• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Proteine

Unterrichtseinheit

In dieser Unterrichtsstunde zum Thema Proteine erarbeiten die Schülerinnen und Schüler anhand eines Erklär-Videos und daran angelehnten Arbeitsmaterialien mögliche Funktionen und den strukturellen Aufbau von Proteinen. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.Die Schülerinnen und Schüler erarbeiten anhand dieses Materials grundlegendes Wissen über Proteine. Dazu stellen sie zunächst mögliche Funktionen von Proteinen übersichtlich zusammen. Anschließend beschäftigen sie sich mit dem Aufbau einzelner Aminosäuren, ihrer Peptidbindung und der räumlichen Anordnung der Aminosäuresequenzen. Optional kann das Thema in Richtung Proteinbiosynthese oder Proteinmodifikationen vertieft oder ein Kennenlernen der Proteindatenbank ermöglicht werden. Diese Unterrichtseinheit ist in Zusammenarbeit mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau entstanden, das mit dem Nobelpreis ausgezeichnete Forschung Schülerinnen und Schülern, Studierenden sowie dem wissenschaftlichen Nachwuchs näherbringen möchte. Die Unterrichtseinheit ergänzt dabei das Materialangebot der Mediathek der Lindauer Nobelpreisträgertagungen um konkrete Umsetzungsvorschläge für die Unterrichtspraxis in den Sekundarstufen. Weitere Unterrichtseinheiten aus diesem Projekt finden Sie im Themendossier "Die Forschung der Nobelpreisträger im Unterricht" . Das Thema Proteine im Unterricht Proteine übernehmen eine Vielzahl an täglichen Aufgaben und Funktionen im Organismus. Sie sind daher für das Fach Biologie von besonderer Bedeutung und finden auch im Fach Chemie ihre Relevanz als biochemische Makromoleküle. Im Rahmen der Unterrichtseinheit Zellbiologie oder Genetik werden Proteine in ihrer Synthese und Funktion genauer behandelt. Vorkenntnisse Es wird kein spezielles Fachwissen vorausgesetzt. Die Schülerinnen und Schüler werden aufgefordert, Strukturformeln von zwei Aminosäuren zu zeichnen. Hierbei können sie sich am Material orientieren. In einer Vertiefungsaufgabe kann die Proteinbiosynthese behandelt werden. Hierfür ist eine individuelle Recherche angedacht, sodass ein gemeinsames Grundwissen nicht notwendig ist. Didaktische Analyse Das Arbeitsmaterial ist als erste intensivere Auseinandersetzung mit dem Thema Proteine konzipiert. Die Schülerinnen und Schüler gewinnen zunächst einen Eindruck über die Bedeutung von Proteinen, wodurch ihr Interesse geweckt werden soll. Anschließend werden Funktionen und Aufbau von Proteinen so erarbeitet, dass die Lernenden wesentliche Grundlagen erhalten, ohne dabei zu sehr ins Detail zu gehen. Somit kann ein Überblick errungen werden, der nach Bedarf in den Folgestunden als gemeinsame Grundlage dienen kann. Methodische Analyse Durch die methodische Aufbereitung der Unterrichtssequenz wird eine hohe Schüleraktivität erreicht. Das Video als Medium erhält das durch den Einstieg geweckte Interesse am Thema Proteine aufrecht. Schwierige Arbeitsaufträge werden durch Partnerarbeiten aufgefangen. Durch Vertiefungsaufgaben kann bei Bedarf eine Binnendifferenzierung erfolgen. Fachkompetenz Die Schülerinnen und Schüler erarbeiten Funktionen und Aufbau von Proteinen anhand verschiedener Aufgabenstellungen. nutzen die Informationen aus einer schematischen Darstellung, um eine Peptidbindung an einem konkreten Beispiel formulieren zu können. präsentieren ihre Ergebnisse unter Verwendung der Fach- und Symbolsprache (Strukturformeln). Medienkompetenz Die Schülerinnen und Schüler können das in einem Video dargestellte Wissen nach Relevanz filtern und strukturiert wiedergeben. üben sich darin, aus komplexen und informationsreichen Internetquellen wesentliche Sachverhalte herauszuschreiben. Sozialkompetenz Die Schülerinnen und Schüler arbeiten konstruktiv und kooperativ in Partner- oder Gruppenarbeit. stärken ihr Selbstkonzept durch die geschützte Atmosphäre in den Partnerarbeitsphasen. diskutieren in Partner- oder Gruppenarbeit und äußern dabei ihre Meinung unter Nutzung ihrer fachlichen Kenntnisse. Hier können Sie sich das Video zur Unterrichtseinheit anschauen.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Biochemie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen, Anregungen und Arbeitsmaterial für den Unterricht zum Themenbereich Biochemie im Fach Biologie an weiterführenden Schulen. Das Angebot deckt die folgenden Themen ab: Proteine, Nukleinsäure, Fotosynthese und Nanotechnologie. Klicken Sie sich einfach mal durch! Das schöne in der Biologie ist der strenge Zusammenhang zwischen Struktur und Funktion von der Nano- bis zur Makroebene: Die Analyse dreidimensionaler Strukturen erweist sich stets als aufschlussreich und ist weit mehr als eine bloße "Bildbeschau". Franz Josef Scharfenberg vom Richard-Wagner-Gymnasium in Bayreuth hat die dreidimensionalen Ausarbeitungen von Eric Martz (University of Massachusetts, USA) zu unserem Blutfarbstoff für den Einsatz im deutschsprachigen Unterricht aufbereitet. Die dreidimensionale Darstellung der Proteinstrukturen, die mithilfe des kostenlosen Plugins Chime mit der Maus nach Belieben angefasst, gedreht und herangezoomt werden können, zeigen, was schon Thomas Mann wusste (woher eigentlich? - schließlich gelang das erste Beugungsbild eines Proteins Dorothy Hodgkin erst 1932): Proteine sind "unhaltbar verwickelt und unhaltbar kunstreich aufgebaute Eiweißmolekel" (aus "Der Zauberberg"). Es lohnt sich, einen genaueren Blick auf das Hämoglobin zu werfen. An diesem Beispiel lassen sich zahlreiche allgemeine Aspekte der Proteine und Enzyme herausarbeiten: Als oligomeres Protein bietet der Blutfarbstoff die Möglichkeit, alle Strukturhierarchien - von der Primär- bis zur Quartärstruktur - durchzuspielen. Von der Anordnung der Aminosäuren innerhalb der Untereinheiten - hydrophobe Aminosäureseitenketten an der Oberfläche, hydrophile im Inneren des Proteins - lässt sich leicht der Bogen zur thermodynamischen "driving force" des in der Primärstruktur kodierten Selbstfaltungsprozesses der Biopolymere schlagen. Hämoglobin ist zwar "nur" ein Transportprotein, seine in die Polypeptidketten eingebetteten Häm-Gruppen können jedoch - was die Architektur aktiver Zentren und die Modellierung ihrer katalytischen Aktivität betrifft - exemplarisch als prosthetische Gruppen der Enzyme betrachtet werden (schließlich wird Hämoglobin von Molekularbiologen gerne auch als "Enzym honoris causa" bezeichnet). Die auf dem Austausch einer einzigen Aminosäure basierende Sichelzellenanämie verdeutlicht stellvertretend für Erkrankungen wie Alzheimer oder BSE das Prinzip der auf Protein-Polymerisationen basierenden Erkrankungen. Das Startkapitel zeigt vier (zunehmend "abstrahierte") Darstellungsformen der Aminosäure Glycin. Diese "Struktursprachen" werden in den nachfolgenden Kapiteln wiederholt auf weitaus komplexere Strukturen angewendet. Das Glycin-Beispiel ist daher eine wichtige Einführung in die verschiedenen Darstellungsformen des gesamten Hämoglobin-Materials. Gezeigt werden die "ball and stick"-Projektion des Zwitterions (Vorsicht: Doppelbindungen werden nicht als solche dargestellt), eine raumfüllende Darstellung (Kalottenmodell; Abb. 1, Platzhalter bitte anklicken), die "stick"-Struktur sowie die "Aminosäure-Rückgrat"-Struktur (Hydroxylgruppe und Wasserstoffatome sind noch als "rudimentäre Stacheln" dargestellt). Wurden in dem vorausgegangenen Abschnitt die Darstellungsmöglichkeiten einer Aminosäure vorgestellt, werden diese hier auf ein Oligopeptid angewendet. Damit betritt man hier die Primärstruktur-Ebene. Als neue Darstellungsform wird schließlich das Polypeptidketten-Rückgrat vorgestellt (nicht zu verwechseln mit dem Aminosäure-Rückgrat). Zunächst wird die allgemeine Rückgrat-Struktur einer Aminosäure (ohne Seitenkette) dargestellt. Aus dieser Struktur wird das "allgemeingültige" Rückgrat eines Tripeptids aufgebaut. Die "anonymen" Einheiten werden durch Hinzufügen von Methylgruppen in ein Alanyl-alanin-alanin (Ala-Ala-Ala) umgewandelt. Um das ganze zunehmend komplexer zu machen, wird das Tripeptid in ein Lysyl-alanyl-alanin (Lys-Ala-Ala) und schließlich in ein Lysyl-alanyl-isoleucin (Lys-Ala-Ile) umgewandelt, bevor es zum Tetrapeptid ergänzt wird. Bis hierher folgen alle Darstellungen der "stick"-Struktur. Im Folgemodul haben die SchülerInnen die raumfüllende Darstellung des Tetrapeptids vor Augen (Abb. 2). Am Beispiel des Tetrapeptids wird nun verdeutlicht, wie die Biochemiker die Darstellung von Peptidketten abstrahieren, um bei der Strukturanalyse von Polypeptidketten aus mehreren Hundert Aminosäuren nicht "den Wald vor lauter Bäumen nicht mehr sehen zu können": In den beiden letzten Modulen wird daher die "Rückgrat"-Darstellung von Peptidketten eingeführt. Die erste Darstellung zeigt die Quartärstruktur des nativen Proteins mit farblich differenzierten Untereinheiten und den Häm-Komplexen (raumfüllende Darstellung, siehe Abb. 3). Das folgende Modul reduziert die Polypeptidketten auf ihr Rückgrat. Erst jetzt wird die Lage der Häm-Gruppen (raumfüllende Darstellung) klar erkennbar (und der Vorteil der diversen "Struktursprachen" deutlich). Lassen Sie Ihre SchülerInnen durch die Drehung des Moleküls den zentralen Hohlraum entdecken, in dem der Hämoglobin-Ligand 2,3-Diphosphoglycerat (DPG) bindet und dabei über eine Änderung der Quartärstruktur die Sauerstoff-Affinität des Hämoglobins senkt (DPG stabilisiert die Konformation der Desoxy-Form, indem es die beiden beta-Ketten über ionische Wechselwirkungen miteinander vernetzt). DPG wird vom Körper in Höhenlagen gebildet, wo ein niedriger Sauerstoff-Partialdruck herrscht, und erleichtert dort die Abgabe von Sauerstoff an das atmende Gewebe. Im den beiden Folgemodulen sind die Polypeptidketten komplett ausgeblendet. Das zweite der beiden Module stellt die Atomsorten der Hämgruppe farbkodiert dar. Die Lagebeziehungen der vier "freischwebenden" Häm-Gruppen verdeutlicht die tetraedrische Symmetrie (dreiseitige Pyramide) des Moleküls. Bei der Analyse der Symmetrie erweist sich wiederum das Anfassen und Drehen der Strukturen als hilfreich. Es folgt die vergrößerte Darstellung einer einzelnen Hämgruppe in raumfüllender Ansicht sowie eine Darstellung in der "stick"-Struktur, in der die Komplexbindung des zentralen Eisenatoms über die Stickstoffatome der Porphyrin-Struktur erkennbar wird. Die Besetzung der fünften Koordinationsstelle durch ein Histidin-Stickstoff der Polypeptidkette ist noch nicht berücksichtigt. An die sechste Koordinationsstelle wird nun molekularer Sauerstoff gebunden. Dabei ist deutlich erkennbar, dass die Achse des Sauerstoffmoleküls nicht senkrecht auf die Ebene des Porphyrin-Ringes ausgerichtet ist (Abb. 4; siehe auch Abb. 5 der Hintergrundinformation zu den Eigenschaften der prosthetischen Gruppe). Nun geht es wieder vom Kleinen zum Großen: Das oxygenierte Häm wird wieder in die Globin-Kette eingefügt, zunächst in eine Rückgrat-, dann in eine raumfüllende Darstellung. Die beiden letzten Darstellung zum Thema "Sauerstoffbindung" zeigen ein weiteres Details der Häm-Einbettung in das Globin und der Sauerstoffbindung: Die Positionierung hydrophiler Teile des Häms an der Oberfläche und die Ausrichtung hydrophober Bereiche zum Proteininneren. Weiterhin kommt die Besetzung der fünften Koordinationsstelle durch das sogenannte "proximale Histidin" sowie die Lage des "distalen Histidins" über dem gebundenen Sauerstoff zur Darstellung. Mehr zur Bedeutung des distalen Histidins liefert der folgende Fachliche Kommentar. Die Chime-Darstellungen heben einige Strukturmerkmale des Hämoglobins hervor, die sich zu den biochemischen Funktionen der Proteins sehr schön in Beziehung setzen lassen, auf die die vorgestellte Applikation jedoch nicht explizit hinweist. Auf der folgenden Seite finden Sie die wichtigsten Infos zu den Hämoglobin-Eigenschaften, die sich in diesen Strukturdetails abbilden: Die Proteinumgebung definiert die katalytischen Eigenschaften Warum benutzt die Natur nicht die "nackten" Hämgruppen für die Sauerstofflogistik, sondern wickelt sie in komplexe Poypeptidketten ein? Zum einen sind es die vielfältigen allosterischen Wechselwirkungen der Globine mit diversen Liganden, über die die Eigenschaften der Sauerstoffbindung durch das Häm sinnreich modelliert und den jeweiligen biologischen Erfordernissen perfekt angepasst werden - von der DPG-Bindung (siehe oben) bis hin zur Kooperativität der Sauerstoffbindung an die vier Untereinheiten des Hämoglobins. Die wichtigsten dieser "Stellschrauben" werden in Schulbüchern ausreichend thematisiert. Unberücksichtigt bleibt jedoch meist ein viel allgemeineres und enorm wichtiges Grundprinzip der Molekularbiologie und Biochemie: Die katalytischen Eigenschaften jeder prosthetischen Gruppe und jeden aktiven Zentrums werden maßgeblich von der Proteinumgebung geprägt, in die sie eingebettet sind. Man vergegenwärtige sich, dass das Häm, das im Hämoglobin zur reversiblen Sauerstoffbindung eingesetzt wird, im Atmungskettenenzym Cytochrom c als Elektronenüberträger verwendet wird! Wie die Globinkette die speziellen Bindungseigenschaften des Häms beeinflusst, wird nachfolgend an zwei Struktureigenschaften hervorgehoben, die in den Chime-Darstellungen sehr gut deutlich werden. Erst das Globin gewährleistet eine reversible Häm-Oxygenierung Frei lösliche Hämgruppen mit einem komplexierten zweiwertigem Eisen-Ion könnten Sauerstoff nur für einen sehr kurzen Moment binden. Der Sauerstoff würde das zweiwertige Eisen schnell zu dreiwertigem Eisen oxidieren, das keinen Sauerstoff mehr binden kann. Ein Zwischenprodukt dieser Oxidation ist ein "Häm-Sauerstoff-Häm-Sandwich". Die Polypeptid-"Verpackung" der Hämgruppen verhindert dies und gewährleistet damit die Verwendbarkeit der Hämgruppen als Sauerstofftransporteure im Blut. Das letzte Modul zum Thema "Hämoglobin & Häm" verdeutlicht die Lage des Häms in seiner Bindungstasche, die die Bildung von Häm-Dimeren ausschließt. Kohlenmonoxid hat eine hohe Häm-Affinität Kohlenmonoxid ist für uns ein toxisches Gas, weil es die Sauerstoffbindungsstellen des Hämoglobins vergiftet: Seine Affinität zum Hämoglobin-Eisen übertrifft die des Sauerstoffs um das 200-fache. Aus diesem Grund kann schon ein niedriger Kohlenmonoxid-Partialdruck tödliche Folgen haben. Am "nackten" Häm sähe der Vergleich noch ungünstiger aus: Zu diesem hat Kohlenmonoxid eine 25.000 mal höhere Affinität als Sauerstoff. Eine Eigenschaft, die das Pigment als Sauerstoffträger völlig unbrauchbar machen würde, denn Kohlenmonoxid ist nicht nur ein Industriebgas, sondern wird auch vom Organismus selbst erzeugt (es entsteht bei diversen katabolen Stoffwechselreakrtionen und dient auch als Botenstoff, zum Beispiel als bei der Regulation der glatten Gefäßmuskulatur). Unter normalen Umständen ist etwa ein Prozent unseres Hämoglobins mit endogen produziertem Kohlenmonoxid blockiert. Sterische Hinderung der Kohlenmonoxid-Bindung Ohne die Reduktion der Kohlenmonoxid-Affinität um das 125-fache könnte wir mit unserem Blutfarbstoff kaum leben. Aber wie schafft die Polpeptidkette dieses Kunststück? Die Natur greift an der Geometrie der Komplexierung von Sauerstoff und Kohlenmonoxid an. Während die Achse des Sauerstoffmoleküls bei der Bindung an das Eisenatom einen 120 Grad-Winkel zur Häm-Ebene bildet, steht die Achse des Kohlenmonoxid-Moleküls - bei freiem Zugang zum Häm - exakt senkrecht auf dessen Ebene. Diesen optimalen Bindungswinkel verbaut die Polypeptidkette dem Kohlenmonoxid, indem es ihm in der Häm-Bindungstasche des Globins einen sperrigen Histidin-Rest in den Weg stellt (sterische Hinderung), der den Sauerstoff nicht weiter stört. Die Position des distalen Histidins wird in dem vorletzten Modul zum Thema "Hämoglobin & Häm" sehr schön deutlich (Abb. 5). Im unteren Bereich des Bildausschnitts ist das proximale Histidin zu erkennen. Das freie Elektronenpaar des Stickstoffatoms im Histidinring besetzt eine der Koordinationsstellen des Eisenions. Die Darstellungen zum Thema "Sekundärstrukturen" stellen die Architektur der alpha-Helix in den Mittelpunkt. Die Darstellung ihrer Wechselwirkungen beschränkt sich auf die intrahelikalen Wasserstoffbrücken, die der Helix ihre Stabilität verleihen. Einzelne Darstellungen bereiten bereits das nächste Thema "Wechselwirkungen der alpha-Helix" vor, das die Interaktionen der Seitengruppen mit der wässerigen Umgebung und dem hydrophoben Proteinkern aufbereitet. Das erste Modul zeigt die Rückgrat-Struktur einer Globinkette (Tertiärstruktur) mit oxygeniertem Häm. Die alpha-helikalen Strukturabschnitte, die den Großteil des Moleküls bilden, sind farblich hervor gehoben (Abb. 6). Es folgt eine Farbvariante der ersten Darstellung ("Regenbogen-Färbung"). Die nächste Abbildung stellt eine neue "Struktursprache" der Biochemiker vor: alpha-helikale Bereiche werden von der Rückgrat-Struktur "luftschlangenartig" hervorgehoben. Diese Darstellungsform ist bei Molekularbiologen sehr beliebt, da sie bei der Analyse von Proteinstrukturen - unter anderem bei der Identifizierung von Domänen - sehr hilfreich ist. Zudem lassen sich anhand wiederholt auftretender "Sekundärstrukturmotive" Homologien und Analogien der Proteinevolution analysieren. Eine der alpha-Helices wird in ihrem Tertiärstrukturkontext (komplette räumliche Struktur einer Polypeptidkette) hervorgehoben. Dieser Kontext ist für die weitere Betrachtung wichtig (siehe "Wechselwirkungen der alpha-Helix"), da man an ihm erkennt, dass sich diese Helix an der Oberfläche des Globins befindet und sowohl mit dem wässerigen Milieu als auch mit dem Proteininneren Kontakt hat. Die Tertiärstrukturebene wird nun verlassen und auf die individuelle alpha-Helix (Sekundärstruktur) heruntergezoomt. Diese Helix wird nun in zwei andere Struktursprachen übersetzt. Zunächst in die Rückgrat-Darstellung der Polypeptidkette und schließlich in die "stick"-Darstellung ihrer Aminosäurebausteine. Das Folgemodul lässt die "driving force" der alpha-Helix-Struktur erkennen: Alle hydrophilen Teile des Polypeptid-Rückgrats (die Carbonyl-Sauerstoffatome und die Wasserstoffatome des Peptidbindungs-Stickstoff) bilden Wasserstoffbrücken miteinander. Diese vielen schwachen Wechselwirkungen verleihen der Helix ihre Stabilität. Die "Sättigung" der