichtige Methode der Nanotechnologie eingeführt. Sie erlaubt es, die zuvor im (realen und/oder) virtuellen Experiment hergestellten Nanopartikel zu visualisieren. Ein Elektronenmikroskop ist ein Mikroskop, welches das Innere oder die Oberfläche einer Probe mithilfe von Elektronen abbilden kann. Da schnelle Elektronen eine sehr viel kleinere Wellenlänge als sichtbares Licht haben und die Auflösung eines Mikroskops durch die Wellenlänge begrenzt ist, kann mit einem Elektronenmikroskop eine deutlich höhere Auflösung (etwa 1 Nanometer; mit einem einem Höchstleistungs-TEM bis zu 0,1 Nanometer) erreicht werden als mit einem Lichtmikroskop (typischerweise etwa 1 Mikrometer, im Extremfall bis zu 200 Nanometer). Die einzelnen Seiten, Inhalte und Funktionen der Lernumgebung zum Transmissionselektronenmikroskop (TEM) werden in einer Handreichung (tutorial_goldsole_TEM.pdf) ausführlich beschrieben und mit Screenshots dargestellt. Tutorielles System zur Funktion des TEM Die Lernumgebung erlaubt es, die hergestellten Gold-Nanopartikel "virtuell" zu untersuchen. Die Schülerinnen und Schüler erfahren, wie die zuvor bereits verwendeten TEM Aufnahmen (vergleiche Abb. 4 ) entstehen. Dabei kommt eine Multimedia-Anwendung im Stil eines tutoriellen Systems zum Einsatz. Auf der Startseite wird das Thema dargestellt, und den Lernenden wird ein motivierender Einstieg in das Thema geboten. Außerdem wird auf dieser Seite ein Einblick gegeben, welche Lerninhalte nachfolgend bearbeitet werden. Informationsseiten An die Startseite knüpfen dann Informationsseiten an, auf denen den Schülerinnen und Schülern Lerninhalte durch Texte, Animationen oder Bilder präsentiert werden, die in individueller Geschwindigkeit bearbeitet werden können (Abb. 5, Platzhalter bitte anklicken). Sie können dabei auch zu vorangegangenen Lerninhalten zurückzuspringen, um nicht Verstandenes zu wiederholen. Übungen und Ergebnissicherung Die Informationsseiten bilden Themenblöcke oder "Bausteine". Nach jeweils einem Baustein schließen sich Übungsseiten an, mit deren Hilfe das Gelernte überprüft und die Lernergebnisse gefestigt werden (Abb. 6). Dabei kommen in der Regel recht kurz gehaltene Multiple-Choice-Aufgaben, Lückentexte oder Wortpuzzles zum Einsatz, an einigen Stellen allerdings auch komplexere Aufgabenstellungen. Die Übungen bieten auch die Möglichkeit zur Differenzierung - leistungsstärkere Schülerinnen und Schüler, die schneller mit dem Programm fertig werden, können zusätzliche Aufgaben lösen. Den Abschluss des Programms bildet eine Lückentextübung zum TEM. Anwendungssimulation Im Anschluss an das tutorielle System folgt eine kleine Simulation. Hier haben die Schülerinnen und Schüler ein virtuelles TEM vor sich, in dem sie die Goldsole virtuell untersuchen können. Hierbei handelt es sich um eine Anwendungssimulation. Die Lernenden sollen die Handhabung des TEM prinzipiell verstehen. Dabei führen sie dieselben "Handgriffe" aus, die sie auch im Umgang mit einem realen TEM ausführen müssten (Abb. 7). Bei Fehlern - wenn zum Beispiel vergessen wird, in der Probenkammer ein Vakuum anzulegen - gibt das Programm eine entsprechende Rückmeldung ("Vorsicht, überprüfe dein Vorgehen"). 1. Partikel mit Potenzial: Nanoteilchen und Kolloide Das erste Arbeitsblatt (1_nanoteilchen_groessenvergleiche.pdf) führt die Begriffe Nanoteilchen und Kolloide ein. Der Text beginnt mit den Begriffsbestimmungen. Daran knüpfen sich fünf Aufgaben an, die den Schülerinnen und Schülern helfen sollen, sich die Dimensionen der Nanowelt in Relation zur Lebenswelt zu veranschaulichen: Die Lernenden sollen die Dimension des Nanometers durch Vergleiche mit Gegenständen aus ihrem alltäglichen Erfahrungsbereich erfassen. Nur durch diese Vergleiche ist es möglich, die winzigen Dimensionen zu verdeutlichen. Unbekanntes wird auf Bekanntes zurückgeführt und kann besser gelernt und verstanden werden. Aufgabe 3 ermöglicht es den Lernenden mit einem kleinen Experiment, sich selbst die Größe zu veranschaulichen und die Ergebnisse direkt zu sehen. Die Dimension des Nanometers wird im Experiment natürlich nicht erreicht, dennoch wird sie erlebbar und besser vorstellbar. 2. Eigenschaften von Nanopartikeln und Kolloiden Das zweite Arbeitsblatt (2_eigenschaften_nanoteilchen_kolloide.pdf) soll die Veränderung der physikalischen, chemischen und biologischen Eigenschaften eines Stoffs in Abhängigkeit von seinem Zerteilungsgrad veranschaulichen. Die Verkleinerung eines Stoffes in nanoskalige Dimensionen führt zu völlig neuen Werkstoffeigenschaften. In der ersten Aufgabe wird zunächst veranschaulicht, dass mit zunehmendem Zerteilungsgrad die Oberfläche eines Stoffes wächst und somit eine viel größere Oberfläche reagieren kann. Die Auswirkung einer größeren Oberfläche auf die Reaktionsgeschwindigkeit kennen die Schülerinnen und Schüler aus Standard-Experimenten des Chemieunterrichts, wie zum Beispiel der Verbrennung eines Eisennagels gegenüber der Verbrennung von Stahlwolle. In einem Versuch sollen die Lernenden nun entdecken, dass sich mit zunehmendem Zerteilungsgrad auch physikalische Eigenschaften verändern, wie zum Beispiel das magnetische Verhalten eines Stoffs. Die Reaktionsgleichung wird auf den Arbeitsblättern angegeben, da sie mit dem den Schülerinnen und Schülern zu Verfügung stehenden Vorwissen nicht aufgestellt werden kann, von diesen aber zum Verständnis der Reaktion benötigt wird. Zusätzlich wird der Begriff des Hydrats kurz vorgestellt, da als Ausgangsstoffe Eisen(III)-chlorid-Hexahydrat und Eisen(II)-Chlorid-Tetrahydrat eingesetzt werden und der Hydrat-Begriff aus dem Unterricht in dieser Form nicht geläufig ist. 3. Unterscheidung zwischen echten und kolloidalen Dispersionen Mit dem dritten Arbeitsblatt (3_dispersionen.pdf) lernen die Schülerinnen und Schüler den Tyndall-Effekt als eine Möglichkeit kennen, zwischen echten Lösungen und kolloidalen Systemen zu unterscheiden. In einem Versuch werden verschiedene Lösungen beziehungsweise Dispersionen mithilfe des Tyndall-Effektes identifiziert. Mit der Aufgabe, für die Dispersionen das Dispersionsmittel und die disperse Phase anzugeben, wird an das Vorwissen der Lernenden angeknüpft, da die Einteilung von Stoffgemischen bereits in Klasse 8 erlernt wird. 4. Herstellung von Goldkolloiden Das vierte Arbeitsblatt (4_goldkolloide.pdf) beschreibt einen Versuch zur Herstellung von Gold-Nanopartikeln unterschiedlicher Größe. Zum Einstieg werden Verwendungsmöglichkeiten von Gold-Nanopartikeln aufgezeigt und hervorgehoben. Durch die Herstellung von Gold-Nanopartikeln wird mit der Farbe eine weitere spezifische Stoffeigenschaft angesprochen. Sie ändert sich mit zunehmendem Zerteilungsgrad von dem charakteristischen Goldgelb bis hin zu Rot. Hierbei handelt es sich um einen Größenquantisierungseffekt (englisch "quantum size effect"): sehr kleine Teilchen unterliegen mit abnehmender Teilchengröße zunehmend den Gesetzen der Quantenmechanik, woraus sich die Änderung der Eigenschaften von Nanopartikeln im Vergleich zu grobkristallinen Stoffen der gleichen chemischen Zusammensetzung erklärt. Die einführenden Texte dienen zur Motivation der Schülerinnen und Schüler, in einem Experiment selbst Gold-Nanopartikel herzustellen. 5. Arbeitsblatt und interaktive Lernumgebung Für die Bearbeitung der Aufgabenstellungen des fünften Arbeitsblatts (4_2_goldkolloide.pdf) kann die Flash-Lernumgebung zur Herstellung von Goldkolloiden herangezogen werden. Die Aufgabe greift auf bereits vorhandenes Wissen zurück, wie zum Beispiel den erweiterten Redox-Begriff, und fungiert auch als Ergebnissicherung für neu erlernte Inhalte. Die Fragen können nach der Arbeit mit der Lernumgebung beantwortet werden. Teilweise müssen Lerninhalte aus den vorangegangenen Arbeitsblättern angewendet werden, sodass durch zusätzliche Wiederholung eine Festigung des Gelernten gewährleistet werden kann. Einsatzmöglichkeiten Das virtuelle Experiment zur Herstellung verschiedenfarbiger Goldsole veranschaulicht die Vorgänge auf der Teilchenebene. Mit ihm wird auch erarbeitet, dass die Farbe der Goldsole von der Größe der Nano-Goldpartikel abhängig ist. Die Lernumgebung kann flexibel eingesetzt werden: Schülerexperiment und virtuelles Experiment Nach der experimentellen Herstellung von Goldsolen im Schülerversuch (im Chemielabor der Schule oder in außerschulischen Schülerlaboren) kann die Lernumgebung zur Herstellung von Goldsolen zur "virtuellen Wiederholung" und insbesondere zur Darstellung der Vorgänge auf der Teilchenebene genutzt werden. Lernende experimentieren nur "virtuell" Besteht keine Möglichkeit, den Versuch als Schülerexperiment durchzuführen, können die Lernenden die Herstellung von Goldsolen auch ausschließlich am Rechner durchführen - im Idealfall in Partnerarbeit im Computerraum der Schule. Präsentation per Beamer Alternativ oder zusätzlich zur Bearbeitung im Computerraum kann die Lehrperson die Flash-Animationen zur Unterstützung des Unterrichtsgesprächs im Fachraum per Beamer einsetzen. Die Lehrperson oder einzelne Schülerinnen und Schüler können den Prozess dann noch einmal für alle beschreiben. Einsatzmöglichkeiten Dieses Lernmodul ist für die Einzel- oder Partnerarbeit am Rechner konzipiert. Alternativ können die Animationen und interaktiven Übungen aber auch zur Unterstützung des Unterrichtsgesprächs (Beamerpräsentation) genutzt werden. Die Lernumgebung zum TEM kann natürlich auch in anderen unterrichtlichen Zusammenhängen - unabhängig von der Herstellung von Goldsolen - zum Einsatz kommen. Prete, Katrin Visualisierung von Nanopartikeln mittels TEM und STM, aufgearbeitet als eine mediengestützte Unterrichtseinheit, Wissenschaftliche Staatsexamensarbeit, Saarbrücken 2009 Zehren, Walter Forschendes Experimentieren im Schülerlabor , Dissertation, Saarbrücken 2009 Sepeur, Stefan Nanotechnologie - Grundlagen und Anwendungen, Vincentz Network, Hannover 2008 Dörfler, Hans-Dieter Grenzflächen und kolloid-disperse Systeme, Springer-Verlag, Berlin und Heidelberg 2002 Hempelmann, Rolf; Zehren, Walter; Mallmann, Matthias Nanotechnologie im Schulunterricht, NanoBioNet Newsletter II/2008, nanotechnologie aktuell 2, 88-91 (2009) Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Kleine Teilchen im Modell: Vertiefung am "Karton-Versuch"