hydrophilen Rückgratbereiche mit hydrophilen Wechselwirkungen prädestiniert die Helix zu einem in hydrophoben Umgebungen oft verwendeten Strukturmotiv, sei es im hydrophoben Kern von Proteinen (siehe Hydrophobizität, Polarität & Ladungen") oder in Membranprotein-Abschnitten, die der Lipidphase ausgesetzt sind. Die nächste Darstellung macht deutlich, dass die Seitenketten der Aminosäuren einer Helix wie die Stufen einer Wendeltreppe immer nach außen zeigen. Besonders deutlich wird dieses wichtige Strukturprinzip, wenn man die Helix in eine Position bringt, in der man in Richtung ihrer Längsachse blickt. Während sich die Darstellungen zum Thema "Sekundärstrukturen" vor allem mit dem allgemeinen Architekturprinzip der alpha-Helix und den intrahelikalen Wasserstoffbrücken beschäftigten, veranschaulichen die Module dieses Abschnitts die Wechselwirkungen der helikalen Aminosäurereste mit dem hydrophilen Medium und dem hydrophoben Proteinkern. Die erste Darstellung zeigt das raumfüllende Kalottenmodell eines "Grenzflächenhelix"-Abschnitts. Farblich hervorgehoben sind die Stickstoff- und Sauerstoffatome der Seitengruppen und des Rückgrats. Beim Drehen und Wenden der Helix ist zu erkennen, dass es sich um eine "amphiphile Helix" handelt, d.h., dass auf einer Seite hydrophobe Reste, auf der anderen dagegen hydrophile Reste (erkennbar an den Heteroatomen) aus der Achse hervorragen. Diese Eigenschaft spiegelt die Anpassung der Aminosäuresequenz (Primärstruktur) an ihre räumliche Position im Tertiärstrukturkontext wider: Die hydrophobe Seite der Helix geht mit dem hydrophoben Proteinkern hydrophobe (van-der-Waals-)Wechselwirkungen ein und stabilisiert so die Tertiärstruktur des Proteins. Die hydrophile Seite bildet dagegen Wasserstoffbrücken mit den Wassermolekülen der Umgebung. Dieses Hydratwasser trägt dazu bei, das Protein in Lösung zu halten. Deutlicher wird dieses Prinzip in der zweiten Darstellung, die die Heteroatome des Rückgrats ausblendet. Die beiden folgenden Module zeigen dieselbe Darstellung, nur bereits entsprechend den jeweiligen Textinformationen räumlich ausgerichtet. So zeigt zum Beispiel der Blick entlang der Helixachse noch einmal deutlich deren amphipatischen Charakter (Abb. 7): Sämtliche Heteroatome der Seitenketten befinden sich in dieser Ansicht auf der rechten Seite. Die Chime-Darstellungen analysieren die Wechselwirkungen eines Globin-Molekül mit der Umgebung. Die "take home message" diese Abschnittes bildet das allgemeine Strukturprinzip löslicher Proteine: Innen hydrophob (Stabilisierung der Tertiärstruktur über van-der-Waals-Wechselwirkungen), außen hydrophil (Bindung von Hydratwasser über Wasserstoffbrücken). Die erste Darstellung zeigt die farbkodierte Verteilung hydrophober, polarer und geladener Aminosäuren auf der Globin-Oberfläche sowie die Sauerstoffatome von einem Teil des Hydratwassers. Beim Drehen des Proteins treten hydrophile und hydrophobe Oberflächenabschnitte deutlich hervor. Während die hydrophilen Bereiche mit dem Lösungsmittel Wasserstoffbrücken bilden und das Protein in Lösung halten, stabilisieren die hydrophoben Bereiche über hydrophobe Protein-Protein-Wechselwirkungen zwischen den vier Globinen eines Hämoglobin-Moleküls dessen Quartärstruktur (native Struktur eines aus mehreren Proteinuntereinheiten aufgebauten Proteinkomplexes). Der folgende Schnitt macht die Anatomie des Globins - stellvertretend für alle löslichen Proteine - deutlich. Während der Kern durch die Wechselwirkungen hydrophober Seitengruppen stabilisiert wird, ist die dem Medium ausgesetzte Oberfläche mit hydrophilen Resten gespickt. Dieses Strukturprinzip wir mithilfe von weiteren Schnittebenen verdeutlicht, die zunächst immer tiefer in das (hydrophobe) Proteininnere vordringen, um sich danach wieder seiner (hydrophilen) Oberfläche nähern (Abb. 8). Wie falten sich Proteine? Die Analyse der Strukturdarstellungen des Globins bietet sich als Ansatzpunkt für weiterführende Fragen zur Proteinstruktur an: Wie finden die linearen Aminosäureketten im lebenden Plasma ihre komplexe dreidimensionale Struktur? Und warum findet dieser Prozess in Zellen mit so hoher Effizienz, im Reagenzglas aber nur mit sehr niedrigen Ausbeuten statt? Vorhersage von Proteinstrukturen Vom Architekturprinzip der "Packung" einer Polypeptidkette lässt sich leicht der Bogen zur "driving force" ihrer Selbstfaltung schlagen. Der Selbsfaltungsprozess einer Polypeptidkette in ihre native dreidimensionale Struktur wird von ihrer Primärstruktur - also der linearen Abfolge ihrer Aminosäuresequenz - definiert. Dieser Strukturcode ist von Molekularbiologen bis heute noch nicht soweit entschlüsselt worden, dass anhand jeder Sequenz exakte Strukturvorhersagen getroffen werden können (falls das überhaupt möglich ist). In einigen Fällen lassen sich jedoch schon ganz passable Wahrscheinlichkeiten berechnen. All diese Vorhersagen basieren auf einer Bestimmung der thermodynamisch günstigsten Faltung. Das ist zum Beispiel bei einem löslichen Protein (wie vom Globin-Typ) diejenige, die über eine große Anzahl hydrophober Wechselwirkungen im Inneren und hydrophiler Wechselwirkungsmöglichkeiten an der Oberfläche verfügt. Eine gigantische Rechenaufgabe, da im Prinzip die Interaktion eines jeden Aminosäurerestes mit jedem anderen Rest analysiert werden müsste. Die Forscher schränken den Rechenaufwand jedoch erheblich ein, indem zunächst Sekundärstruktur-Wahrscheinlichkeiten analysiert werden. Auch Sequenz-Vergleiche mit Proteinen, deren Struktur bereits durch Röntgenstrukturanalysen eindeutig geklärt ist, erweisen sich als hilfreich: Die Natur verwendet nämlich beim Proteindesign sehr gerne bewährte Proteindomänen (das heißt durch Sekundärstrukturen stabilisierte globuläre Proteinabschnitte, die meist von einem Exon kodiert werden) immer wieder. Aus einem begrenzten Domänen-Repertoire hat die Natur so im Laufe der Evolution eine Vielzahl verschiedener Proteine mit vielfältigen Funktionen "zusammengepuzzelt". "Assisted Self Assembly" Das auf den bekannten Renaturierungsversuchen von Anfinsen basierende Dogma von der "Selbstfaltung" der Proteine ist seit der Entdeckung der Rolle der "Chaperone" nicht gerade ins Wanken geraten, musste jedoch vom "Self Assembly" zum "Assisted Self Assembly" modifiziert werden. Schnell hatte man erkannt, dass die in vitro beobachteten Selbsfaltungsraten viel zu niedrig sind, um eine Zelle funktionstüchtig zu halten. Zahlreiche Proteine zeigen im Reagenzglas sogar überhaupt keine Neigung, nach einer sanften Denaturierung in ihre native Struktur zurück zu finden. Der Grund dafür ist, dass jede Zelle über ein ganzes Arsenal von Chaperonen verfügt - "molekularen Anstandsdamen" - die mittlerweile auch Einzug in die Schulbuchliteratur gehalten haben. Diese Anstandsdamen (die selbst Proteine sind) erkennen "unordentlich" gefaltete Polypeptidketten, die noch keine stabilen Sekundärstrukturen oder noch keine stabile Tertiärstruktur gefunden haben. Als Symptome solcher unvollständigen oder Fehlfaltungen "fahnden" die Chaperone nach hydrophoben Resten, die an der Oberfläche falsch gefalteter Polypeptidketten exponiert werden. Chaperone entfalten diese unbrauchbaren Gebilde unter Energieverbrauch und verhelfen Ihnen somit zu einer neuen Chance, sich richtig zu falten. Sie "bugsieren" damit den Faltungsweg der Polypeptidketten sicher in die Richtung der thermodynamisch günstigsten Konformation, die in der Regel der nativen Proteinstruktur entspricht. Ursache der Sichelzellenanämie ist der Austausch eines einzigen Nukleotids im beta-Hämoglobinketten-Gen, wodurch die hydrophile Aminosäure Glutamat gegen die hydropobe Aminosäure Valin ersetzt wird. Mit fatalen Folgen: Der ausgetauschte Glutamatrest befindet sich nämlich an der Oberfläche des Proteins. Die Exposition des hydrophoben Restes setzt die Löslichkeit de Proteins vor allem im desoxygenierten Zustand stark herab und kann so die Polymerisation des Hämoglobins zu langen und unlöslichen Filamenten auslösen. Die erste Darstellung zeigt die Position des Valins auf der Oberfläche des oxygenierten Sichelzellen-Hämoglobins. Der so erzeugte "hydrophobe Fleck" ist weiß hervorgehoben. Die Desoxygenierung des Moleküls ist mit einer Konformationsänderung der Quartärstruktur verbunden, die einen zusätzlichen hydrophoben Bereich an die Oberfläche befördert (Abb. 9). Dieser ist auch beim "normalen" Hämoglobin vorhanden, wo er keinen negativen Effekt zeigt. Im Verbund mit dem neu hinzu gekommenen Valin-Rest verleiht er dem Molekül jedoch das Potenzial zur Polymerisation, sobald die Desoxy-Form eine kritische Konzentration überschreitet. Das nächste Modul zeigt den ersten Schritt der Polymerisation, die Dimerisierung zweier Moleküle über hydrophobe Wechselwirkungen (Abb. 10). Die an der Polymerisation beteiligten hydrophoben Reste und ihre Wechselwirkung wird erst dann deutlich, wenn die raumfüllende Darstellung durch die Rückgrate der Polypetidketten ersetzt wird. Die letzte Chime-Projektion zeigt eine Vergrößerung der Kontaktstellen. Die für die Sichelzellenanämie charakteristischen sichelförmigen Erythrozyten sind fragiler als ihre "Wildtyp"-Pendants, was die anämische Symptomatik verursacht. Die exponierten hydrophoben Reste wirken wie "hydrophile Lego-Noppen" oder "sticky patches", über die die Proteine zu langen Filamenten polymerisieren und so den Erythrocyten eine sichelförmige Gestalt aufzwingen. Die Sichelzellen sind im Gegensatz zu den geschmeidig-biegsamen normalen Erythrozyten nicht mehr deformierbar und verstopfen unter Sauerstoffmangelbedingungen (Höhenaufhalte, Flugreisen, Narkosen) zunächst kleine und schließlich größere Gefäße, was dann lebensbedrohliche Komplikationen verursacht. Im homozygoten Zustand führte die Krankheit noch vor kurzem im frühen Kindesalter zum Tode. Heterozygote zeigen eine deutlich abgeschwächte Symptomatik. Die Krankheit kommt fast nur bei Afrikanern vor, die aus zentralafrikanischen Regionen mit hohen Malariavorkommen stammen. In einigen Regionen tragen fast 40 Prozent der dortigen Bevölkerung das "defekte" Gen. Die Ursache dafür liegt darin, dass das Sichelzellen-Hämoglobin den Malaria-Erregern Schwierigkeiten bereitet: Heterozygote sind gegen den Malaria-Erreger besser geschützt und haben daher gegenüber den homozygot "Gesunden" einen Selektionsvorteil. Dies zeigt deutlich, wie schmal der Grat zwischen "gesund" und "krank", "nützlich" und "schädlich", sein kann und wie wichtig die genetische Vielfalt des Genpools einer Spezies für dessen Überleben ist: Genetische "Randgruppen" können an bestimmten Orten - oder zu bestimmten Zeiten! - für das Überleben der Art eine unvorhersehbare Bedeutung erlangen. Um die Moleküle der Applikation im Browser interaktiv betrachten zu können, muss der kostenlose Molekülbetrachter Chime der Firma Symyx installiert werden. Wenn dies erfolgt ist, "berühren" sie die Moleküle mit dem Mauszeiger. Wenn Sie die Maus dann bei gedrückter linker Taste bewegen, können Sie die Moleküle beliebig drehen und wenden und so von allen Blickwinkeln aus untersuchen. Um die Entfernung zum Objekt zu ändern, müssen Sie die Shift-Taste (Hochstell-Taste) gleichzeitig mit der linken Maustaste drücken. Dann kann mittels "Vor- und Zurückbewegungen" der Maus der Abstand zum Objekt variiert werden. Wenn Sie den Mauszeiger in einem Molekülfenster platzieren und mit der rechten Taste klicken, erscheint das Chime-Menü mit weiteren Funktionen. Hier können Sie zum Beispiel die Rotation der Moleküle ausschalten. Durch das Anklicken von Buttons der Hämoglobin-Lernumgebung werden die verschiedenen 3D-Darstellungen aufgerufen. Wenn Sie ein Bild bereits geladen haben und dann einen anderen Button anklicken, kann es zu Fehlern kommen. Zwar wird dann das gewünschte Molekül gezeigt, seine Darstellung entspricht dann jedoch nicht der eigentlich vorgesehen "Struktursprache". So kann zum Beispiel eine Polypeptidkette als "stick"-Struktur visualisiert werden, während die Programmierung an dieser Stelle eigentlich die Darstellung eines farbkodierten Kalottenmodells vorgesehen hat. Wenn dies passiert (oder Sie den Verdacht haben, dass dem so ist), können Sie die Seite in einem neuen Browserfenster öffnen und die gewünschte Abbildung neu laden. Alternativ kann es auch helfen, zunächst über den "Zurück-Button" des Browsers zur Übersichtseite der Hämoglobinseite zu gehen und die gewünschte Applikation erneut anzusteuern. Dynamische Arbeitsblätter sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flash-basierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Schülerinnen und Schüler sollen die ATP-Synthase als Beispiel eines Enzyms kennen lernen. den Aufbau der ATP-Synthase kennen lernen. ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend erschließen. die Möglichkeiten des Molekülbetrachters Jmol kennen und den Umgang mit dem Werkzeug lernen. am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms beschreiben. Thema ATP-Synthase - Synthese von Energieäquivalenten Autor Dr. Matthias Nolte, Dr. Thomas Engel, Dr. André Diesel, Florian Thierfeldt Fach Biologie, Chemie Zielgruppe Jahrgangsstufe 11 Zeitraum 2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit) oder Präsentationsrechner mit Beamer; Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download), Flash-Player , Quicktime-Player Struktur-Funktions-Beziehungen werden durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als ?Leitplanken? bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. ?Informations-Popups? und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:457078) Hier können Sie Kontakt mit Herrn Dr. Engel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:700245) Hier können Sie Kontakt mit Herrn Dr. Diesel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes. Weitere Materialien und Anregungen zum Unterricht finden Sie auch auf seiner Homepage www.scientific-beginner.de . (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:450955) Hier können Sie Kontakt mit Herrn Thierfeldt aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Die Schülerinnen und Schüler sollen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer verstehen. eine Sequenz aus einer Datenbank abrufen können. mit einem einfachen Visualisierungsprogramm wie RasMol umgehen können. die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen können. grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen erarbeiten. Struktur-Funktionsbeziehungen begreifen und erklären können. Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben können. Thema Proteinmodelle aus dem Internet - Beispiel Insulin Autorin Prof. Dr. Susanne Bickel Fächer Biologie, Chemie Zielgruppe Jahrgangsstufe 12/13 Zeitraum etwa 6 Stunden mit abschließender Präsentation Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Zahl (Partner- oder Kleingruppenarbeit), (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:458232) (kostenloser Download aus dem Internet) Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:463298) Die Fotosynthese ist einer der bedeutungsvollsten biologischen Prozesse auf der Erde. Grüne Pflanzen wandeln Lichtenergie in chemische Energie um und speichern sie in Form energiereicher Moleküle. Diese werden dann in weiteren Stoffwechselprozessen als Energielieferanten für die Synthese von Kohlenhydraten aus den energiearmen Stoffen Kohlenstoffdioxid und Wasser verwendet. In diesem Prozess wird der für viele Lebewesen notwendige molekulare Sauerstoff gebildet. Die Fotosynthese gliedert sich somit in eine Lichtreaktion (Absorption von Lichtenergie, deren chemische Fixierung und Sauerstoffbildung) und in die lichtunabhängige Dunkelreaktion (Synthese von Glukose aus Kohlenstoffdioxid und Wasser). Die Schülerinnen und Schüler sollen die Teilreaktionen der Lichtreaktion mithilfe der Animation kennenlernen und protokollieren. die an der Reaktion beteiligten Biomoleküle und ihre Lokalisierung - innerhalb oder außerhalb der Thylakoidmembran - kennenlernen. Zusammenhänge formulieren (Kopplung der Fotosysteme) und eine Gesamtbilanz der Reaktion aufstellen. Thema Die Lichtreaktion der Fotosynthese Autor Dr. Ralf-Peter Schmitz Fach Biologie Zielgruppe Sekundarstufe II Zeitraum 1-2 Stunden für die selbstständige Erarbeitung (Einzel- oder Partnerarbeit); flexibel beim Einsatz zur Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Die Lernenden nutzen die Flash-Animation im Computerraum der Schule in Einzel- oder Partnerarbeit oder auch am heimischen Rechner (Hausaufgabe, Wiederholung). Ihre Ergebnisse können sie den Mitschülerinnen und Mitschülern im Rahmen eines kleinen Vortrags vorstellen. Den Ablauf der Lichtreaktion beschreiben sie dabei mithilfe der per Beamer projizierten Animation. Alternativ zur Nutzung der Animation im Computerraum kann sie nach einem zunächst "computerfreien" Unterricht der Lehrkraft auch dazu dienen, die Lichtreaktion zusammenzufassen und das Unterrichtsgespräch im Fachraum zu unterstützen. Inhalte und Funktionen der Animation Die Teilschritte der Lichtreaktion werden visualisiert. Arbeitsaufträge und Hintergrundinformationen ermöglichen eine selbstständige Erarbeitung des Themas. Die Schülerinnen und Schüler sollen grundlegendes Wissen über den 3D-Aufbau der Rotationsmaschine ATP-Synthase erwerben (Tertiär und Quartärstruktur). prinzipielle Struktur-Funktionsbeziehungen begreifen und erklären können. die wichtigsten Mechanismen der Zelle, chemische Energie in Bewegung umzuwandeln, kennen lernen. Proteinkomplexe in ihrer Eigenschaft als Motoren begreifen. Anwendungsmöglichkeiten für Nanomotoren kennen lernen und selber Ideen entwickeln. die Natur als Vorbild für technische Umsetzungen begreifen und dadurch ein Grundverständnis für die Bionik entwickeln. Utopien und unwissenschaftliche Presseberichte analysieren und auf ihren sachlichen Gehalt reduzieren lernen. Thema Nanomotoren in Natur und Technik Autorin Prof. Dr. Susanne Bickel Fach Biologie Zielgruppe Sek II, Leistungskurs, Projektunterricht zur Biotechnologie Zeitraum 4-5 Stunden Technische Voraussetzungen Rechner mit der Möglichkeit, Filme abzuspielen (zum Beispiel RealPlayer oder Quicktime Player , kostenlose Downloads), in ausreichender Anzahl (Partnerarbeit, Kleingruppen) Planung Nanomotoren in Natur und Technik