Unterrichtseinheit

In dieser Unterrichtseinheit zum Teilchenmodell gehen die Lernenden durch einen Versuch Schuhkartons der Frage nach, wie kleine Teilchen aussehen und ob das überhaupt festzustellen ist, wenn diese Teilchen doch für uns nicht sichtbar sind. Dabei erkennen sie, dass ein Modell im Chemie-Unterricht wie das der kleinen Teilchen eine Hilfe zur Vorstellung ist, aber nicht die Wirklichkeit zeigt.Mit diesem Unterrichtsmaterial vertiefen die Schülerinnen und Schüler im Anschluss an die Einheit " Einführung in das Teilchenmodell: kleine Teilchen " ihre Kenntnisse zum Aufbau der Stoffe. Die Lernenden finden im "Karton-Versuch" so viel wie möglich über einen Gegenstand im Karton heraus, ohne dass sie diesen sehen können. Dabei merken sie, dass sie nach dem Versuch viel, aber nicht alles über diesen Gegenstand wissen. Ihre Beschreibung des nicht sichtbaren Teils stimmt nicht genau, aber sie reicht aus, um sich den Gegenstand genauer vorzustellen. Dieses Verständnis wird übertragen auf das Thema "Kleine Teilchen", um zu vermitteln, dass das Teilchenmodell im Chemie-Unterricht nicht zeigt, wie kleine Teilchen tatsächlich aussehen, sondern eine Hilfe für die Vorstellung sein soll. Es werden dazu verschiedene Gegenstände wie kleine und große Kugeln aus unterschiedlichem Material (zum Beispiel Würfel, ein kleiner quadratischer Karton, runde und eckige Stifte, Lineal…) in Schuhkartons versteckt. Wichtig ist, dass die Lernenden einige Eigenschaften der Gegenstände erkennen beziehungsweise vergleichen können (ungefähre Form, Masse, Länge…) und andere nicht (Farbe, Beschaffenheit der Oberfläche, genaue Form…). In Gruppen versuchen sie dann möglichst genau zu beschreiben, was sich wohl in dem Karton verbergen könnte. Die Schülerinnen und Schüler erkennen in dieser Einheit, dass alles aus kleinen Teilchen besteht. Im Anschluss an den Versuch zeichnen sie kleine Teilchen von Salz, Eisen und Wasser selbst auf einem Arbeitsblatt und vertiefen damit ihr Modell-Verständnis. Das Thema "Kleine Teilchen" im Unterricht Die Struktur der Materie begreiflich zu machen ist eine der schwierigen Aufgaben des Chemie-Unterrichts der Sekundarstufe. Die kleinen Teilchen können nur mit Modellen vorstellbar gemacht werden. Allerdings wird über die Vermittlung von Modellvorstellungen kontrovers diskutiert, unter anderem da bei den Lernenden Modelle und Wirklichkeit oft vermischt werden und die Modelle im Verlauf des Unterrichts stark verändert werden (müssen). Zumindest sollte also allen Lernenden klar sein, dass das Teilchenmodell nicht zeigt, wie diese Teilchen tatsächlich aussehen, sondern eine Hilfe für die Vorstellung sein soll. Dann ist es für den Anfangsunterricht im Fach Chemie ein brauchbares Modell. Vorkenntnisse Die Lernenden kennen verschiedene Eigenschaften von Stoffen und ihre Untersuchung. Didaktische Analyse Die selbst hergestellten Knet-Modelle der Einheit " Einführung in das Teilchenmodell: kleine Teilchen " motivieren die Lernenden dazu, herauszufinden, ob eines der Modelle der Wirklichkeit entspricht. Eine wissenschaftlich korrekte Antwort auf diese Frage ist zu diesem Zeitpunkt des Chemie-Unterrichts leider unmöglich, stattdessen muss jede Lehrkraft für sich überlegen, wie sie sich der Antwort nähern kann und gleichzeitig die Grenzen des Zeit- und Lehrplans nicht sprengt. Dieser Versuch mit Schuhkartons bringt den Lernenden daher näher, dass sie nicht sichtbare Dinge auch nicht vollständig beschreiben können, jedoch eine grobe Vorstellung entstehen kann. Diese Erkenntnis wird anschließend auf die Vorstellung der kleinen Teilchen übertragen. Methodische Analyse Die Knet-Modelle der oben genannten Einheit können als Einstieg dienen und die Erinnerung an das Ergebnis der vergangenen Stunde aktivieren. Daraus entsteht die Frage, wie die kleinen Teilchen von Zucker denn wirklich aussehen und ob eines der Knet-Modelle "richtig" ist. Der Versuch in dieser Stunde und die entsprechende Auswertung bringen eine Annäherung an die Antwort. Am Ende steht die Einigung auf ein Modell für die kleinen Teilchen, mit dem im Chemie-Unterricht vorerst gearbeitet werden kann, auch wenn es nicht vollständig der Wirklichkeit entspricht. Fachkompetenz Die Schülerinnen und Schüler beschreiben Phänomene und Vorgänge mit einfachen naturwissenschaftlichen Konzepten. verwenden bei der Beschreibung naturwissenschaftlicher Sachverhalte Fachbegriffe angemessen und korrekt. beobachten Phänomene nach vorgegebenen Kriterien und unterscheiden zwischen der Beschreibung und der Deutung einer Beobachtung. beschreiben einfache Modelle zur Veranschaulichung naturwissenschaftlicher Zusammenhänge und geben Abweichungen der Modelle von der Realität an. Medienkompetenz Die Schülerinnen und Schüler lesen altersgemäße Texte mit naturwissenschaftlichen Inhalten wie die Informationen zum Thema "Kleine Teilchen" Sinn entnehmend und fassen sie sinnvoll zusammen. Sozialkompetenz Die Schülerinnen und Schüler arbeiten bei dem "Karton-Versuch" mit einer Partnerin, einem Partner oder in einer Gruppe gleichberechtigt, zielgerichtet und zuverlässig zusammen.

  • Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I

Bioethanol: Herstellung und Anwendungen

Unterrichtseinheit

Die Nutzung von nachwachsenden Rohstoffen für die Erzeugung von Biokraftstoffen, Biogas und Festbrennstoffen ist vor dem Hintergrund der internationalen Klimaschutzbemühungen ein aktuelles Thema. Dies besonders, weil der Anteil erneuerbarer Energien am Endenergieverbrauch steigen muss, wenn der noch große Anteil der fossilen Energieträger zurückgehen soll.Es ist zwar nicht kurz vor zwölf, dennoch müssen wir uns intensiv damit auseinandersetzen, welche Energien außer den fossilen als Alternativen für eine sichere Zukunft zur Verfügung stehen. Bei diesen Überlegungen darf natürlich auch nicht die globale Klimaproblematik außer Acht gelassen werden. Ein Lösungsvorschlag ist Bioethanol. Bereits heute ist in Deutschland gesetzlich geregelt, dass dieser aus Pflanzen hergestellte Kraftstoff dem herkömmlichen Benzin beigemischt werden muss. Doch wer ist eigentlich auf die Idee gekommen, ausgerechnet Alkohol als Kraftstoff zu verwenden? Woraus und wie erfolgt die Herstellung in Deutschland? Ist das Ganze ökonomisch sowie ökologisch tragbar? Welches Potenzial steckt in Bioethanol? In dieser Unterrichtsreihe erarbeiten die Schülerinnen und Schüler in einem Lernzirkel viel Interessantes rund um das Thema Bioethanol. Relevanz des Themas im Unterricht Nachhaltiges Handeln wird in Bezug auf die uns zur Verfügung stehenden Energieressourcen immer wichtiger. Fossile Lagerstätten von Energieträgern sind nicht unbegrenzt vorhanden, zudem erwächst aus der Verbrennung fossiler Brennstoffe eine zunehmende Klimaproblematik. Daher bedarf es neuer Wege, Kraftstoffe bereitzustellen, und das möglichst umweltfreundlich. Eine Möglichkeit kann hier das Bioethanol sein. Was in den USA und Brasilien begonnen hat, wird seit Beginn des 21. Jahrhunderts im großen Stil betrieben: die Herstellung des klimaneutralen Kraftstoffs aus nachwachsenden Rohstoffen wie zum Beispiel Getreide und Zuckerrüben. Bei der Herstellung von Bioethanol entstehen in großem Umfang zahlreiche Nebenprodukte (auch Kuppel- oder Koppelprodukte genannt), wie Futter- und Düngemittel. Wirtschaftlich und politisch aktuell und lebensnah Mehrere wissenschaftliche Arbeitsgruppen arbeiten zudem an Optimierungsmöglichkeiten im Herstellungsprozess sowie an der Nutzung anderer Ausgangsstoffe, wie zum Beispiel Lebensmittelabfälle. Dies zeigt, dass "Biosprit" in den Augen vieler Wissenschaftler eine Zukunft hat. Auch politisch ist das Thema Bioethanol aktuell, da zum Beispiel die obligatorische Beimischung zu fossilem Ottokraftstoff gesetzlich geregelt ist. Die wirtschaftliche und politische Aktualität wie auch die Verknüpfung zum Alltag der Schülerinnen und Schüler (die eigene Mobilität) können die Motivation steigern. Lehrplanbezug und Voraussetzungen Die Einordnung des Themas in die Lehrpläne der verschiedenen Schulformen wird dargestellt. Außerdem erhalten Sie wertvolle Tipps zur technischen Umsetzung. Hinweise zum Unterrichtsverlauf Die Unterrichtseinheit ist in Form eines Lernzirkels aufgebaut, den die Schülerinnen und Schüler in Kleingruppen durchlaufen. Fachkompetenz Die Schülerinnen und Schüler sollen wichtige Stationen in der Geschichte des Bioethanols in einem Zeitstrahl einordnen. die Herstellung von Bioethanol erklären. Haupt- und Nebenprodukte der Bioethanolproduktion nennen. experimentelle Untersuchungen zur Fermentation durchführen. in selbst erhobenen oder recherchierten Daten Trends, Strukturen und Beziehungen erklären und geeignete Schlussfolgerungen ziehen. Medienkompetenz Die Schülerinnen und Schüler sollen unterschiedliche Textquellen für die Recherchen zum Thema Bioethanol nutzen. fachlich korrekt und folgerichtig argumentieren. Sozialkompetenz Die Schülerinnen und Schüler sollen die Arbeit im Team strukturieren und planen. Thema Bioethanol - Herstellung und Anwendungen Autor Rolf Goldstein Fächer Biologie, Chemie, Geographie, Politik/SoWi Zielgruppe Klasse 9 oder 10 Schulformen Hauptschule, Realschule, Gymnasium Zeitraum 4 Schulstunden Technische Voraussetzungen ein Computer mit Internetzugang pro Kleingruppe Ansatzpunkte Eine direkte Einordnung in die Lehrpläne gestaltet sich schwierig. Jedoch lassen sich für die verschiedenen Unterrichtsfächer Ansatzpunkte finden: Biologie Stoffkreisläufe, Treibhauseffekt, globale Umweltfragen, nachwachsende Rohstoffe Chemie Alkoholische Gärung, Green Chemistry, nachwachsende Rohstoffe Geographie Raumprägung durch die Wirtschaft, Politik und Gesellschaft Politik/SoWi Ökonomie und Arbeitswelt Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Hauptschule, Jahrgangsstufen 5 bis 9/10. 2002. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Bildungsgang Realschule, Jahrgangsstufen 5 bis 10. 2002. Hessisches Kultusministerium (Herausgeber): Lehrplan Chemie. Gymnasialer Bildungsgang, Jahrgangsstufen 8 bis 13. Sekretariat der Ständigen Konferenz der Länder in der Bundesrepublik Deutschland (Herausgeber): Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München/Neuwied: Luchterhand, 2005. Technische Voraussetzungen Die zur Erfüllung der Arbeitsaufträge relevanten Links führen zu HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Pro Kleingruppe sollte mindestens ein Computer mit Internetzugang vorhanden sein. Sollte ein Programm zur Erstellung von MindMaps genutzt werden, kann beispielsweise das Programm XMind Verwendung finden (zum Beispiel kostenlos zu beziehen unter www.xmind.net/downloads ). Es lässt sich intuitiv bedienen und liefert anschauliche Ergebnisse. Fachliche Voraussetzungen Die Schülerinnen und Schüler sollten im Unterricht bereits Stoffkreisläufe kennengelernt haben. Auch der Umgang mit Infografiken und anderen Schaubildern sollte bekannt sein. Kenntnisse über die chemischen Grundlagen von Ethanol sind von Vorteil, aber nicht zwingend notwendig. Die Medienkompetenz der Schülerinnen und Schüler sollte bereits soweit ausgebildet sein, dass sie in der Lage sind, eigenständig und zielorientiert im Internet zu recherchieren sowie ein Tabellenkalkulationsprogramm mit seinen Grundfunktionen zu bedienen. Blitzlicht, stummer Impuls oder Video Zunächst werden in einem kurzen Blitzlicht Schüleräußerungen zum Thema "Bioethanol" an der Tafel festgehalten. Alternativ ist auch ein stummer Impuls durch ein Bild möglich, um den Schülerinnen und Schülern direkt einen Kontext aus dem eigenen Alltag anzubieten. Kurzer Überblick Im Anschluss daran wird den Schülerinnen und Schülern kurz ein Überblick über die Unterrichtseinheit gegeben. Diese Einstiegsphase sollte nicht länger als zehn Minuten dauern. Versuch zur alkoholischen Gärung Anschließend teilen sich die Schülerinnen und Schüler in Kleingruppen auf und führen das Schülerexperiment zur Fermentation durch (siehe Material 1). Ob Bioethanol entstanden ist, werden die Schülerinnen und Schüler in der abschließenden Stunde der Unterrichtseinheit überprüfen. Das Experiment kann auch als gemeinsame Hausaufgabe in die häusliche Küche verlegt werden, um in der Schule Zeit zu sparen. Die Schülerinnen und Schüler müssen dann lediglich zur folgenden Stunde ihre Ansätze mitbringen. Vorbereitungen Kopieren Sie alle Arbeitsblätter bitte in Klassenstärke. Gehen Sie mit den Schülerinnen und Schülern zu Beginn der Stunde den Laufzettel durch und erinnern Sie sie auch an allgemeine Verhaltensregeln bei einem Lernzirkel. Vergessen Sie auch nicht, den zeitlichen Rahmen abzustecken, damit alle Gruppen die Pflichtstationen erledigen können. Bei der Gruppenorganisation können Rollenkarten helfen, um die Teamorganisation zu erleichtern. An einem gesonderten Tisch im Raum werden die Arbeitsblätter zu den Stationen deponiert und bei Bedarf geholt. Natürlich steht es Ihnen frei, die Arbeitsblätter auch digital zu verwenden. Selbstgesteuertes Arbeiten Die Arbeit im Lernzirkel erfolgt in den Schülergruppen eigenständig und überwiegend selbstgesteuert. Die Schülerinnen und Schüler überprüfen ihre Ergebnisse selbsttätig am Lehrertisch nach Ihrer Freigabe. Der Lehrkraft kommt in dieser Phase die Rolle eines Lerncoaches zu. Nachweis von Alkohol im Gäransatz Im ersten Teil dieser Stunde überprüfen die Schülerinnen und Schüler in Kleingruppen mit einem sehr empfindlichen Nachweis, ob bei der Fermentation Alkohol entstanden ist. Abschließend tragen die Schülerinnen und Schüler in einem Blitzlicht ihren Lernzuwachs zusammen. Mögliche Fragen können sein: Was wusste ich schon? Was war mir neu? Ist Bioethanol ein möglicher Energieträger für die Zukunft? Anfertigung einer MindMap Alternativ oder auch zusätzlich können die Schülerinnen und Schüler nach Durchlauf des Lernzirkels eine MindMap anfertigen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Dreisatz und Prozentrechnung im Alltag

Unterrichtseinheit

In diesem Arbeitsblatt zum Thema "Dreisatz und Prozentrechnung" wenden die Schülerinnen und Schüler den Dreisatz und die Prozentrechnung am Beispiel typischer Tätigkeiten in ihrem Lieblings-Friseursalon an: von der Berechnung eines Mischungsverhältnisses über Preiskalkulation von Einzel- und Mengenprodukten bis hin zur Preiserhöhung oder -rabattierung. Es kann ergänzend zur Unterrichtseinheit "Haare färben – für immer oder für eine bestimmte Zeit?" oder davon unabhängig genutzt werden. Dieses Arbeitsblatt kann als weiterführendes Material für die Unterrichtseinheiten "Haare färben – für immer oder für eine bestimmte Zeit?" oder auch "Wunderwelt Haare" genutzt werden und wird dabei in den Rahmenlehrplan der Sekundarstufe I eingeordnet. Thematisch orientiert es sich an der Verwendung des Dreisatzes und der Prozentrechnung in Bezug auf das Färben der Haare mit Haarfärbemitteln. Hierfür werden benötigte Details in einem kurzen Informationstext eingeführt. Das Arbeitsblatt kann in den Fächern Mathematik oder Chemie, aber auch als fächerübergreifender Exkurs im Fach Biologie eingesetzt werden. Die Aufgaben greifen typische Sachprobleme mit direktem Bezug zum Friseur-Handwerk auf, wodurch ein guter Einblick in den Alltag eines Friseurs oder einer Friseurin möglich ist. Je nach Bedarf können Aufgaben in unterschiedlichen Schwierigkeitsstufen ausgewählt oder weggelassen werden.