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Nährstoffe: Interaktives Begleitmaterial

Interaktives

Bei der Durchführung der interaktiven Präsentation erarbeiten sich die Schülerinnen und Schüler Wissen über den Aufbau der Nährstoffe, mithilfe der Übungen wiederholen und festigen sie dieses Wissen. Die interaktive Präsentation dient zur Erarbeitung des Aufbaus der Nährstoffe Kohlenhydrate, Proteine und Fette. Dabei wird ihr chemischer Aufbau mithilfe von Symbolen erarbeitet: Monosaccharide werden als Sechs- beziehungsweise Fünfecke dargestellt, die zu Disacchariden oder Polysacchariden verknüpft sein können. Aminosäuren werden als Kreise vorgestellt, die zu Di-, Tri- und Polypeptiden verknüpft vorliegen können. Bei einer Größe von 100-300 Aminosäuren wird in der interaktiven Präsentation die Aminosäurekette als Protein bezeichnet. Bei den Fetten werden sowohl das Glycerinmolekül als auch die Fettsäuremoleküle als verschiedenfarbige Rechtecke dargestellt. Die Interaktivität mit der Präsentation durch die Schülerinnen und Schüler erfolgt durch Multiple-Choice-Fragen, Richtig/Falsch-Fragen und Wörter-Einordnen-Aufgaben, die mithilfe von Abbildungen gelöst werden sollen. Auch Vitamine, Mineralstoffe und Ballaststoffe kommen anhand ausgewählter Beispiele zur Sprache, wobei der Fokus nicht auf deren Aufbau, sondern auf ihrem Vorkommen in Nahrungsmitteln und auf ihrer Funktion im Organismus liegt. Zur Abgrenzung zu den Nährstoffen Kohlenhydrate, Proteine und Fette wird herausgehoben, dass Vitamine, Mineralstoffe und Ballaststoffe zwar ebenfalls vom menschlichen Körper benötigt werden, ihm jedoch keine Energie liefern. Am Ende der interaktiven Präsentation erfolgt die Zusammenfassung des Erlernten durch eine Zuordnungsaufgabe, bei der die Schülerinnen und Schüler mit vorgegebenen Wörtern Lücken in einer Übersichtsdarstellung der Nährstoffe füllen. Diese Übersicht ist auch auf den zur interaktiven Präsentation zugehörigen Arbeitsblättern "Nährstoffe" dargestellt, mit deren Hilfe die Sicherung erfolgen kann. Zur Überprüfung des Wissens über Nährstoffe können die Schülerinnen und Schüler die interaktive Übung zum Finden von Fehlern verwenden. Hier ist die Übersichtsdarstellung der Nährstoffe abgebildet, jedoch enthält diese 16 Fehler, die durch Anklicken markiert werden sollen. Die Fehler können entweder die Abbildungen oder auch den Text betreffen. Eine weitere Möglichkeit der Überprüfung des eigenen Wissens durch die Schülerinnen und Schüler ist das Memory. Hier liegen Karten von den symbolischen Abbildungen eines Monosaccharids, eines Disaccharids, eines Polysaccharids, einer Aminosäure, eines Dipeptids, eines Tripeptids, eines Polypeptids, eines Proteins, einer Fettsäure, eines Glycerinmoleküls und eines Fettmoleküls vor. Die passenden Gegenkarten enthalten jeweils die Bezeichnung der Abbildung. Das Memory kann in Einzel- oder in Partnerarbeit gespielt werden. Das interaktive Begleitmaterial ergänzt das folgende Arbeitsmaterial: "Nährstoffe" .