  • Mathematik
  • Sekundarstufe I

Haar ist nicht gleich Haar – Haarsorten im Vergleich

Unterrichtseinheit

Dieses Unterrichtsmaterial beantwortet spannende Fragen aus der Wunderwelt Haare: Warum sind unsere Haare so wie sie sind? Und was verraten sie über unsere Herkunft? Das Arbeitsblatt kann ergänzend zu den Unterrichtseinheiten "Wunderwelt Haare" und "Haare färben" genutzt werden, ein davon losgelöster Einsatz ist dabei ebenso möglich. Mithilfe dieses ergänzenden Arbeitsblattes lernen die Schülerinnen und Schüler im Biologie- und/oder Chemie-Unterricht der Sekundarstufe I spielerisch die verschiedenen Haarsorten des Menschen kennen, indem sie zunächst durch einen Bestimmungstest ihren eigenen Haartyp ausfindig machen. Eine Definition gibt Aufschluss darüber, welchem Haartyp sie angehören. Es folgt eine Internetrecherche, in welcher sie herausfinden sollen, wie oft welcher Haartyp in der Welt vorkommt. In einem weiteren Informationstext erfahren die Schülerinnen und Schüler aus biologischer Sicht, warum Haare glatt, kraus, wellig oder gelockt sind, indem der Text auf die genetische Veranlagung der Haarfollikel, den Wuchswinkel zur Kopfhaut sowie auf die Verbindungen der Keratinstränge durch Wasserstoffbrücken eingeht. Das ergänzende Arbeitsblatt eignet sich als Ergänzung zu den Unterrichtseinheiten "Wunderwelt Haare" und "Haare färben - für immer oder für eine bestimmte Zeit?" , kann aber auch davon losgelöst eingesetzt werden, zum Beispiel in Vertretungsstunden. Die Aufgaben dieser Kopiervorlage können in Einzel- oder Paararbeit gelöst werden. Hier bietet sich individuell förderliche Binnendifferenzierung nach Sozialform an.

  • Biologie
  • Sekundarstufe I

ATP-Synthase – Synthese von Energieäquivalenten

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Chemie-Unterricht beschäftigen sich die Schülerinnen und Schüler mit der ATP-Synthase. Die Regeneration des zentralen zellulären Energieträgers wird zum überwiegenden Teil von der ATP-Synthase gewährleistet. Die hier vorgestellte Lernumgebung ermöglicht Schülerinnen und Schülern eine aktiv-forschende Auseinandersetzung mit der Funktionsweise dieses komplexen Enzyms.In der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" kommen dynamische Arbeitsblätter zum Einsatz. Dies sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen auch dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flashbasierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden.Die Struktur-Funktions-Beziehungen werden in der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als "Leitplanken" bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. "Informations-Popups" und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Die Schülerinnen und Schüler lernen die ATP-Synthase als Beispiel eines Enzyms kennen. lernen den Aufbau der ATP-Synthase kennen. erschließen ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend. lernen die Möglichkeiten des Molekülbetrachters Jmol kennen und lernen den Umgang mit dem Werkzeug. beschreiben am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms. Räumliche Vorstellung als Verständnisvoraussetzung Das Vorstellungsvermögen von Schülerinnen und Schülern in Bezug auf die dreidimensionale Struktur von Enzymen ist meist schwach ausgeprägt. In Schulbüchern werden die Lernenden häufig mit "flachen" und schematischen Darstellungen konfrontiert. Moderne Lehrwerke enthalten zwar schon dreidimensional wirkende Grafiken, die mit einer Molekülbetrachter-Software erzeugt wurden. Dennoch haben die Jugendlichen oft große Schwierigkeiten, sich den Aufbau von Enzymen vorzustellen. Das führt häufig zu Verständnisproblemen oder auch falschen Vorstellungen über den Aufbau und die Funktionsweise der Biokatalysatoren. Die Kenntnis der dreidimensionalen Strukturen ist jedoch die Voraussetzung für ein tieferes Verständnis der Natur der Enzyme, ihrer Funktionen, der Interaktion zwischen Enzym und Substrat und vor allem der engen Beziehung zwischen Struktur und Funktion. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Werden die interaktiven Applets zusammen mit Texten, Grafiken und Animationen in HTML-Seiten eingebettet, entsteht eine neue Form von Arbeitsmaterial - das dynamische Arbeitsblatt. Der Vorteil: Interaktive Materialien, Aufgaben und Hilfen stehen in einem Medium auf einen Blick zur Verfügung! Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot von einem der Arbeitsblätter zur ATP-Synthase. Hinweise zu dynamischen Arbeitsblättern mit interaktiven 3D-Molekülen und deren Einsatz im Biologie- oder Chemieunterricht finden Sie in dem Übersichtsartikel "Dynamische Arbeitsblätter mit 3D-Molekülen" . Struktur von Enzymen - ein schwer zu vermittelndes Thema Im Anschluss an die Behandlung von Glykolyse, Citratzyklus und Atmungskette integriert die hier vorgestellte Lernumgebung das zu Beginn des Themenbereichs "Stoffwechsel" erarbeitete Wissen über den Aufbau und die Funktion von Enzymen. Im Sinne eines Spiralcurriculums werden früher gelernte Grundlagen auf aktuelle Lerninhalte angewandt, wiederholt und eingeübt. Im Rahmen der funktionellen Vielfalt der Proteine lernen Schülerinnen und Schüler Enzyme als Biokatalysatoren kennen. Dabei bleibt deren Funktionsweise jedoch häufig unklar. Die Bildung eines Enzymsubstratkomplexes wird mit einer Schlüssel-Schloss-Analogie vermittelt. Diese vereinfachende Darstellung ist zwar einleuchtend, führt jedoch auch dazu, dass den Lernenden die Komplexität der Enzyme nicht bewusst wird. Sie haben daher Schwierigkeiten sich anschaulich vorzustellen, dass für jede biochemische Reaktion in der Zelle ein spezialisiertes Enzym zur Verfügung steht. Es fällt ihnen schwer, Strukturen von Enzymen mit deren Funktionen im Stoffwechsel in Zusammenhang zu bringen. Die ATP-Synthase - meist nur eine "Black Box" Im Themenbereich "Stoffwechsel" wird auch die Gewinnung von Energieäquivalenten in Form von ATP durch das Enzym ATP-Synthase angesprochen. Dies wird zumeist als Faktum präsentiert. Die Lernenden erfahren, dass das Enzym den Transport von Protonen (entlang ihres Konzentrationsgefälles) mit der Bildung von ATP aus ADP und anorganischem Phosphat koppelt. Dies wird in der Regel mithilfe "flacher" und statischer Darstellungen vereinfacht visualisiert. Ziel der 3D-Materialien: Zusammenspiel von Struktur und Funktion Für die in den Bildungsstandards geforderte Auseinandersetzung mit Struktur-Eigenschaftsbeziehungen in der Biologie bietet sich die Untersuchung von Proteinstrukturen eigentlich geradezu an. Das Problem: Mit "klassischen" Materialien verläuft das Unterfangen meist unbefriedigend. Häufig werden die molekularen Strukturen und deren Funktion im Unterricht auch unabhängig voneinander betrachtet, ohne den engen Zusammenhang zu thematisieren. Die hier vorgestellte Lernumgebung soll Abhilfe schaffen und die Lernenden am Beispiel der ATP-Synthase exemplarisch und anschaulich an die Untersuchung von Struktur-Funktions-Beziehungen heranführen. Die Lernumgebung der Unterrichtseinheit besteht aus HTML-Seiten, die mit gängigen Browsern betrachtet werden können. Die darin eingebetteten Darstellungen der Moleküle sind als Java-Applikationen plattformunabhängig. Die einzige Bedingung für ihre Nutzung ist, dass auf Ihrem Computer das kostenfreie Plugin Java Runtime Environment installiert ist. Für die verschiedenen Animationen benötigen Sie den ebenfalls kostenfreien Flash- oder Quicktime-Player. Eine Lenkung der Aufmerksamkeit der Schülerinnen und Schüler erfolgt bereits durch den formalen Aufbau der Arbeitsblätter. Jede Seite richtet den Blick auf einen anderen Aspekt der ATP-Synthase (Lokalisierung, F0- beziehungsweise F1-Struktur und -Funktion, Stator). Die vorgegebenen Beobachtungsaufträge sorgen dafür, dass den Lernenden die wesentlichen Informationen nicht entgehen. Die Arbeitsaufträge im unteren Feld sind durch Piktogramme als Beobachtungsaufgaben (Auge) und Schreibaufgaben (Stift) gekennzeichnet. Die eigenständige Entdeckungsreise der Schülerinnen und Schüler in den Struktur-Funktionszusammenhang der ATP-Synthase wird durch Zusatzinformationen (Popups) unterstützt. Sie beinhalten weitere nützliche Informationen, wie zum Beispiel zum Aufbau von ATP (Abb. 2, Platzhalter bitte anklicken) oder zum Modell des Protonentransports durch die Membran. Diese Informationsboxen können durch einen Klick auf die "i"-Piktogramme aufgerufen werden. Auf den dynamischen Arbeitsblättern zum molekularen Aufbau der F0- und F1-Struktur finden sich Buttons und Arbeitsaufträge "für Experten". Diese ermöglichen eine Binnendifferenzierung. Betrachtet wird hier die Verteilung hydrophiler und hydrophober Aminosäurereste im F1- und F0-Komlex. Dabei lässt sich sehr schön der Unterschied zwischen den transmembranen und den außerhalb der Membran liegenden Bereichen erkennen und thematisieren. Abb. 3 zeigt zwei Ansichten des F0-Komplexes. Hydrophile Aminosäuren sind rot, hydrophobe grün dargestellt. Die linke Teilabbildung zeigt den dem Intermembranraum zugewandten Teil des F0-Komplexes, während die rechte Teilabbildung einen Blick auf die der Lipidphase der Membran zugewendeten Proteinoberflächen zeigt. Abb. 4 zeigt den "Grundzustand" des F1-Komplexes in der Lernumgebung (linke Teilabbildung) sowie den F1-Komplex nach Aktivierung der Funktion "Hydrophobe und hydrophile Bereiche" (rechte Teilabbildung). Diese allgemeine Thematik wurde bereits bei der Besprechung des Membranaufbaus und des Membrantransports erwähnt. An dieser Stelle kann sie eindrucksvoll wiederholt beziehungsweise angewendet werden. Nach der Bearbeitung von Glykolyse, Citratzyklus und Atmungskette wird die ATP-Synthase als die "Maschine" vorgestellt, die den Protonengradienten über der inneren Mitochondrienmembran für die Synthese von ATP nutzt. Dabei werden pro gebildetem ATP drei Protonen durch die Membran befördert, um ein ATP-Molekül zu generieren (dies gilt für Bakterien, siehe Tabelle unten). Zum Einstieg wird per Beamer eine Animation präsentiert, die eine rotierende ATP-Synthase "in Aktion" zeigt (Abb. 5, Platzhalter bitte anklicken). Die Animation wurde von der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge) entwickelt. Eine kleine Version des Films befindet sich auch in der Lernumgebung. Für den Impuls per Beamerpräsentation sollte aber das größere Format verwendet werden, das im Internet zur Verfügung steht (siehe unten). Die Dynamik der Darstellung weckt das Interesse der Lernenden, eine Analyse der Abläufe ist jedoch (noch) nicht möglich. Das Interesse der Schülerinnen und Schüler kann durch folgende Daten weiter angefacht werden: Die ATP-Umsatzrate liegt in Bakterienzellen bei bis zu 2.500.000 Molekülen pro Sekunde! Ein Mensch setzt pro Tag (in Ruhe) etwa 70 Kilogramm ATP um. Der menschliche Körper enthält (bei einem Gewicht von etwa 70 Kilogramm) nur 50 bis 200 Gramm ATP, das nach dem Verbrauch überwiegend durch die ATP-Synthase regeneriert wird. Nach diesen Impulsen fordert die Lehrperson die Schülerinnen und Schüler auf, sich einzeln oder in Partnerarbeit mithilfe der dynamischen Arbeitsblätter den Aufbau und die Funktion der ATP-Synthase soweit zu erschließen, dass sie im Anschluss daran erklären können, was in der gezeigten Animation dargestellt ist: The rotary mechanism of mitochondrial ATP synthase Animation aus der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge). Infos und weitere Animationen finden Sie hier . Kapitel Die dynamischen Arbeitsblätter sollen das Augenmerk der Lernenden auf den Zusammenhang zwischen Struktur und Funktion der ATP-Synthase richten. Das komplexe Molekül wird dabei in seine Bauteile (F0, F1, Stator) "zerlegt". Die Lernumgebung gliedert sich in folgende Kapitel: Lokalisierung Hier wird die Lokalisierung der ATP-Synthase als integrales Membranprotein der inneren Mitochondrienmembran dargestellt. Die Lage des Enzyms in Bezug auf den durch die Atmungskette aufgebauten Protonengradienten wird thematisiert. (Die Lernumgebung beschränkt sich exemplarisch auf die ATP-Synthase und deren Orientierung in der Mitochondrienmembran. Die Lokalisierung des Enzyms in Bakterien und Chloroplasten kann bei Bedarf im Anschluss an die Bearbeitung der Lernumgebung erfolgen.) F0-Struktur Die Schülerinnen und Schüler machen sich hier mit dem Aufbau der Transmembraneinheit der ATP-Synthase vertraut. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet und interpretiert werden. F0-Funktion Die Lernenden erkunden das auf der Hypothese des deutschen Biophysikers Wolfgang Junge basierende Modell des Protonentransports durch die Membran. Die Vorgänge werden durch eine Flash-Animation dynamisch dargestellt. F1-Struktur Die Schülerinnen und Schüler untersuchen den Aufbau der "Kopf"-Struktur der ATP-Synthase. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet, interpretiert und mit der Verteilung im F0-Komplex verglichen werden. F1-Funktion Hier werden die Vorgänge bei der Synthese von ATP aus ADP und Phosphat in der Kopf-Struktur der ATP-Synthase untersucht und durch Videosequenzen dynamisch dargestellt (Quelle der Filme: ATP Synthase Group, MRC Dunn Human Nutrition Unit, Cambridge). Stator - Struktur und Funktion Die Lernenden setzen sich mit der Funktion der Verbindung zwischen Membran- und Kopfteil auseinander und setzen ihre bisherigen Erkenntnisse zu einem Gesamtbild der ATP-Synthase-Funktion zusammen. Der größte Teil des ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch ATP-Synthasen gebildet. Ihr Aufbau unterscheidet sich in den verschiedenen Organismen in Details. Wie in der folgenden Tabelle zu erkennen, variiert zum Beispiel die Zahl der F0c-Untereinheiten und die Zahl der pro gebildetem ATP transportierten Protonen. ATP-Synthasen Anzahl der F0c-Peptide Protonen pro ATP Bakterien (Escherichia coli) 12 4 Mitochondrien (Hefe) 10 3,3 Chloroplasten (Spinat) 14 4,7 Das Grundprinzip der Struktur und der Funktion der ATP-Synthasen ist jedoch bei allen Organismen dasselbe. Alle in den dynamischen Arbeitsblättern dargestellten Moleküle zeigen den Aufbau der ATP-Synthase des Darmbakteriums Escherichia coli. Der Modellorganismus wurde und wird von den ATP-Synthase-Forschern intensiv untersucht. Das animierte Funktionsmodell in dem Kapitel "F0-Funktion", das die Be- und Entladung von F0c-Untereinheiten mit Protonen zeigt (Abb. 6), gibt ebenfalls die Verhältnisse bei Escherichia coli wider. Die Aminosäuren ASP 61 und ARG 210 sind die funktionellen Aminosäuren der ATP-Synthase des Bakteriums. In der ATP-Synthase von Mitochondrien und Chloroplasten übernimmt die ebenfalls saure Aminosäure Glutaminsäure (GLU) die Funktion der Asparaginsäure (ASP). In einem letzten Informations-Popup der Lernumgebung wird unter der Überschrift "Nur ein Modell" darauf hingewiesen, dass die dargestellte Funktionsweise der ATP-Synthase ein Modell ist, das den derzeitigen Stand der Forschung widerspiegelt. Es ist wichtig, die Schülerinnen und Schüler darauf hinzuweisen, dass der Mechanismus der ATP-Synthese noch nicht vollständig geklärt ist und dass sie sich hier in "Grenzgebieten" der aktuellen Forschung bewegen. Je nach Zeitreserve und Interesse der Lerngruppe können die noch offenen Fragen angesprochen werden. Zudem bietet sich hier eine allgemeine Diskussion über die Bedeutung und die Aussagekraft von Modellen in den Naturwissenschaften an. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe II