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

ATP-Synthase – Synthese von Energieäquivalenten

Unterrichtseinheit

In dieser Unterrichtseinheit für den Biologie- und Chemie-Unterricht beschäftigen sich die Schülerinnen und Schüler mit der ATP-Synthase. Die Regeneration des zentralen zellulären Energieträgers wird zum überwiegenden Teil von der ATP-Synthase gewährleistet. Die hier vorgestellte Lernumgebung ermöglicht Schülerinnen und Schülern eine aktiv-forschende Auseinandersetzung mit der Funktionsweise dieses komplexen Enzyms.In der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" kommen dynamische Arbeitsblätter zum Einsatz. Dies sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen auch dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flashbasierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden.Die Struktur-Funktions-Beziehungen werden in der Unterrichtseinheit "ATP-Synthase - Synthese von Energieäquivalenten" durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als "Leitplanken" bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. "Informations-Popups" und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Die Schülerinnen und Schüler lernen die ATP-Synthase als Beispiel eines Enzyms kennen. lernen den Aufbau der ATP-Synthase kennen. erschließen ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend. lernen die Möglichkeiten des Molekülbetrachters Jmol kennen und lernen den Umgang mit dem Werkzeug. beschreiben am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms. Räumliche Vorstellung als Verständnisvoraussetzung Das Vorstellungsvermögen von Schülerinnen und Schülern in Bezug auf die dreidimensionale Struktur von Enzymen ist meist schwach ausgeprägt. In Schulbüchern werden die Lernenden häufig mit "flachen" und schematischen Darstellungen konfrontiert. Moderne Lehrwerke enthalten zwar schon dreidimensional wirkende Grafiken, die mit einer Molekülbetrachter-Software erzeugt wurden. Dennoch haben die Jugendlichen oft große Schwierigkeiten, sich den Aufbau von Enzymen vorzustellen. Das führt häufig zu Verständnisproblemen oder auch falschen Vorstellungen über den Aufbau und die Funktionsweise der Biokatalysatoren. Die Kenntnis der dreidimensionalen Strukturen ist jedoch die Voraussetzung für ein tieferes Verständnis der Natur der Enzyme, ihrer Funktionen, der Interaktion zwischen Enzym und Substrat und vor allem der engen Beziehung zwischen Struktur und Funktion. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Werden die interaktiven Applets zusammen mit Texten, Grafiken und Animationen in HTML-Seiten eingebettet, entsteht eine neue Form von Arbeitsmaterial - das dynamische Arbeitsblatt. Der Vorteil: Interaktive Materialien, Aufgaben und Hilfen stehen in einem Medium auf einen Blick zur Verfügung! Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot von einem der Arbeitsblätter zur ATP-Synthase. Hinweise zu dynamischen Arbeitsblättern mit interaktiven 3D-Molekülen und deren Einsatz im Biologie- oder Chemieunterricht finden Sie in dem Übersichtsartikel "Dynamische Arbeitsblätter mit 3D-Molekülen" . Struktur von Enzymen - ein schwer zu vermittelndes Thema Im Anschluss an die Behandlung von Glykolyse, Citratzyklus und Atmungskette integriert die hier vorgestellte Lernumgebung das zu Beginn des Themenbereichs "Stoffwechsel" erarbeitete Wissen über den Aufbau und die Funktion von Enzymen. Im Sinne eines Spiralcurriculums werden früher gelernte Grundlagen auf aktuelle Lerninhalte angewandt, wiederholt und eingeübt. Im Rahmen der funktionellen Vielfalt der Proteine lernen Schülerinnen und Schüler Enzyme als Biokatalysatoren kennen. Dabei bleibt deren Funktionsweise jedoch häufig unklar. Die Bildung eines Enzymsubstratkomplexes wird mit einer Schlüssel-Schloss-Analogie vermittelt. Diese vereinfachende Darstellung ist zwar einleuchtend, führt jedoch auch dazu, dass den Lernenden die Komplexität der Enzyme nicht bewusst wird. Sie haben daher Schwierigkeiten sich anschaulich vorzustellen, dass für jede biochemische Reaktion in der Zelle ein spezialisiertes Enzym zur Verfügung steht. Es fällt ihnen schwer, Strukturen von Enzymen mit deren Funktionen im Stoffwechsel in Zusammenhang zu bringen. Die ATP-Synthase - meist nur eine "Black Box" Im Themenbereich "Stoffwechsel" wird auch die Gewinnung von Energieäquivalenten in Form von ATP durch das Enzym ATP-Synthase angesprochen. Dies wird zumeist als Faktum präsentiert. Die Lernenden erfahren, dass das Enzym den Transport von Protonen (entlang ihres Konzentrationsgefälles) mit der Bildung von ATP aus ADP und anorganischem Phosphat koppelt. Dies wird in der Regel mithilfe "flacher" und statischer Darstellungen vereinfacht visualisiert. Ziel der 3D-Materialien: Zusammenspiel von Struktur und Funktion Für die in den Bildungsstandards geforderte Auseinandersetzung mit Struktur-Eigenschaftsbeziehungen in der Biologie bietet sich die Untersuchung von Proteinstrukturen eigentlich geradezu an. Das Problem: Mit "klassischen" Materialien verläuft das Unterfangen meist unbefriedigend. Häufig werden die molekularen Strukturen und deren Funktion im Unterricht auch unabhängig voneinander betrachtet, ohne den engen Zusammenhang zu thematisieren. Die hier vorgestellte Lernumgebung soll Abhilfe schaffen und die Lernenden am Beispiel der ATP-Synthase exemplarisch und anschaulich an die Untersuchung von Struktur-Funktions-Beziehungen heranführen. Die Lernumgebung der Unterrichtseinheit besteht aus HTML-Seiten, die mit gängigen Browsern betrachtet werden können. Die darin eingebetteten Darstellungen der Moleküle sind als Java-Applikationen plattformunabhängig. Die einzige Bedingung für ihre Nutzung ist, dass auf Ihrem Computer das kostenfreie Plugin Java Runtime Environment installiert ist. Für die verschiedenen Animationen benötigen Sie den ebenfalls kostenfreien Flash- oder Quicktime-Player. Eine Lenkung der Aufmerksamkeit der Schülerinnen und Schüler erfolgt bereits durch den formalen Aufbau der Arbeitsblätter. Jede Seite richtet den Blick auf einen anderen Aspekt der ATP-Synthase (Lokalisierung, F0- beziehungsweise F1-Struktur und -Funktion, Stator). Die vorgegebenen Beobachtungsaufträge sorgen dafür, dass den Lernenden die wesentlichen Informationen nicht entgehen. Die Arbeitsaufträge im unteren Feld sind durch Piktogramme als Beobachtungsaufgaben (Auge) und Schreibaufgaben (Stift) gekennzeichnet. Die eigenständige Entdeckungsreise der Schülerinnen und Schüler in den Struktur-Funktionszusammenhang der ATP-Synthase wird durch Zusatzinformationen (Popups) unterstützt. Sie beinhalten weitere nützliche Informationen, wie zum Beispiel zum Aufbau von ATP (Abb. 2, Platzhalter bitte anklicken) oder zum Modell des Protonentransports durch die Membran. Diese Informationsboxen können durch einen Klick auf die "i"-Piktogramme aufgerufen werden. Auf den dynamischen Arbeitsblättern zum molekularen Aufbau der F0- und F1-Struktur finden sich Buttons und Arbeitsaufträge "für Experten". Diese ermöglichen eine Binnendifferenzierung. Betrachtet wird hier die Verteilung hydrophiler und hydrophober Aminosäurereste im F1- und F0-Komlex. Dabei lässt sich sehr schön der Unterschied zwischen den transmembranen und den außerhalb der Membran liegenden Bereichen erkennen und thematisieren. Abb. 3 zeigt zwei Ansichten des F0-Komplexes. Hydrophile Aminosäuren sind rot, hydrophobe grün dargestellt. Die linke Teilabbildung zeigt den dem Intermembranraum zugewandten Teil des F0-Komplexes, während die rechte Teilabbildung einen Blick auf die der Lipidphase der Membran zugewendeten Proteinoberflächen zeigt. Abb. 4 zeigt den "Grundzustand" des F1-Komplexes in der Lernumgebung (linke Teilabbildung) sowie den F1-Komplex nach Aktivierung der Funktion "Hydrophobe und hydrophile Bereiche" (rechte Teilabbildung). Diese allgemeine Thematik wurde bereits bei der Besprechung des Membranaufbaus und des Membrantransports erwähnt. An dieser Stelle kann sie eindrucksvoll wiederholt beziehungsweise angewendet werden. Nach der Bearbeitung von Glykolyse, Citratzyklus und Atmungskette wird die ATP-Synthase als die "Maschine" vorgestellt, die den Protonengradienten über der inneren Mitochondrienmembran für die Synthese von ATP nutzt. Dabei werden pro gebildetem ATP drei Protonen durch die Membran befördert, um ein ATP-Molekül zu generieren (dies gilt für Bakterien, siehe Tabelle unten). Zum Einstieg wird per Beamer eine Animation präsentiert, die eine rotierende ATP-Synthase "in Aktion" zeigt (Abb. 5, Platzhalter bitte anklicken). Die Animation wurde von der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge) entwickelt. Eine kleine Version des Films befindet sich auch in der Lernumgebung. Für den Impuls per Beamerpräsentation sollte aber das größere Format verwendet werden, das im Internet zur Verfügung steht (siehe unten). Die Dynamik der Darstellung weckt das Interesse der Lernenden, eine Analyse der Abläufe ist jedoch (noch) nicht möglich. Das Interesse der Schülerinnen und Schüler kann durch folgende Daten weiter angefacht werden: Die ATP-Umsatzrate liegt in Bakterienzellen bei bis zu 2.500.000 Molekülen pro Sekunde! Ein Mensch setzt pro Tag (in Ruhe) etwa 70 Kilogramm ATP um. Der menschliche Körper enthält (bei einem Gewicht von etwa 70 Kilogramm) nur 50 bis 200 Gramm ATP, das nach dem Verbrauch überwiegend durch die ATP-Synthase regeneriert wird. Nach diesen Impulsen fordert die Lehrperson die Schülerinnen und Schüler auf, sich einzeln oder in Partnerarbeit mithilfe der dynamischen Arbeitsblätter den Aufbau und die Funktion der ATP-Synthase soweit zu erschließen, dass sie im Anschluss daran erklären können, was in der gezeigten Animation dargestellt ist: The rotary mechanism of mitochondrial ATP synthase Animation aus der Arbeitsgruppe von Prof. Sir John Walker (MRC Dunn Human Nutrition Unit, Cambridge). Infos und weitere Animationen finden Sie hier . Kapitel Die dynamischen Arbeitsblätter sollen das Augenmerk der Lernenden auf den Zusammenhang zwischen Struktur und Funktion der ATP-Synthase richten. Das komplexe Molekül wird dabei in seine Bauteile (F0, F1, Stator) "zerlegt". Die Lernumgebung gliedert sich in folgende Kapitel: Lokalisierung Hier wird die Lokalisierung der ATP-Synthase als integrales Membranprotein der inneren Mitochondrienmembran dargestellt. Die Lage des Enzyms in Bezug auf den durch die Atmungskette aufgebauten Protonengradienten wird thematisiert. (Die Lernumgebung beschränkt sich exemplarisch auf die ATP-Synthase und deren Orientierung in der Mitochondrienmembran. Die Lokalisierung des Enzyms in Bakterien und Chloroplasten kann bei Bedarf im Anschluss an die Bearbeitung der Lernumgebung erfolgen.) F0-Struktur Die Schülerinnen und Schüler machen sich hier mit dem Aufbau der Transmembraneinheit der ATP-Synthase vertraut. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet und interpretiert werden. F0-Funktion Die Lernenden erkunden das auf der Hypothese des deutschen Biophysikers Wolfgang Junge basierende Modell des Protonentransports durch die Membran. Die Vorgänge werden durch eine Flash-Animation dynamisch dargestellt. F1-Struktur Die Schülerinnen und Schüler untersuchen den Aufbau der "Kopf"-Struktur der ATP-Synthase. Die Verteilung hydrophober und hydrophiler Aminosäuren kann betrachtet, interpretiert und mit der Verteilung im F0-Komplex verglichen werden. F1-Funktion Hier werden die Vorgänge bei der Synthese von ATP aus ADP und Phosphat in der Kopf-Struktur der ATP-Synthase untersucht und durch Videosequenzen dynamisch dargestellt (Quelle der Filme: ATP Synthase Group, MRC Dunn Human Nutrition Unit, Cambridge). Stator - Struktur und Funktion Die Lernenden setzen sich mit der Funktion der Verbindung zwischen Membran- und Kopfteil auseinander und setzen ihre bisherigen Erkenntnisse zu einem Gesamtbild der ATP-Synthase-Funktion zusammen. Der größte Teil des ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch ATP-Synthasen gebildet. Ihr Aufbau unterscheidet sich in den verschiedenen Organismen in Details. Wie in der folgenden Tabelle zu erkennen, variiert zum Beispiel die Zahl der F0c-Untereinheiten und die Zahl der pro gebildetem ATP transportierten Protonen. ATP-Synthasen Anzahl der F0c-Peptide Protonen pro ATP Bakterien (Escherichia coli) 12 4 Mitochondrien (Hefe) 10 3,3 Chloroplasten (Spinat) 14 4,7 Das Grundprinzip der Struktur und der Funktion der ATP-Synthasen ist jedoch bei allen Organismen dasselbe. Alle in den dynamischen Arbeitsblättern dargestellten Moleküle zeigen den Aufbau der ATP-Synthase des Darmbakteriums Escherichia coli. Der Modellorganismus wurde und wird von den ATP-Synthase-Forschern intensiv untersucht. Das animierte Funktionsmodell in dem Kapitel "F0-Funktion", das die Be- und Entladung von F0c-Untereinheiten mit Protonen zeigt (Abb. 6), gibt ebenfalls die Verhältnisse bei Escherichia coli wider. Die Aminosäuren ASP 61 und ARG 210 sind die funktionellen Aminosäuren der ATP-Synthase des Bakteriums. In der ATP-Synthase von Mitochondrien und Chloroplasten übernimmt die ebenfalls saure Aminosäure Glutaminsäure (GLU) die Funktion der Asparaginsäure (ASP). In einem letzten Informations-Popup der Lernumgebung wird unter der Überschrift "Nur ein Modell" darauf hingewiesen, dass die dargestellte Funktionsweise der ATP-Synthase ein Modell ist, das den derzeitigen Stand der Forschung widerspiegelt. Es ist wichtig, die Schülerinnen und Schüler darauf hinzuweisen, dass der Mechanismus der ATP-Synthese noch nicht vollständig geklärt ist und dass sie sich hier in "Grenzgebieten" der aktuellen Forschung bewegen. Je nach Zeitreserve und Interesse der Lerngruppe können die noch offenen Fragen angesprochen werden. Zudem bietet sich hier eine allgemeine Diskussion über die Bedeutung und die Aussagekraft von Modellen in den Naturwissenschaften an. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt
  • Sekundarstufe II

Proteinmodelle aus dem Internet – Beispiel Insulin

Unterrichtseinheit

In dieser Unterrichtseinheit werden am Beispiel Insulin Proteindatenbanken und kostenlose Molekülbetrachter wie RasMol vorgestellt. Diese Datenbanken bieten die Möglichkeit, mithilfe des Computers Aspekte der Struktur-Funktionsbeziehung auf molekularer Ebene so anschaulich darzustellen, wie dies im Unterricht mit keinem anderen Hilfsmittel möglich ist.Möchte man die Raumstruktur eines Proteins in einem Molekülmodell darstellen, so benötigt man die Raumkoordinaten jedes einzelnen Atoms. Polypeptidsequenzen, für die diese Raumkoordinaten bereits bekannt sind, werden in der Regel in Datenbanken im Internet veröffentlicht. Von dort kann man sie auf den eigenen Rechner laden und als 3D-Molekülmodell visualisieren. Diese Unterrichtsheit zeigt am Beispiel des Insulins, wie am Rechner 3D-Molekülmodelle visualisiert werden können. In diesem Zusammenhang wird auch die Fragestellung nach dem Einsatz von Schweineinsulin und gentechnisch verändertem Insulin beim Menschen erörtert. Die Arbeit mit der Proteindatenbank schafft ein Bewusstsein dafür, wie wichtig das Internet als Drehscheibe für Biodaten und die freie Zugänglichkeit von Forschungsergebnissen für die tägliche Arbeit der weltweiten Wissenschaftsgemeinschaft ist. 3D-Computermodelle im Unterricht Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Arbeit mit Datenbanken im Biologie-Unterricht Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Unterrichtsverlauf "Proteinmodelle im Unterricht" Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden. Fachlicher Hintergrund Informationen zum Weg von der DNA-Sequenz bis zur Tertiärstruktur eines Proteins und Infos zu dem für die Visualisierung im Unterricht benötigten Molekülbetrachter RasMol Die Schülerinnen und Schüler verstehen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer. können eine Sequenz aus einer Datenbank abrufen. können mit einem einfachen Visualisierungsprogramm wie RasMol umgehen. können die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen. erarbeiten grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen. können Struktur-Funktionsbeziehungen begreifen und erklären. können Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben. Aus der durch die DNA-Sequenz definierten Primärstruktur des Proteins lassen sich Sekundärstrukturbereiche (Faltblätter, Helices, ungeordnete Schleifen) vorhersagen, die durch Wechselwirkungen zwischen den Peptidbindungen und den Seitenketten der Aminosäuren entstehen. Um aber eine Aussage über die - wie es im Fachjargon so schön heißt - Struktur-Funktionsbeziehungen machen zu können, zum Beispiel im Zusammenhang mit den Eigenschaften des katalytischen Zentrums eines Enzyms, benötigt man noch die 3D-Struktur des Proteins in Verbindung mit weiteren Daten, wie zum Beispiel der spezifischen Bindung von Substraten oder Hemmstoffen. Erst dann können Aussagen über die Proteinfunktion auf der molekularen Ebene gemacht werden. Zur Aufklärung der vollständigen räumlichen Anordnung einer nativen Polypeptidkette, seiner Tertiärstruktur, muss zunächst ein hochreiner Proteinkristall "gezüchtet" werden. Hat man ein geordnetes Proteinkristallgitter erreicht, kann dieses mithilfe der Röntgenstrukturanalyse untersucht werden. Die Röntgenstrahlen werden beim Durchtritt durch den Kristall (Wellenlänge im Ångström-Bereich, 1Å = 0,1 nm) gebeugt. Das entstehende Beugungsmuster wird entweder von einem elektronischen Detektor aufgefangen (Diffraktometer) oder mithilfe eines Films sichtbar gemacht. Durch ein mathematisches Verfahren (Fourier-Transformation) erhält man eine Elektronendichtekarte, aus der die Raumkoordinaten für jedes einzelne Atom im Kristall bestimmt werden können. Einfacher hat man es, wenn das Protein zu einer bereits bekannten Proteinfamilie gehört und eine starke Homologie zu einem Protein aufweist, dessen 3D-Struktur bereits aufgeklärt ist. Dann kann die Struktur des "neuen" Proteins durch eine Modellierung abgeleitet werden. Das Züchten von Proteinkristallen für die Röntgenstrukturanalyse ist keine triviale Angelegenheit. Um zum Erfolg zu kommen, wurden Proteinkristalle sogar schon im Weltraum gezüchtet, denn unter den Bedingungen der Schwerelosigkeit sind die Voraussetzungen für die Herstellung fehlerfreier Kristalle besonders günstig. Insbesondere Membranproteine lassen sich nur schwer kristallisieren. In solchen Fällen kann die Struktur eines Proteins mittels NMR auch in Lösung ermittelt werden. Hierbei ergibt sich jedoch keine eindeutige Struktur, da sich die Atome des Proteins in diesem Zustand bewegen (siehe "Zusatzinformationen" auf der Startseite des Artikels). Die Raumkoordinaten von Proteinen werden in Form langer Listen in Online-Datenbanken gespeichert. Von dort kann man sie als Textdateien auf den eigenen Rechner laden und mit einem geeigneten Programm visualisieren. Ein solches Programm ist zum Beispiel das im Internet für schulische Zwecke frei erhältliche RasMol. Die Software bietet die Möglichkeit, aus den Koordinatenangaben der Datenbank dreidimensionale Proteinmodelle zu erstellen, die man um ihre Achsen rotieren lassen oder mit der Maus anfassen und beliebig drehen und wenden kann. Auch ein "Hineinzoomen" in die Moleküle ist möglich. Mit RasMol können Proteine in verschiedenen Darstellungsformen visualisiert werden (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell). Heteroatome, Wasserstoffbrücken oder gebundene Wassermoleküle lassen sich oft anzeigen. Ein Nachteil des Programms ist, dass die Befehlssprache englisch ist und dass die Arbeit nur über die "Command line" läuft, die nicht sehr nutzerfreundlich ist. Empfehlenswert ist es, sich eine Liste der vom Programm erkannten Kommandos auszudrucken. Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Sichelzellanämie – die Ursachen einer Krankheit

Kopiervorlage

In diesem Arbeitsmaterial erarbeiten sich die Schülerinnen und Schüler in Paararbeit die genetische Ursache der Sichelzellanämie, indem sie die Auswirkungen einer Punktmutation in einem gegebenen DNA-Abschnitt auf die Aminosäuresequenz untersuchen. Diese Aufgabe ist als Übungsaufgabe zum Vertiefen und Anwenden des Wissens über die Proteinbiosynthese gedacht und kann zur Einführung in das Thema Mutationen genutzt werden. Die Sichelzellanämie wird im Zusammenhang mit dem Themenkomplex Vererbung behandelt. Dabei geht es nicht nur um die Cytogenetik und die klassischen Vererbungsregeln nach Mendel, sondern auch um die Grundlagen der Molekulargenetik. Hier lernen die Schülerinnen und Schüler den Aufbau der DNA sowie die universellen Prinzipien der Codierung genetischer Information kennen. Daran anschließend wird überblicksweise die Proteinbiosynthese besprochen. Auch Mutationen und Erbkrankheiten werden thematisiert. Die Sichelzellanämie ist eine in der afrikanischen Bevölkerung häufig auftretende Erbkrankheit, die ihre Ursachen in der Molekulargenetik hat: Auf dem Gen der β-Globin-Protein-Untereinheit des Hämoglobins auf Chromosom 11 liegt an sechster Position eine Punktmutation vor, sodass statt Glutaminsäure die Aminosäure Valin verwendet wird. Die Erythrozyten, die dieses veränderte Hämoglobin tragen, verformen sich bei Sauerstoffarmut zu der typischen Sichelform. Im tropischen Afrika sind bis zu 40 % der Bevölkerung davon betroffen. Die Krankheit kann homozygot (alle β-Ketten betroffen) oder auch heterozygot (nur ein Teil der β-Ketten betroffen) vorkommen. Entsprechend treten die Krankheitssymptome unterschiedlich stark auf. Das vorliegende Arbeitsmaterial hilft dabei, die komplexen Vorgänge der Proteinbiosynthese zu verinnerlichen und vereinfacht anzuwenden. Dafür werden die Vorgänge des Prozesses an dem konkreten Beispiel Sichelzellanämie wiederholt. Den Lernenden liegt ein kurzer DNA-Abschnitt von gesunden und erkrankten Personen vor, den sie schrittweise angeleitet in Aminosäuresequenzen übersetzen. Dabei erkennen sie den Austausch der Aminosäure als Ursache der Krankheit und lernen so Punktmutationen und ihre Folgen kennen. Fachkompetenz Die Schülerinnen und Schüler stellen biologische Sachverhalte (zum Beispiel Strukturen, Funktionen oder Zusammenhänge) dar oder überführen sie in eine sach-, adressaten- und situationsgerechte Darstellungsform im Hinblick auf die Zielgruppe. verwenden eine vereinfachte biologische Fachsprache, um Sachverhalte und biologische Zusammenhänge sachgerecht zu beschreiben, sie adressatengerecht weiterzugeben beziehungsweise den Basiskonzepten der Biologie zuzuordnen. Sozialkompetenz Die Schülerinnen und Schüler bringen sich mit eigenen Ideen ein und diskutieren einen gemeinsamen Lösungsvorschlag. können entsprechend ihrer Selbsteinschätzung weiterführendes Material bearbeiten.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Nährstoffe

Kopiervorlage

Das Unterrichtsmaterial zum Thema "Nährstoffe" enthält zwei Arbeitsblätter mit Übersichtsdarstellungen über den Aufbau von Kohlenhydraten, Proteinen und Fetten mit symbolischen Abbildungen. Für Vitamine, Mineralstoffe und Ballaststoffe ist ebenfalls eine Übersichtsdarstellung vorhanden. Auf den beiden Arbeitsblättern sind die Übersichtsdarstellungen der Kohlenhydrate, Proteine, Fette und Vitamine, Mineralstoffe und Ballaststoffe aus der dazugehörigen interaktiven Präsentation abgebildet. Die Übersichtsdarstellungen enthalten die gleichen Lücken wie in der interaktiven Präsentation, die nach Durchführung der Zuordnungsaufgabe am Ende und Überprüfung der Richtigkeit als Sicherung des Erlernten durch die Schülerinnen und Schüler ausgefüllt werden sollen. In den Übersichtsdarstellungen sind die Monomere der Nährstoffe Kohlenhydrate, Proteine und Fette in Form von symbolischen Abbildungen dargestellt: Monosaccharide werden als Sechs- beziehungsweise Fünfecke abgebildet, Aminosäuren als Kreise und Glycerin- und Fettsäuremoleküle als verschiedenfarbige Rechtecke. Ebenso sind Disaccharide, Polysaccharide, Dipeptide, Tripeptide, Polypeptide, Proteine und Fettmoleküle in symbolischer Form veranschaulicht. Bei den Vitaminen, Mineralstoffen und Ballaststoffen wurde auf eine symbolische Darstellung verzichtet, da diese bei der sich anschließenden Thematik der Verdauung nicht benötigt werden. Hier wird anhand der Beispiele Vitamin C, Vitamin D, Calcium, Magnesium und Pflanzenfasern deren Funktion im menschlichen Körper abgebildet. Das Arbeitsmaterial wird durch ein interaktives Begleitmaterial – bestehend aus drei interaktiven Übungen – ergänzt, auf das Sie hier zugreifen können. Als Einstieg in die Unterrichtsstunde kann eine Nährwerttabelle eines bei den Schülerinnen und Schülern beliebten Nahrungsmittels im Original, zum Beispiel mithilfe einer Dokumentenkamera, dienen. Dadurch wird die Frage aufgeworfen, worum es sich bei den angegebenen Nährstoffen handelt und wie diese aufgebaut sind. Zur Erarbeitung dient die interaktive Präsentation "Nährstoffe", die den Aufbau der Nährstoffe in vereinfachter, symbolischer Form behandelt. Die Schülerinnen und Schüler bearbeiten die interaktive Präsentation in Einzelarbeit, da so jede und jeder in ihrer oder seiner eigenen Geschwindigkeit arbeiten und jeweils selbstständig den Wissensfortschritt überprüfen kann. Die Sicherung sollte in Paararbeit erfolgen, weil dann gegebenenfalls Unsicherheiten mit dem Partner oder der Partnerin besprochen werden können. Als Zirkelschluss kann anhand der Nährwerttabelle vom Beginn der Stunde der Aufbau der Nährstoffe wiederholt werden und gegebenenfalls auf ihre verschiedenen Energiegehalte eingegangen werden.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I