Rund um den Wasserstoff

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Funktionsweise einer Brennstoffzelle kennen, wobei auf die verschiedenen Herstellungsverfahren des Wasserstoffs in Bezug auf die Nachhaltigkeit eingegangen wird. Außerdem wird Wasserstoff hinsichtlich einer möglichen zukünftigen Antriebstechnologie beleuchtet. Diese Unterrichtseinheit kann in den Rahmenlehrplan der Sekundarstufe II eingeordnet werden. Thematisch orientiert sie sich dabei an den aktuell auch politisch stark diskutierten Themen der Nachhaltigkeit und der Sicherung der Energieversorgung. Im Detail wird hier auf elektrochemische Prozesse im Alltag und Energiewandlungssysteme eingegangen. Besonderes Augenmerk wird dabei auf die Funktionsweise der Wasserstoffbrennstoffzelle für Personenkraftwagen gelegt. Die schon lange bekannte Elektrolyse von Wasser, als ein zukünftig wichtiges Herstellungsverfahren des Wasserstoffs, wird in diesem Zusammenhang ebenfalls betrachtet. Die Aspekte der Nachhaltigkeit werden in weiterführenden Aufgabenstellungen diskutiert. Hierbei lernen die Schülerinnen und Schüler verschiedene Herstellungsverfahren in Hinblick auf die Umweltverträglichkeit zu bewerten. In einigen Aufgabenstellungen wird dabei die eigene Recherchefähigkeit entwickelt und verbessert. Energieträger der Zukunft Vor allem hinsichtlich des stetig steigenden Bedarfs an Energie und der Aktualität in der Gesellschaft gewinnt Wasserstoff als möglicher Energieträger der Zukunft an Relevanz. Die fossilen Brennstoffe stehen zunehmend in der Kritik, weswegen eine frühzeitige Sensibilisierung der Schülerinnen und Schüler für dieses Thema wichtig ist. Hinsichtlich der Dringlichkeit der Energiewende und dem damit verbundenen Vorsatz der deutschen Bundesregierung, die Kohlenstoffdioxidemissionen zu reduzieren, sollte diese Thematik ebenfalls in den Schulunterricht eingebunden werden. Curriculum und Vorwissen Die Unterrichtseinheit ist ideal für den Chemieunterricht der Sekundarstufe II geeignet. Sie kann für den Kontext "Energie und chemische Reaktionen" genutzt werden und bezieht sich dabei vor allem auf die Rahmenlehrpläne der Länder Berlin, Brandenburg und Nordrhein-Westfalen. Die Einheit kann aber ebenso fächerübergreifend als Exkurs im Fach Physik eingesetzt werden. Für die Bearbeitung der Aufgaben sollte ein gewisses chemisches Grundlagen-Wissen, wie beispielsweise das Aufstellen von Reaktionsgleichungen sowie eine grundlegende textsortenspezifische Lesekompetenz von Fachtexten, vorhanden sein. Weiterhin sind keine Vorkenntnisse notwendig, da die Arbeitsblätter relevante Informationen zur Bearbeitung der Aufgaben liefern. Unterrichtsablauf und Lehrinhalte In der ersten Doppelstunde wird zunächst in das Thema Wasserstoff eingeleitet, wobei in erster Linie auf die Darstellung im Labor sowie die Herstellung durch Elektrolyse von Wasser eingegangen wird. Wahlweise kann hier auch der Hofmannsche Zersetzungsapparat besprochen werden. Im weiteren Verlauf werden verschiedene großtechnische Herstellungsmethoden in Hinblick auf den Umwelteinfluss besprochen. Insbesondere sollte dabei die kritische Betrachtung der Nutzung von Energie behandelt werden. Im Anschluss erarbeiten sich die Schülerinnen und Schüler allgemeine Informationen über die Wasserstoff-Brennstoffzelle in Still- oder Paararbeit. An dieser Stelle kann die Funktionsweise anhand eines veranschaulichenden Videos thematisiert werden. Schüleraktivierung und Binnendifferenzierung Die Unterrichtseinheit bietet ausreichend Möglichkeiten, darbietenden Unterricht und aktive Mitgestaltung durch Schülerinnen und Schüler zu variieren. Sie ist realitätsnah gestaltet und bietet außerdem höchste Aktualität. Mögliche Differenzierung: Mit den Arbeitsaufträgen kann flexibel umgegangen werden. Es besteht die Möglichkeit, aus verschiedenen Schwierigkeitsstufen zu wählen und einzelne Aufgaben herauszunehmen oder als Hausaufgabe zu vergeben. Die Bewertungsaufgabe ( Arbeitsblatt 2 , Aufgabe 5) kann als Grundlage für eine methodische Diskussion herangezogen werden. Weiterführend zu dieser Unterrichtseinheit können Lithium-Ionen-Batterien als Pendant zur Brennstoffzelle oder weitere Energiespeicherformen thematisiert und ergänzt werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Vorgänge bei der Wasserelektrolyse. lernen die komplexe Funktionsweise einer Brennstoffzelle kennen. bewerten die Relevanz der angewandten Chemie hinsichtlich der Energieversorgung. können Phänomene der Stoff- und Energieumwandlung bei chemischen Reaktionen erklären. Medienkompetenz Die Schülerinnen und Schüler stärken ihre Fähigkeit, den Computer für die Recherche zu nutzen. Sozialkompetenz Die Schülerinnen und Schüler können kritisch hinterfragen. können in einer Diskussion das Für und Wider betrachten. können ihr Wissen auf fächerübergreifende Problemstellungen anwenden.