Kampf gegen Krebs

Unterrichtseinheit

Am Beispiel einer Signalkette erkennen Schülerinnen und Schüler, wie molekularbiologische Grundlagenforschung die Entwicklung neuer und innovativer Medikamente ermöglichen kann.Mehr als 200.000 Menschen sterben in Deutschland pro Jahr an Krebserkrankungen. Bei der Behandlung kommen neben Bestrahlungen Chemotherapien zum Einsatz. Die dabei verwendeten Wirkstoffe schädigen insbesondere die sich schnell teilenden Tumorzellen. Aber auch gesunde Zellen werden angegriffen. Schwere Nebenwirkungen sind die Folge. Wissenschaftler und Mediziner arbeiten an der Entwicklung von Wirkstoffen für eine zielgenauere Krebstherapie. Die soll nicht nur weniger belastende Behandlungsmethoden, sondern zukünftig auch die Bekämpfung heute noch schwer therapierbarer Tumore ermöglichen. Ziele der Unterrichtseinheit Die zentrale Botschaft dieser Unterrichtseinheit ist: Krebs entsteht durch den Verlust negativer Kontrollen, die Wachstum und Teilung von Zellen in gesunden Geweben streng überwachen. Die Vielfalt der daran beteiligten zellulären Nachrichtensysteme ist unglaublich komplex und zurzeit nur ansatzweise durchschaubar. Zudem variieren die vielen miteinander vernetzten Signalketten und ihre Störungen von Zelltyp zu Zelltyp, von Tumor zu Tumor. Dies macht den Kampf gegen Krebszellen so schwierig. In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler einen zentralen Mechanismus der Signaltransduktion und die vereinfachte Darstellung eines Signalwegs kennen. Dabei begegnen ihnen "Schalter", die in vielen molekularbiologischen Bereichen von zentraler Bedeutung sind (GTP-bindende Proteine, Konformationsänderungen, Phosphorylierungen). MS Wissenschaft 2011 Im Rahmen des Wissenschaftsjahres 2011 "Forschung für unsere Gesundheit" zeigt die Mitmachausstellung an Bord der MS Wissenschaft "Neue Wege in der Medizin" unter anderem Exponate zum Thema "Im Kampf gegen Krebs - von der Grundlagenforschung zum Medikament". Zu sehen sind dabei auch Animationen von Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried. Die Filme visualisieren die zellulären Signalsysteme, die Thema dieser Unterrichtseinheit sind. Zudem zeigen sie, wie neuartige Krebsmedikamente wirken und Tumore durch eine Hemmung der Angiogenese - die Neubildung von Blutgefäßen - "aushungern" sollen. Die Darstellungen sind sehr vereinfacht. Anschaulichkeit steht im Vordergrund und nicht die wissenschaftliche Korrektheit im Detail. (Die hier verwendeten Grafiken stammen aus den Animationen.) Vom 19. Mai bis zum 29. September ist das umgebaute Binnenfrachtschiff unterwegs und macht in 35 Städten Halt. Ein Besuch der Ausstellung bietet eine ideale Ergänzung zur Behandlung des Themas im Unterricht. Informationen zum Tourplan und zur Gruppenanmeldung finden Sie auf der Webseite von Wissenschaft im Dialog (siehe Zusatzinformationen). Molekularbiologische Grundlagen Wachstumsfaktor-Rezeptoren werden von vielen Krebszellen überproduziert. Sie setzen eine fatale Signalkette in Gang, die Ansatzpunkte für neuartige Krebsmedikamente bietet. Materialien Schülerinnen und Schüler lernen allgemeine Eigenschaften biologischer Signalsysteme kennen und identifizieren strategische Ziele für die Entwicklung von Wirkstoffen. Die Schülerinnen und Schüler sollen Einblick in Regulationsmechanismen auf molekulare Ebene gewinnen. Mechanismen der Krebsentstehung und -entwicklung kennenlernen. allgemeine Eigenschaften biologischer Signalkaskaden am Beispiel der Rezeptor-Tyrosinkinasen kennenlernen. Wirkungsmechanismen neuartiger Krebsmedikamente verstehen. Die Unterrichtseinheit kann in das Wahlmodul "Krebs: Auslösende Faktoren, molekulare Mechanismen der Entstehung, Aspekte der Gesundheitserziehung, Zellzyklus und Apoptose" integriert werden. Eigenschaften von Krebszellen sollten bereits bekannt sein. Die Bedeutung der Bildung von Blutgefäßen (Angiogenese) für das schnelle Wachstum von Tumoren kann - falls nicht schon geschehen - im Rahmen dieser Unterrichtseinheit behandelt werden. Kenntnisse zur Apoptose sind hilfreich, aber nicht erforderlich. Fehlfunktionen verursachen Krankheiten Molekulare Regulationsmechanismen sind die Voraussetzung für Differenzierung und Organbildung und erhalten die Lebensfähigkeit eines Organismus. Wichtige Stellschrauben dieser molekularen Nachrichtensysteme sind Botenstoffe, die über das Blut oder die Gewebsflüssigkeit transportiert werden oder diffundieren. Sie binden nach dem Schlüssel-Schloss-Prinzip an spezifische Rezeptoren auf der Oberfläche der Zielzellen und aktivieren komplexe Signalketten im Zellinneren. Diese steuern die Genaktivität und beeinflussen Eigenschaften und Verhalten der Zelle. Fehlfunktionen dieser Nachrichtensysteme haben fatale Folgen. Sie sind die Ursache aller Krebserkrankungen und vieler anderer Krankheiten. Wachstumsfaktoren binden an Rezeptor-Tyrosinkinasen Der Epidermale Wachstumsfaktor (epidermal growth factor, EGF) ist ein wichtiger Botenstoff. Die Bindung des Polypeptids an seinen Rezeptor stimuliert die Ausbildung verschiedener Zelltypen sowie Wachstum und Teilung der Zellen (Proliferation). Der EGF-Rezeptor (epidermal growth factor receptor, EGFR) gehört zur Familie der Rezeptor-Tyrosinkinasen. Diese einander sehr ähnlichen Transmembranmoleküle kommen beim Menschen auf allen Zellarten vor. Sie bestehen aus einem extrazellulären Bereich, der den Botenstoff bindet, einem die Membran durchquerenden Abschnitt und einem intrazellulären Bereich. Der intrazelluläre Bereich besitzt eine Kinase-Domäne mit ATP-Bindungsstelle. Kinasen sind Enzyme, die Phosphatgruppen von ATP auf die Hydroxylgruppen (-OH) anderer Moleküle übertragen. Tyrosinkinasen phosphorylieren Proteine und verändern dadurch deren Aktivität. Sie übertragen die Phosphatgruppe dabei auf die Hydroxylgruppe der Aminosäure Tyrosin. Aktivierung des Wachstumsfaktor-Rezeptors Die Bindung des Wachstumsfaktors an seinen Rezeptor bewirkt eine Änderung der Proteinstruktur. Aufgrund dieser Konformationsänderung lagern sich die Rezeptoren paarweise zusammen (Dimerisierung). Die intrazellulären Bereiche der Rezeptor-Dimere können sich dann über ihre Kinase-Aktivität gegenseitig phosphorylieren. Danach sind die Rezeptoren "scharf" und initiieren komplexe intrazelluläre Signalketten. Dies erfolgt sehr schnell: Bereits eine Sekunde nach der Bindung des Botenstoffs ist die intrazelluläre Signalkette aktiviert. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Rezeptor-Dimer (rot und gelb) mit gebundenem Botenstoff (hellblau) in der Zellmembran. Im Fall des EGF-Rezeptors wird ein Wachstumsfaktormolekül von zwei Rezeptoren gebunden. Andere Rezeptor-Tyrosinkinasen binden je ein Botenstoffmolekül pro Rezeptor (dieser Fall ist auf dem Arbeitsblatt der Unterrichtseinheit dargestellt, "ab_2_signalkette_bauelemente.pdf"). Das intrazelluläre Nachrichtensystem wird in Abb. 1 durch das Netzwerk unter der Zellmembran angedeutet. Die Grafik ist - wie alle Abbildungen in dieser Unterrichtseinheit - ein Screenshot aus einer Animation Prof. Dr. Axel Ullrich vom Max-Planck-Institut für Biochemie in Martinsried, die auch auf der MS Wissenschaft "Neue Wege in der Medizin" zu sehen ist. Überproduktion von Wachstumsfaktor-Rezeptoren in Krebszellen Bereits in den 1990er Jahren des vergangenen Jahrhunderts entdeckte man, dass Krebszellen vieler Tumore auf ihrer Oberfläche wesentlich mehr EGF-Rezeptoren als gesunde Zellen tragen. Zudem wiesen Tumore höhere EGF-Konzentrationen als gesunde Gewebe auf. Patienten, die zugleich Rezeptor und Wachstumsfaktor vermehrt bilden, haben besonders schlechte Heilungschancen (schnelles Tumorwachstum, verstärkte Bildung von Metastasen). Wissenschaftler erforschen die Nachrichtensysteme, mit denen Signale von der Zelloberfläche in das Zellinnere und in den Zellkern übermittelt werden. Das Verständnis dieser Signalketten und ihrer Fehlfunktionen ist der Schlüssel für die gezielte Entwicklung neuartiger Krebsmedikamente. Rezeptor-Tyrosinkinasen wie der EGF-Rezeptor spielen bei der Krebsentstehung eine wichtige Rolle und stehen im Fokus der Molekularbiologen und Mediziner. Rezeptor-Tyrosinkinasen stimulieren Wachstum und Teilung der Zellen. In gesundem Gewebe wird ihre Aktivität von hemmenden Kontrollmechanismen streng reglementiert. In Krebszellen haben diese negativen Kontrollinstanzen ihre Wirkung verloren. Die Rezeptor-Tyrosinkinasen sind immer aktiv und verursachen die unkontrollierte Vermehrung von Krebszellen (Proliferation). die Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen (Angiogenese). die Hemmung des programmierten Zelltods (Apoptose), einem "Notfallprogramm", mit dem sich entartete Zellen selbst zerstören. die Wanderung von Zellen und somit die Bildung von Tochtergeschwülsten (Metastasen). Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München haben den ersten zielspezifischen Anti-Krebs-Wirkstoff entwickelt, der in die zelluläre Signalkette eingreift: Trastuzumab oder Herceptin (Handelsname). Die Substanz, ein monoklonaler Antikörper, wurde im Jahr 2000 in der Europäischen Union zugelassen. Er bindet an der Zellaußenseite an eine Rezeptor-Tyrosinkinase, die als Wachstumsfaktor-Rezeptor fungiert und in Krebszellen überproduziert wird. Durch die Bindung des Antikörpers wird die Bindung des Botenstoffs und so die Übertragung des Signals in die Zelle unterbunden (Abb. 2). Dies führt dazu, dass sich die Tumorzellen sich durch Apoptose - einem Notfallprogramm für die Selbstzerstörung entarteter Zellen - selbst zerstören können. Zudem führt die Antikörperbindung zur Rekrutierung von Immunzellen, die die Tumorzellen angreifen (Abb. 3). Ein weiterer Effekt von Herceptin ist auch die Hemmung der Angiogenese, also der Bildung von Blutgefäßen, die den Tumor mit Sauerstoff und Nährstoffen versorgen. Für das schnelle Tumorwachstum ist der Anschluss an die Versorgungssysteme des Organismus eine wichtige Voraussetzung. Von den Krebszellen ausgesendete Botenstoffe stimulieren die Blutversorgung des Tumors. Der Einfluss von Herceptin auf das Nachrichtensystem der Krebszellen wirkt dem entgegen - der Tumor muss "hungern". Wirkstoffe mit einem geringen Molekulargewicht können in das Zellinnere gelangen und dort Zielmoleküle des zellulären Signalsystems angreifen. Eine solche Substanz wurde ebenfalls am Max-Planck-Institut für Biochemie entwickelt: Das Medikament Sunitinib (Handelsname Sutent, Zulassung in der Europäischen Union im Jahr 2006) verhindert die Bindung von ATP an die Kinase-Domäne der Rezeptor-Tyrosinkinasen (kompetitive Hemmung). In Abb. 4 ist Sutent orange, ATP grün dargestellt. Der Wirkstoff verhindert die für die Signalübertragung entscheidende Autophosphorylierung des Rezeptors. Wie Herceptin soll auch Sutent sowohl das Wachstum der Krebszellen, anti-apoptotische Mechanismen und auch die Neubildung von Blutgefäßen hemmen, die das schnelle Wachstum des Tumors ermöglichen (Abb. 5). Während der monoklonale Antikörper Herceptin per Infusion verabreicht werden muss, können Patienten den niedermolekularen Wirkstoff Sutent in Tablettenform zu sich nehmen. Die Kombination verschiedener Wirkstoffe ist ein wichtiger Schritt, um das Wettrennen gegen die schnelle Wandlungsfähigkeit von Krebszellen gewinnen zu können. Nachdem Rezeptor-Tyrosinkinasen als strategische Ziele für die Krebstherapie identifiziert waren, suchte man nach Substanzen, die an die ATP-Bindungsstelle der Kinasen binden und so die Enzymaktivität kompetitiv hemmen. In einem ersten Schritt wurden aus zehntausenden Molekülen diejenigen ausgewählt, deren Struktur (theoretisch) die Kriterien für eine Affinität zu der ATP-Bindungsstelle erfüllten. Die Vorauswahl wurde einem Wirkstoffscreening unterzogen. Die Strukturen der erfolgreichsten Substanzen wurden mithilfe der medizinischen Chemie weiter optimiert. Das Ergebnis, Sutent, bindet jedoch nicht nur an eine Rezeptor-Tyrosinkinase, sondern an die ATP-Bindungsstelle von mehr als 150 Kinasen! Die Substanz wirkt also als "Breitband-Kinase-Hemmer". Wissenschaftler versuchen heute, unter diesen Kinasen diejenige(n) zu identifizieren, auf die die anti-Krebs-Wirkung von Sutent zurückzuführen ist. In dem darauf folgenden Schritt gilt es dann, die Struktur des Wirkstoffs so zu verändern, dass er nur noch die für die Krebsbekämpfung relevanten Kinasen hemmt. Durch die Erhöhung der Spezifität können die Dosierung des Wirkstoffs und so auch die Nebenwirkungen reduziert werden. Herceptin und Sutent sowie viele andere Medikamente helfen heute, die Lebensqualität und die Überlebenschancen von Krebspatienten zu erhöhen. Wie weit die oben so klar beschriebenen Wirkungen und Zusammenhänge tatsächlich den zellulären Abläufen entsprechen, ist jedoch noch nicht vollständig erforscht. Ein Sieg über den Krebs ist noch nicht greifbar. Dies liegt an der Diversität der Krebszellen, ihrer Wandlungsfähigkeit und der Vielfalt der in ihnen außer Kontrolle geratenen Regulationsmechanismen. Ansatzpunkte für eine gezielte Krebstherapie Das erste Arbeitsblatt (ab_1_therapie_ansatzpunkte.pdf) weist auf den Zusammenhang zwischen der Überproduktion von Wachstumsfaktoren sowie ihrer Rezeptoren und der Bösartigkeit von Tumoren hin. Die Lernenden gliedern die Ereigniskette (Signal, Signalübertragung, Signalwirkung) und identifizieren strategische Angriffspunkte für eine gezielte Krebstherapie. Sie erkennen, dass für die Umsetzung die molekularen Grundlagen des zellulären Nachrichtensystems erforscht werden müssen. Die Signalkette "downstream" des Rezeptors Mit dem zweiten Arbeitsblatt lernen Schülerinnen und Schülern Details der Signalkette kennen, die von einer Rezeptor-Tyrosinkinase angestoßen wird. Sie sollen die im Arbeitsblatttext (ab_2_1_signalkette.pdf) beschriebene Abfolge der Wechselwirkungen zwischen verschiedenen Proteinen bildlich umsetzen (Partner- oder Kleingruppenarbeit). Die Vorgabe grafischer Elemente (ab_2_2_signalkette_bauelemente.pdf) sorgt dabei für einen "gemeinsamen Nenner" innerhalb des Kurses. Methodisch kann hier - je nach Gegebenheiten und Lerngruppe - ganz unterschiedlich vorgegangen werden. Schülerinnen und Schüler können die vorgegeben Bausteine der Signalkette zum Beispiel ausschneiden und "zusammenpuzzeln". Ergebnisse können dann mit entsprechenden Folienfragmenten am Tageslichtprojektor vorgestellt und im Plenum diskutiert werden. Schließlich kann die Lehrkraft eine Folie mit dem vollständigen Signalweg auflegen (ab_2_2_signalkette_bauelemente_loesung.pdf). Bei entsprechender technischer Ausstattung kann die Signalkette von den Lernenden von auch digital visualisiert werden - zum Beispiel als PowerPoint-Animation. Ähnlich wie in der Unterrichtseinheit Waffen im Kampf gegen AIDS können, aufbauend auf die Textarbeit, die fachlichen Inhalte mit der Kreativtechnik "Storyboard" intensiv reflektiert werden. Allgemeine Eigenschaften biologischer Nachrichtensysteme Bei der Übung kommt es natürlich nicht darauf an, Details der Signalkette zu vermitteln (von der die Darstellung ohnehin nur einen Ausschnitt zeigt). Vielmehr sollen Schülerinnen und Schüler ein Gefühl für die Natur komplexer biologischer Nachrichtensysteme entwickeln. Sie sollen erkennen, wie das Signal innerhalb der Zelle kaskadenartig vervielfältigt wird, indem ein aktiviertes Protein viele weitere Proteine aktiviert - wie bei einer Telefonkette (so zumindest stellt man sich das vor - experimentell belegt ist dies zurzeit noch nicht). Zudem sollen sie prinzipielle und in vielen biologischen Prozessen wiederkehrende "Schalter" für die Aktivität von Proteinen kennen lernen. Ein G-Protein und seine Zusammenarbeit mit einem membranständigen Rezeptor begegnet den Lernenden zum Beispiel auch bei der Signaltransduktion in den Sehzellen der Netzhaut. So lernen sie ein wichtiges Prinzip der Biologie kennen: Die Mehrfachverwertung bewährter molekularer Module und Konzepte in ganz verschiedenen Kontexten. Schließlich sollen die Schülerinnen und Schüler auf der Basis des von ihnen erstellten "Signal-Organigramms" argumentieren, warum es sinnvoll ist Wirkstoffe gegen Krebs zu entwickeln, die die Aktivierung der Rezeptor-Tyrosinkinase unterbinden und die nicht weiter "downstream" ansetzen.

  • Biologie
  • Sekundarstufe II

Waffen im Kampf gegen AIDS

Unterrichtseinheit

Schülerinnen und Schüler lernen in dieser Unterrichtseinheit nicht nur den Lebenszyklus des Humanen Immundefizienz-Virus (HIV) kennen. Sie erfahren, wie die molekularbiologische Grundlagenforschung der strategischen Entwicklung neuer Wirkstoffe im Kampf gegen AIDS den Weg bahnt.Seit der Entdeckung des AIDS-Virus HIV im Jahre 1983 forschen Wissenschaftler auf der ganzen Welt an der Entwicklung von Medikamenten, die die Ausbreitung der AIDS-Pandemie verlangsamen. Im Wissen darum, dass das Virus sich schneller verändert als Medikamente oder Impfstoffe entwickelt werden können, liegt ein Schwerpunkt der bisherigen Erfolge darin, die Ausbreitung des Virus innerhalb eines infizierten Körpers zumindest zu verlangsamen. Retroviren wie das HI-Virus haben im Vergleich zu anderen Viren eine besondere Strategie, wenn es darum geht, ihre Erbinformation in das Genom der Wirtszelle zu integrieren und es dort vermehren zu lassen. Das Enzym Reverse Transkriptase spielt dabei eine zentrale Rolle und bietet somit einen wichtigen Ansatzpunkt für die Bekämpfung der Krankheit AIDS. Neue Hoffnungen der Wissenschaftler ruhen auf sogenannten Entry-Hemmern. Diese bekämpfen nicht mehr die Vermehrung der Viren in den befallenen Zellen, sondern sollen die Infektion neuer Wirtszellen im Körper verhindern. Die Bedrohung ist nicht gebannt! Der wissenschaftlich-medizinische Fortschritt hat eine Reihe antiviraler Präparate hervorgebracht, die HIV-Infizierten - wenn sie die Therapievorschriften sehr gewissenhaft beachten - bei passabler Lebensqualität eine recht hohe Lebenserwartung ermöglichen. Dies führt in der Gesellschaft jedoch dazu, dass AIDS, gerade auch bei Schülerinnen und Schülern, seinen Schrecken verloren zu haben scheint. Dennoch: Letztendlich ist AIDS nach wie vor eine Infektion mit tödlichem Ausgang. Reverse-Transkriptase-Hemmer und Entry-Inhibitoren Durch die Auseinandersetzung mit dem Infektions- und Vermehrungszyklus des HI-Virus kann das Problembewusstsein bei den Jungen und Mädchen geschärft werden. Durch eine intensive Beschäftigung mit dem Enzym Reverse Transkriptase erkennen sie nicht nur die Bedrohung, sondern bekommen auch einen Eindruck von der Vielfältigkeit der Spezialisierung in der Natur. Die Untersuchung der Wirkweise unterschiedlicher Reverse-Transkriptase-Hemmer führt die Lernenden an die aktuelle Arbeit der Forscherinnen und Forscher heran. Ein Bericht über einen neu gefundenen Entry-Inhibitor zeigt den Weg in die Zukunft der AIDS-Forschung auf und regt an, die Chancen des neuen Präparates beim Kampf gegen AIDS zu diskutieren. Struktur der Unterrichtseinheit Das vorliegende Arbeitsmaterial verteilt sich auf drei Module. Diese bauen inhaltlich aufeinander auf und können hintereinander abgearbeitet werden. Es ist aber auch möglich, alle Module einzeln und voneinander unabhängig im Unterricht einzusetzen. Modul 1: Vermehrungszyklus des HI-Virus Schülerinnen und Schüler gewinnen einen Einblick in den Vermehrungszyklus des HI-Virus. Durch die Erstellung eines Storyboards und die mögliche anschließende Verfilmung werden die gebotenen Informationen nicht nur passiv rezipiert, sondern aktiv aufgenommen und umgearbeitet. Durch die Kreativarbeit der Lernenden werden unterschiedliche Zugangskanäle angesprochen und aktiviert. Modul 2: Die Reverse Transkriptase und ihre Hemmung Hier begeben sich die Schülerinnen und Schüler auf die molekulare Ebene. Dynamische Folien mit integrierten Java-Applets geben ihnen die Möglichkeit, Struktur und Funktionen der Reversen Transkriptase zu erforschen und anschließend die Wirkung eines kompetitiven und eines nicht kompetitiven Hemmstoffes auf das Enzym zu untersuchen. Interaktive Molekülmodelle können dabei am Bildschirm gedreht und gewendet werden. Modul 3: AIDS-Virus mit stumpfem Stachel Das abschließende dritte Modul gibt anhand eines Radiobeitrags (Deutschlandradio, Dezember 2010) einen Ausblick auf die möglichen Entwicklungen in der AIDS-Therapie der kommenden Jahre. Der Beitrag regt als Audio- oder Textdatei zu einer abschließenden Diskussion über die Chancen aktueller und zukünftiger AIDS-Medikamente an. Wird AIDS schon bald "heilbar" sein? Direkt zu den Modulen Modul 1: Vermehrungszyklus des HI-Virus, Texterschließung Schülerinnen und Schüler erschließen den HIV-Vermehrungszyklus aus einem Text. Sie entwickeln Überschriften und fassen wichtige Passagen mit eigenen Worten zusammen. Modul 1: Storyboard und Animation Aufbauend auf die Textarbeit werden mit der Kreativtechnik "Storyboard" fachliche Inhalte intensiv reflektiert. Optional wird daraus eine kleine Animation realisiert. Modul 2: Die Reverse Transkriptase und ihre Hemmung Ausgehend von den molekularen Grundlagen werden Angriffsflächen der Viren identifiziert. So gerät die Reverse Transkriptase ins Visier der Lernenden. Modul 2: Lernumgebung "Reverse Transkriptase" Die Lernumgebung ermöglicht die Untersuchung von Struktur und Funktion sowie der Wechselwirkung des Enzyms mit einem kompetitiven und einem allosterischen Hemmstoff. Modul 3: AIDS-Virus mit stumpfem Stachel Aktuelle Zahlen belegen, dass AIDS längst nicht besiegt ist. Warum ist der Kampf gegen HIV so schwierig? Und wie können neuartige Medikamente wirken? Die Schülerinnen und Schüler sollen den Infektionsweg und den Vermehrungszyklus des HI-Virus kennenlernen. Möglichkeiten der Hemmung der HIV-Vermehrung erkennen und benennen können. die Reverse Transkriptase strukturell und funktional untersuchen. verschiedene Wege der Hemmung der Reversen Transkriptase verstehen. in der Diskussion über AIDS-Therapien einen eigenen Standpunkt entwickeln und begründet vertreten. Andocken und Eindringen in die Wirtszelle Der Vermehrungszyklus von Viren ist vielen Schülerinnen und Schülern schon am Ende der Sekundarstufe I bekannt. Sie wissen, dass Viren den Biosyntheseapparat ihrer Wirtszellen für die Vermehrung ihres Erbguts und zur Bildung viraler Proteine einspannen. Der Vermehrungszyklus des HI-Virus entspricht diesem Muster in großen Teilen. Das Virus dockt durch spezifische Interaktionen viraler Oberflächenproteine mit den Proteinen auf der Zellmembran an die Wirtszelle an. Daraufhin verschmilzt die Virusmembran mit der Zellmembran und das Capsid gelangt in das Zytoplasma. Die Visitenkarte der Retroviren: Reverse Transkription Innerhalb der Wirtszelle setzt das Capsid das virale Erbgut und eine Reihe viraler Proteine frei. Und hier beginnt die Besonderheit des HI-Virus und aller Retroviren. Das virale Protein Reverse Transkriptase erstellt aus dem Einzelstrang-RNA-Genom des Virus eine cDNA. (Eine "complementary DNA" ist eine DNA, die von der Reversen Transkriptase aus RNA gebildet wird.) Durch virale Integrasen wird das virale Genom in Form einer Doppelstrang-DNA in den Zellkern geschleust und in das Genom der Wirtszelle integriert. Vermehrung und Freisetzung Die weiteren Abläufe entsprechen dem üblichen viralen Schema: Die bei der Transkription im Zellkern gebildete virale Boten-RNA wird bei der Proteinbiosynthese translatiert. Die gebildeten viralen Proteine werden zusammen mit der RNA zu neuen Virus-Capsiden zusammengebaut und verlassen die Wirtszellen über Exocytose. Dabei nehmen sie einen Teil der mit viralen Proteinen bestückten Zellmembran als "Envelope" mit. Den gegenüber von DNA-Viren abgewandelten Vermehrungszyklus der Retroviren sollen sich die Schülerinnen und Schüler mithilfe eines Textes (hiv_vermehrunsgzyklus_schuelertext.pdf/rtf) erarbeiten. Folgende Punkte sollten vorab im Unterricht behandelt worden sein: Aufbau von Biomembranen: Lipiddoppelschichten mit Membranproteinen Aufbau des Immunsystems, zelluläre und humorale Abwehr Enzyme (Polymerasen, Proteasen) Nukleinsäuren, Proteinbiosynthese bei Eukaryoten Eigenschaften, Aufbau und Vermehrungszyklus von DNA-Viren; es ist zu empfehlen, zunächst den Vermehrungszyklus eines DNA-Virus zu behandeln, bevor Retroviren thematisiert werden. Der Arbeitsauftrag verlangt von den Lernenden eine Strukturierung des Textes, die Vergabe von Überschriften und eine kurze inhaltliche Zusammenfassung der Passagen. Die Ergebnisse werden vorgestellt und im Plenum diskutiert. Als Resultat sollte eine gemeinsame Beschreibung abgestimmt werden. In Modul 2 der Unterrichtseinheit soll der Text als Grundlage der Storyboard-Entwicklung zum Einsatz kommen. 1. Andocken an die Zielzelle Proteine in der Virushülle erkennen Andockstellen auf der Zelloberfläche. 2. Fusion der Membranen Wechselwirkungen zwischen den Membranproteinen bewirken die Fusion von der Virushülle mit der Zellmembran. 3. Entpacken der "Fracht" Die Proteinhülle des Viruspartikels wird im Zytoplasma der Zelle abgebaut. 4. Reverse Transkription Die in Form von Einzelstrang-RNA vorliegende virale Erbinformation wird im Zytoplasma mithilfe der Reversen Transkriptase in Doppelstrang-DNA umgeschrieben. 5. Integration Das Doppelstrang-DNA-Genom des HI-Virus wird in den Zellkern transportiert und mithilfe der Integrase in die zelluläre DNA eingebaut. 6. Transkription/Replikation Die zelluläre RNA-Polymerase stellt Kopien des viralen Genoms her. 7. Translation viraler Proteine Der zelluläre Transkriptionsapparat erzeugt die viralen Proteine. 8. Bearbeitung ("Prozessierung") der Proteine Die virale Protease zerlegt die primären Translationsprodukte in funktionsfähige Proteine. 9. Zusammenbau und Freisetzung Viruspartikel bauen sich "von selbst" zusammen und schnüren sich an der Plasmamembran, die virale Membranproteine enthält, nach außen ab. Ausgestattet mit dieser Hülle können sie mit der Membran weitere Wirtszellen verschmelzen und einen neuen Vermehrungszyklus einleiten. Planungshilfe aus den Disney-Studios Storyboards sind eine Erfindung der Disney-Studios und werden gerne in der Filmproduktion eingesetzt. Es handelt sich dabei um Visualisierungen von Drehbüchern. Handlungsverläufe einzelner Filmszenen werden skizzenhaft dargestellt. Storyboards sind stark ablauforientiert und vermitteln so einen ersten Eindruck für die spätere Umsetzung. Kommunikationsmittel und Kreativitätstechnik Storyboards sind in der Regel eine erste visuelle Umsetzung der narrativen Ideen aus einem Drehbuch, angereichert mit Gestaltungsideen (zum Beispiel Einstellungsgrößen, Blickwinkel und Perspektiven) für die bevorstehende Produktion. Es entstehen sequenzielle Bildfolgen, die als Grundlage für die Einstellungen während der eigentlichen Filmproduktion genutzt werden. Das Storyboard wird somit zur Denk- und Planungshilfe, die wie ein roter Faden durch die Handlung führt und alle Gestaltungselemente in sich aufnimmt. Es dient weiterhin als Kommunikationsmittel, mit dem Gedanken visuell mitgeteilt und ein Projektvorhaben konkretisiert werden kann. Storyboards können Lernprozesse strukturieren Ähnlich wie die Konzeptphase für einen neuen Film bedarf auch das schulische Lernen der Strukturierung. So bietet sich zum Beispiel die Storyboard-Technik als Ordnungsmittel an, um die Inhalte eines komplexen biologischen Prozesses wie dem HIV-Vermehrungszyklus zu sortieren. Neben der reinen Ordnung birgt die grafische Darstellung weitere Möglichkeiten, zum Beispiel das multisensorische Lernen. Freie Software zur Erstellung von Storyboards Es gibt eine Vielzahl kostenpflichtiger Programme, mit deren Hilfe Storyboards erstellt werden können. Zumeist handelt es sich um umfangreiche Software für Filmschaffende, die eine Storyboard-Funktion hat. Die folgenden Programme sind Freeware, können also kostenlos ausprobiert und im Unterricht eingesetzt werden. StoryBoard Pro Software Die Software von "Atomic Learning" wurde für Schülerinnen und Schüler, Studenten und "home movie maker" entwickelt. Directors Boards 2.0a Diese Software basiert auf dem professionellen Werkzeug “Notebook”. Sie ermöglicht die Erzeugung von AV-Formaten aus digitalen Scans, Illustrationen oder auch Fotos. Celtx - filmpädagogische Arbeit im Unterricht Lehrerinnen und Lehrer aus Nordrhein-Westfalen, die einen EDMOND-Zugang über ihr kommunales Medienzentrum haben, können sich die Inhalte des gesamten Sticks "Film und Schule NRW" als ZIP-Datei kostenlos über EDMOND auf einen Stick oder auf die Festplatte herunterladen. In dem Online-Medienkatalog Ihres Medienzentrums finden Sie diese Datei unter der Signatur 5553697 oder zum Beispiel unter dem Schlagwort "Filmanalyse". Die empfohlene Stickgröße beträgt vier Gigabyte. Film und Schule NRW Ein Programm zum Drehbuchschreiben, Erstellen von Storyboards und zur Strukturierung der Vorproduktion Texterschließungskompetenz und Kreativität Gerne werden zum besseren Verständnis im Unterricht Videosequenzen über das Eindringen des HI-Virus in die Wirtszelle und seine Vermehrung innerhalb der Zelle gezeigt. Die Erarbeitung des Vermehrungszyklus aus einem Text heraus ist eher unbeliebt, besonders dann, wenn dieser Text nicht illustriert ist. Eine Möglichkeit, die gleichzeitig die Texterschließungskompetenz der Schülerinnen und Schüler fördert, ihre Kreativität nutzt und eine gedankliche Eingruppierung der neu erlernten Inhalte in bekannte Wissensstrukturen unterstützt, ist die Anfertigung eines Storyboards. Die Aufgabe Nachdem die Lernenden den Text zur HIV-Vermehrung (hiv_vermehrunsgzyklus_schuelertext.pdf/rtf) gelesen und bearbeitet haben, erhalten sie die Aufgabe, die Abläufe an und in der Wirtszelle in Form eines Storyboards aufzubereiten (Partner- oder Gruppenarbeit). Hierzu erhalten sie eine Storyboard-Vorlage (vorlage_storyboard.pdf). Alternativ können sie auch mit einem geeigneten Programm (siehe oben) am Computer arbeiten. Aus den mit Buntstiften oder am Rechner skizzierten Szenen soll sich eine Bildfolge ergeben, die sich anschließend - theoretisch - auch verfilmen lassen könnte. Wichtige Details sind in den Skizzen heraus zu stellen. Fokussierungen sind als Regieanweisungen rechts in die Textzeilen zu schreiben. Gleiches gilt für Sprechertexte, die nicht einfach aus dem Text übernommen, sondern selbstständig formuliert werden sollen. Unabhängig von einer möglichen Umsetzung ist die Erstellung des Storyboards eine anspruchsvolle Aufgabe, die die Lernenden zur intensiven Reflexion über den darzustellenden Inhalt "zwingt" und ihre Kreativität herausfordert. Ein intensiver Verständnisprozess ist die Grundlage Ob das Storyboard anschließend verfilmt wird, liegt im Ermessen der Lehrperson. Ein solches Projekt würde die Textarbeit mit den Vorzügen eines Films verknüpfen. Da die Schülerinnen und Schüler den Film selbst erstellen, durchlaufen sie vorab einen intensiven Verständnisprozess. Die Durchführung ist natürlich abhängig vom Interesse der Schülerinnen und Schüler, der zur Verfügung stehenden Zeit und der technischen Ausstattung. Möglichkeiten der Umsetzung Es ist vorstellbar, dass ein Trickfilm mit Knete oder anderen Materialien erstellt wird. Die einzelnen Szenen können dann mit einer Digitalkamera oder einem Handy abgefilmt werden. Eine andere Möglichkeit wäre die Erstellung einer Trickfilm-Animation, zum Beispiel mit einem Präsentationsprogramm. Auch die Erstellung eines Activemovies mit der Software Active inspire für Activeboards ist denkbar. Hinweise zur Umsetzung naturwissenschaftlicher Modellvorstellungen in kleinen Animationen finden Sie in den folgenden Beiträgen: Animation chemischer Vorgänge - die Ionenbindung Schülerinnen und Schüler erstellen zur Festigung und Anwendung der im Unterricht erworbenen Kenntnisse eine kleine Animation. Podcasts im naturwissenschaftlichen Unterricht Hinweise und Tipps zum Einsatz und zur Produktion von Podcasts für den naturwissenschaftlichen Unterricht mit Beispielen. Arbeitsteilige Gruppenarbeit Je nach Größe der Lerngruppe bietet sich die arbeitsteilige Erstellung eines gemeinsamen Videos an. Dazu entwickeln Kleingruppen zu verschiedenen Passagen des Vermehrungszyklus Storyboards. Die arbeitsteilige Vorbereitung der Episoden bedarf einer sehr guten Zusammenarbeit der Gruppen während der Konzeption. Gruppenübergreifende Aspekte müssen abgestimmt und an den "Schnittstellen" saubere Übergänge gewährleistet sein. Logische oder stilistische Brüche müssen ausgeschlossen werden. Folgende Aufteilung der Arbeitsgruppen bietet sich an: Schritt 1-2 Andocken, Membranfusion Schritt 3-4 "Uncoating", Reverse Transkription Schritt 5-6 Integration, Transkription/Replikation Schritt 7-9 Translation, Prozessierung, Zusammenbau und Freisetzung der Viren Animationen im Netz Fertige und zum Teil professionelle Animationen aus dem Internet sollten kein Maßstab für die Entwicklung einer eigenen Animation sein. Nach der intensiven Beschäftigung mit dem Thema bei der Erstellung des Storyboards ist die Betrachtung anderer Umsetzungen jedoch in jedem Fall aufschlussreich. Die Schülerinnen und Schüler können zum Beispiel Schwächen des eigenen Konzepts erkennen, aber auch Unstimmigkeiten in anderen Animationen aufspüren. Von den zahlreichen Animationen zum Thema HIV lohnt die Vorführung eines Videos zum Abschluss des Themas in jedem Fall: YouTube: HIV Replikation Der Trickfilm des Pharma-Konzerns Boerhringer Ingelheim zeigt den Lebenszyklus des HI-Virus. Schülerinnen und Schüler entwickeln antivirale Strategien Nachdem die Abläufe einer HIV-Infektion und die Vermehrung der HI-Viren bekannt sind, stellt sich die Frage wie man die Infektion oder die Ausbreitung der HI-Viren im Körper verhindern oder zumindest verlangsamen kann. Lassen Sie Ihre Schülerinnen und Schüler einmal überlegen, wo sich auf der Basis molekularer Grundlagen Ansatzstellen für eine AIDS Therapie ergeben könnten. Sicherlich werden folgende Ziele genannt, an denen antivirale Hemmstoffe wirken können: Entry-Inhibitoren Sie verhindern, dass der HI-Virus mit der Zellmembran fusioniert, also dass er überhaupt in die Zelle eindringen kann. Reverse Transkriptase-Inhibitoren Sie verhindern die reverse Transkription der viralen RNA in eine DNA und so den Einbau des Virus-Genoms in die DNA der Wirtszelle. Integrase-Inhibitoren Sie verhindern den Einbau des Provirus in die Wirts-DNA. Protease-Inhibitoren Sie verhindern die Prozessierung der viralen Proteine und somit den Zusammenbau neuer Capside. Das Virus kann die Wirtszelle nicht mehr verlassen. Reverse Transkriptase im Unterrichtsfokus Aus den möglichen Angriffszielen antiviraler Wirkstoffe wird zunächst die Reverse Transkriptase für eine nähere Betrachtung herangezogen. In den zurzeit angewendeten Standard-Therapien kommen verschiedene Hemmstoffe dieses Enzyms zeitgleich zum Einsatz, um der Entwicklung von Resistenzen so weit wie möglich vorzubeugen. Die Reverse Transkriptase ist den Schülerinnen und Schülern inzwischen als besonderes virales Enzym bekannt, das virale Einzelstrang-RNA in eine Doppelstrang-DNA umschreibt. Aber wie funktioniert das? Wie ist die Reverse Transkriptase aufgebaut und wie ermöglicht sie die reverse Transkription? Zur Beantwortung dieser Fragen wurden für diese Unterrichtseinheit dynamische Folien mit 3D-Molekülen entwickelt. Sie erlauben den Lernenden, durch Drehen und Wenden dreidimensional modellierter Moleküle die Struktur des Enzyms im wörtlichen Sinn zu "begreifen". Die insgesamt sieben dynamischen HTML-Seiten zur Reversen Transkriptase ermöglichen die Untersuchung diverser Aspekte des Enzyms: Struktur und Funktion Bindung von zwei verschiedenen Hemmstoffen, die in der AIDS-Therapie eingesetzt werden Forschend-entdeckend lernen - per Beamer oder vor dem Computer Die sieben HTML-Seiten der Lernumgebung bauen inhaltlich aufeinander auf. Auf Aufgabenstellungen, wie sie in verwandten Lernumgebungen verwendet wurden ( Die Struktur der DNA - virtuelle Moleküle in 3D , ATP-Synthase ? Synthese von Energieäquivalenten , ?Quo vadis, Alken?? - die Markownikow-Regel ), wurde hier bewusst verzichtet. Dies erweitert das Spektrum der Einsatzmöglichkeiten und verschafft der Lehrperson Freiraum bei der Entscheidung für die Tiefe der Behandlung des Themas. Die dynamischen Folien können per Beamerpräsentation zur visuellen Unterstützung des Unterrichtsgesprächs genutzt werden. Hier kann - ohne die die Aufmerksamkeit leitenden Fragestellungen - der Fokus ganz individuell gesetzt werden. Alternativ können die Schülerinnen und Schüler am Computer und Einzel- oder Gruppenarbeit die Seiten unter einer von der Lehrperson vorgegebenen Fragestellung untersuchen. Sparsame Texte Um die selbstständige Arbeit mit den Materialien am Rechner zu unterstützen, wurden Textinformationen auf das Wesentliche beschränkt (Abb. 1). Weitere Informationen zum Einsatz der dynamischen Materialien finden Sie in dem folgenden Beitrag: Die dynamischen Folien sind in einer didaktischen Reihenfolge angeordnet. Nach dem Aufbau der Reversen Transkriptase aus zwei Untereinheiten werden die verschiedenen enzymatischen Funktionen dargestellt: Bindung des RNA-Einzelstrangs Ergänzung zum RNA-DNA-Hybridmolekül (Polymerase-Funktion) Abbau des RNA-Strangs (Nuklease-Funktion) Ergänzung des DNA-Einzelstrangs zum DNA-Doppelstrang (Polymerase-Funktion) Hemmstoffe Die weiteren Folien zeigen die Bindung von zwei verschiedenen Anti-AIDS-Wirkstoffen an das Enzym - einem kompetitiven und einem allosterischen Hemmstoff. Die Folien folgen in ihrer Reihung somit dem forschend-entwickelnden Gedankengang. Die Inhalte der Lernumgebung werden nachfolgend im Detail kommentiert. Auf der Startseite der Lernumgebung (Abb. 2, Platzhalter bitte anklicken) finden Sie eine Übersicht der Folien oder Seiten. Von hier aus kann jede Seite gezielt angesteuert werden. Über Navigationspfeile auf den Seiten (oben und unten rechts) kann auf die jeweils vorherige oder nachfolgende Folie gewechselt werden. Über das "Blatt"-Icon (oben rechts) gelangt man von jeder Folie zurück auf die Startseite (siehe Abb. 1 ). Das Enzym Reverse Transkriptase besteht aus zwei Untereinheiten (gelb und orange, Abb. 3 oben). Das funktionsfähige Protein liegt also in einer Quartärstruktur vor. Per Klick auf den Button "Sekundärstruktur" wechselt die Darstellung. Nun wird die Verteilung von ß-Faltblättern (gelb) und ?-Helices (magenta) im Enzym sichtbar (Abb. 3 unten). Das Molekül kann bei gedrückter linker Maustaste mit dem Mauszeiger "angefasst" und gedreht werden. Mit dem Scrollrad der Maus kann in die Struktur hinein- und herausgezoomt werden. Eine automatisierte Drehung des Moleküls erfolgt nach Anklicken des Buttons "Rotation". Polymerase und Nuklease Über das Steuerungsmenü von Folie 2 lassen sich die virale RNA und ein DNA Einzelstrang im Enzym anzeigen (Abb. 4) und ausblenden. (Natürlich ist in der Darstellung nur ein Bruchteil des viralen Genoms sichtbar.) Diese Funktionen können am Beamer dazu genutzt werden, während des Unterrichtsgesprächs die Bindung des RNA-Einzelstrangs (grün), die Bildung des DNA/RNA-Hybrids (Polymerase-Funktion) und den Abbau des RNA-Strangs (Nuklease-Funktion) zu simulieren. Aktive Zentren Ein Pop-up-Fenster (Abb. 5), das über einen Link in dem Textblock über dem Molekülmodell von Folie 2 geöffnet werden kann, zeigt die Lokalisation der Polymerase- und der Nuclease-Funktion in dem viralen Protein. Die beiden aktiven Zentren befinden sich an den gegenüberliegenden Enden der Bindungsfurche an der Proteinoberfläche. Doppelstrang-DNA Die Neusynthese eines zum DNA-Einzelstrang komplementären zweiten DNA-Strangs (beide blau) kann auf Folie 3 nachvollzogen werden. Die Starteinstellung des Applets zeigt einen DNA-Einzelstrang in der Bindungstasche des Enzyms. Per Klick auf "DNA-Doppelstrang" kann der zweite Polymeraseschritt des Enzyms simuliert werden. Auch auf den Folien 2 und 3 können Schülerinnen und Schüler zwischen der Darstellung im Kalottenmodell und der Sekundärstruktur wählen. Je nach Darstellungsart lassen sich so unterschiedliche strukturelle Zusammenhänge besser erkennen. In der Sekundärstruktur ist zum Beispiel sehr schön zu erkennen, wie das Enzym den DNA-Doppelstrang "im Griff" hat (Abb. 6). Es verdeutlicht den Lernenden, dass Enzyme keine plumpen Bauklötze sind, sondern ausgeklügelte Hochleistungs-Nanomaschinen. Das Nucleotid-Analoglon Tenofovir Die Bedeutung des Begriffs "Nucleotid-Analogon" wird den Schülerinnen und Schülern auf Folie 4 deutlich (Abb. 7). Hier stehen Tenofovir und Adenosinmonophosphat (AMP) nebeneinander. Ihr ähnlicher Aufbau lässt bereits vermuten, dass die Hemmung kompetitiv, also im Wettbewerb um den Bindungsplatz im aktiven Zentrum des Enzyms, stattfindet. Tenofovir wird nach der Aufnahme in die Zelle phosphoryliert und konkurriert mit den natürlichen Substraten um die Nukleotidbindungsstelle der Reversen Transkriptase. Eine genauere Betrachtung der Strukturformeln unterhalb der Applets führt auf die Spur des Wirkungsmechanismus: Die Verlängerung der Nukleotidketten erfolgt über die 3'-OH-Gruppe am Fünferring des Ribose-Bausteins. Tenofovir fehlt eine solche Gruppe. Daher verursacht es den Abbruch der Synthesereaktion. Bindung an das Enzym Folie 5 zeigt, wie tief Tenofovir in die Bindungstasche eindringt. In der transparenten Sekundärstrukturdarstellung (Abb. 8, oben) des Enzyms (gelb/orange) und der Draht-Darstellung der Nukleinsäure (blau) ist Tenofovir als Kalottenmodell im Standard-Farbschema der Elemente vollständig zu erkennen (Sauerstoff rot, Phosphor orange). Bei der Darstellung des Proteins als Kalottenmodell wird deutlich, wie tief der Hemmstoff in die Bindungstasche vordringt (Abb. 8, unten). Efavirenz Das HIV-Medikament Efavirenz wirkt nicht kompetitiv als Hemmstoff auf die Reverse Transkriptase. Ein Pop-up-Fenster (Abb. 9) von Folie 6 zeigt, dass der Hemmstoff keine strukturelle Ähnlichkeit mit den natürlichen Substraten der Reversen Transkriptase hat. Hemmung durch Strukturänderung Efavirenz bindet an einer Stelle außerhalb der aktiven Zentren des Enzyms. Seine Bindung verursacht eine Konformationsänderung der Reversen Transkriptase. Diese Strukturverschiebung sorgt dafür, dass der Zugang der Substrate zum aktiven Zentrum behindert und somit die Polymerase-Aktivität des Enzyms gehemmt ist. Dieser Effekt ist auf Folie 6 dargestellt (Abb. 10). Der Hemmstoff ist magentafarbig dargestellt. Übereinandergelegte Proteinketten Eine hilfreiche Methode der "Computerbiologie" ist das sogenannte Alignement dreidimensionaler Strukturen. Konformationsänderungen, die durch die Bindung eines Linganden - Substrat oder Hemmstoff - verursacht werden, treten dabei besonders deutlich hervor. Diese Möglichkeit wird auf Folie 7 genutzt (Abb. 11). Die rote Kette zeigt das Rückgrat der Reversen Transkriptase ohne Hemmstoff, die blaue Kette nach der Bindung des Hemmstoffs. Über die Buttons können beide Darstellungen einzeln aufgerufen oder weggeklickt werden. Kompetitive und nicht kompetitive Hemmung des gleichen Enzyms Die dynamischen Folien zur Reversen Transkriptase und ihren Hemmstoffen lassen sich nicht nur im Rahmen des Unterrichts zum Thema HIV einsetzen. Die Unterseiten zu Efavirenz und Tenofovir können schon früher im Bereich der Stoffwechselphysiologie eingesetzt werden. Es handelt sich um eindrucksvolle und gut erkennbare Beispiele für Enzymhemmungen. Kompetitive (Tenofovir) und nicht kompetitive (Efavirenz) Enzymhemmung können sehr gut gegenüber gestellt und voneinander abgegrenzt werden. Neben der guten Sichtbarkeit der Wirkprinzipien bieten diese Beispiele einen weiteren Vorteil: Sie sind für Schülerinnen und Schüler sicher interessanter als die häufig in Schulbüchern verwendeten Beispiele. Mit einer kleinen Hintergrundinformation, welche Bedeutung die Reverse Transkriptase für die Bekämpfung von AIDS hat, erscheinen die betrachteten Hemmstoffe gleich viel interessanter als eine gehemmte Succinatdehydrogenase. Hinzu kommt noch, dass beide Hemmungstypen am gleichen Enzym gezeigt werden können. Strukturebenen im Proteinaufbau Die erste Folie der Lernumgebung ( Abb. 3 ) bietet Schülerinnen und Schüler die Möglichkeit, ß-Faltblätter und ?-Helices dreidimensional erfahren zu können. Zwar werden die Sekundärstrukturelemente eines Proteins in ihrem Aufbau intensiv besprochen und gerne abgefragt. Häufig fällt es den Lernenden jedoch schwer, sich diese Strukturen vorzustellen. Durch das Drehen des interaktiven Makromoleküls am Monitor wird die Sekundärstruktur viel besser begreifbar. Gleiches gilt auch für die Quartärstruktur. Am Beispiel der Reversen Transkriptase sehen die Schülerinnen und Schüler direkt, was es bedeutet, wenn ein Enzym aus verschiedenen Untereinheiten aufgebaut ist. 3.000 Neuinfektionen pro Jahr in Deutschland Weltweit sind etwa 33 Millionen Menschen mit HIV-infiziert. Jedes Jahr sterben mehr als zwei Millionen an der Immunschwäche. In Deutschland begann sich HIV vermutlich Ende der 1970er Jahre auszubreiten. In Gruppen mit einem hohen Infektionsrisiko (homosexuelle Männer, Heroinabhängige) stieg die Zahl der Infizierten zunächst sehr schnell an. In der zweiten Hälfte der 1980er Jahre wurde dank verschiedener Maßnahmen in Hochrisikogruppen ein Rückgang der Neuinfektionen beobachtet. In den 1990er Jahren schwankte die Zahl der Neuinfektionen in Deutschland um etwa 2.000 pro Jahr. Zu Beginn des neuen Jahrtausends stieg sie wieder an und hat sich seit 2007 bei zurzeit etwa 3.000 Neudiagnosen pro Jahr stabilisiert (Epidemiologisches Bulletin des Robert Koch-Instituts zum Welt-AIDS-Tag 2009). 20 Prozent der Neuinfektionen durch heterosexuelle Kontakte Nach den aktuellen Schätzungen leben zurzeit in Deutschland etwa 70.000 HIV-Infizierte. Die Zahl der HIV-Neudiagnosen stieg sowohl bei homosexuellen Männern als auch bei Heterosexuellen im Jahr 2009 gegenüber dem Vorjahr um etwas mehr als drei Prozent (Epidemiologisches Bulletin des Robert Koch-Instituts vom 7. Juni 2010). Etwa 20 Prozent der HIV-Übertragungen erfolgen bei heterosexuellen Kontakten. Im Jahr 2010 starben in Deutschland etwa 550 Menschen an AIDS (Epidemiologisches Bulletin Robert Koch-Instituts vom 22. November 2010). Eigentlich ein Beispiel an Zuverlässigkeit: DNA-Polymerasen DNA-Polymerasen genießen zu Recht den Ruf als sehr verlässliche Enzyme. Sie arbeiten in einem hochsensiblen Bereich des Lebens: Fehler, die sie machen, können sich negativ auf unsere Nachfahren auswirken. Die bakterielle DNA-Polymerase hat zum Beispiel eine Fehlerquote von 10 -10 . Sie baut also nur eins von zehn Milliarden Nukleotiden falsch ein. Korrektursysteme senken diese Quote nochmals um den Faktor 10 3 . Ähnlich präzise gehen auch unsere eigene DNA-Polymerase und deren Korrekturlese-Assistenten zu Werke. Ihre Fehlerquoten liegen zwischen 10 -9 und 10 -10 . Pro Verdoppelung unseres Genoms (etwa 3.200 Millionen Basenpaare) kommt es also zu nur einer einzigen falschen Basenpaarung. Evolutionsmotor Reverse Transkriptase Die Reverse Transkriptase der HI-Viren arbeitet in einer völlig anderen Fehlerdimension: Etwa alle 2.000 Basenpaare baut sie ein falsches Nukleotid ein. Für uns wäre eine solche Quote fatal - für die HI-Viren ist sie die "Lebensversicherung" im Kampf gegen unser Immunsystem und der Motor für die Entwicklung von Resistenzen gegen Medikamente. HIV-Infizierte können bis zu zehn Millionen Viren am Tag produzieren. Zusammen mit dieser enormen Produktionsrate beschleunigt die Schludrigkeit der Reversen Transkriptase die Evolution der Viren. Sie verändern sich mit atemberaubender Geschwindigkeit. Nur eine Woche nach der Behandlung eines HIV-Infizierten mit einem bestimmten Wirkstoff bilden sich bereits Resistenzen aus. Wanted: Neuartige Wirkstoffe! Der schnellen Evolution der HI-Viren setzt die Medizin heute die "Hochaktive antiretrovirale Therapie", abgekürzt HAART, entgegen. Die Patienten erhalten dabei eine Kombination aus drei oder vier antiviralen Wirkstoffen. Die Therapie reduziert die Viruslast der Patienten erheblich und hält den Fortschritt der Symptomatik auf. Trotz dieser Erfolge ist die Entstehung resistenter Viren bei der Langzeittherapie ein großes Problem. Insbesondere Patienten, die sich nicht konsequent an die Einnahme der Medikamente halten, beschwören die Entstehung resistenter Viren herauf. Diese werden unter dem Selektionsdruck der Therapie zur dominanten Form und können übertragen werden. Bei jedem achten Patienten, der sich in Deutschland frisch mit HIV infiziert, ist heute die Wirksamkeit von mindestens einem HIV-Medikament eingeschränkt (HIV-Serokonverterstudie am Robert Koch-Institut, 2010). HAART verlängert zwar das Leben HIV-Infizierter. AIDS ist jedoch nach wie vor eine unheilbare und tödliche Infektion. Trotz aller Fortschritte besteht also weiterhin Bedarf an neuen und neuartigen Wirkstoffen. Bisherige AIDS-Medikamente greifen das Virus innerhalb der Wirtszelle an. Wissenschaftler der Medizinischen Hochschule Hannover und der Universität Ulm beschreiten nun einen neuen