  • Chemie
  • Sekundarstufe II

Die Zukunft des Fliegens – nachhaltige Lösungen für die Luftfahrt von morgen

Unterrichtseinheit

Klimaneutralität ist das zentrale Ziel der Luftfahrt, das mit technischen Innovationen und alternativen Antrieben erreicht werden soll. Wie realistisch sind die verschiedenen Ideen und was ist bereits Realität? Diesen und weiteren spannenden Fragen gehen die Lernenden in dieser Einheit auf den Grund. Die Unterrichtseinheit kann im MINT-Unterricht der Klassenstufen 9 bis 13 in den folgenden lehrplanrelevanten Kontexten, idealerweise fächerverbindend, eingesetzt werden: Geographie: Verkehr und Umwelt, Ballungsräume – Probleme und Chancen; Flugbewegung, Flugrouten, Navigation Chemie: Treibstoffe: Eigenschaften, Herstellung, Verwendung, Ökobilanz; alternative Treibstoffe (fossiles Kerosin durch nachhaltigen Flugkraftstoff ersetzen, E-Fuels, synthetisches Kerosin, Brennstoffzellen, Batterien) Technik : Das Flugzeug der Zukunft (Antriebstechnologie, Design etc.) Weitere Fachanbindungen, etwa ans Fach Deutsch , sind beispielsweise durch das Schreiben eines Kommentars zum Thema Flugscham unter Berücksichtigung dessen charakteristischen Aufbaus gegeben. Auch lassen sich naturwissenschaftsbezogene Kompetenzen für den Lernbereich Globale Entwicklung im Themenbereich "Mobilität und Verkehr" fördern. Der Luftfahrtsektor auf dem Weg zur Nachhaltigkeit Die Anzahl der Flugreisen wächst seit Jahren kontinuierlich. Abgesehen vom markanten Corona-Einbruch im Jahr 2020 ist der Trend sehr deutlich. Bis 2040 wird sich die Zahl der Flugpassagiere mehr als verdoppeln, so eine Prognose des Deutschen Zentrum für Luft- und Raumfahrt (DLR). Neue Treibstoffe, neue Antriebe, neue Flugzeugentwürfe und modernere Navigation sind hierbei entscheidende Faktoren. Die Luftfahrtindustrie forscht mit Hochdruck an zukunftsfähigen und nachhaltigen Technologien . Das Unterrichtsmaterial gibt einen Einblick in aktuelle Entwicklungen. Vorkenntnisse Die Fähigkeit zur Informationsausnahme aus Texten, Schaubildern, Grafiken, Videos und weiteren Quellen sollte eingeübt sein. Themenbezogene Fachbegriffe und Abkürzungen werden gesondert in einem Glossar erklärt. Selbstständige Arbeit in (Klein-)Gruppen sollte vorausgesetzt werden können. Aufbau der Unterrichtseinheit und fächerverbindender Ansatz Die Einheit gliedert sich in insgesamt fünf Kapitel. Zu jedem Kapitel gibt es ein Arbeitsblatt und gegebenenfalls Materialblätter mit zusätzlichen Informationen, die zur Bearbeitung der Aufgaben benötigt werden. Die einzelnen Kapitel und Arbeitsblätter bauen aufeinander auf und sollten idealerweise in der vorgegebenen Reihenfolge durchlaufen werden. Um die Unterrichtszeit für den Austausch und die Ergebnisbesprechung optional zu nutzen, können viele Aufgaben als unterrichtsvorbereitende Hausaufgabe aufgegeben werden. Der letzte Baustein "Berufsfelder" kann ausgeklammert oder im Rahmen der Berufsorientierung aufgegriffen werden. Insgesamt lässt sich die gesamte Einheit mit allen Arbeitsblättern in circa 10 Unterrichtsstunden bearbeiten. Die genaue Zeit variiert je nach Zeitbedarf für die Präsentationen sowie die Diskussionen im Anschluss an die Arbeitsphasen. Ideal ist die Erarbeitung im MINT-Fächerverbund, vor allem die Fächer Geographie, Chemie und Technik lassen sich wunderbar miteinander verbinden. Methodische Hinweise Der vorgeschlagene Unterrichtsablauf ist gekennzeichnet von methodischer Varianz: In einer Motivationsphase werden die Schülerinnen und Schüler für das Thema interessiert. Bist du selbst schon geflogen? Welche Verkehrsmittel nutzt du und für welchen Anlass? Dabei werden Vorkenntnisse in Erinnerung gerufen. In zahlreichen Fachphasen erfolgt in Einzelarbeit oder in Paar- oder Kleingruppen die weitgehend selbstständige Bearbeitung der Arbeitsblätter. Eine Ergebnisbesprechung und Ergebnispräsentation erfolgt meist im Plenum. Expertengruppen werden in der Sequenz 3 "Klimafreundlicher Luftverkehr" gebildet, die Kleingruppenarbeit erfolgt zu den Schwerpunkten "Das Flugzeug der Zukunft" , alternative Treibstoffe und effizientere Flugführung. Das Thema "Klimafreundlicher Luftverkehr" wird somit aus verschiedenen Perspektiven mithilfe der in jeder Gruppe vertretenen Fachexperten erarbeitet und anschließend im Plenum in einer Präsentations- und Diskussionsphase vorgestellt und diskutiert. Sequenz 4 bietet die Möglichkeit zur kreativen Umsetzung: Wie stellst du dir das Fliegen im Jahr 2050 vor? Hier sind der digitalen oder analogen Darstellung keine Grenzen gesetzt. MINT-Fachkompetenzen Die Schülerinnen und Schüler erkennen, beschreiben und bewerten die individuelle, gesellschaftliche und historische Bedeutung von Transport und Verkehr in der globalisierten Welt. beschreiben und bewerten aktuelle Entwicklungen der Mobilität. analysieren mithilfe von Grafiken und Studien die Klimaverträglichkeit verschiedener Verkehrsmittel. Kernkompetenzen des Lernbereichs Globale Entwicklung Erkennen Die Schülerinnen und Schüler können Informationen aus Prognosen, Modellen und Zukunftsszenarien verarbeiten (1.3). zeigen anhand der Zukunft des Luftverkehrs Verknüpfungen zwischen gesellschaftlichen Entwicklungen und Erkenntnissen der Naturwissenschaften auf (3.5). Bewerten Die Schülerinnen und Schüler unterscheiden zwischen beschreibenden oder erklärenden (naturwissenschaftlichen) und normativen (ethischen) Aussagen (6.1). Handeln Die Schülerinnen und Schüler entwerfen Lösungsstrategien für Zielkonflikte auf dem Weg zu einer nachhaltigen Entwicklung und sondieren Umsetzungsmöglichkeiten (10.4).

  • Geographie / Jahreszeiten / Politik / WiSo / SoWi / Chemie / Natur & Umwelt / Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner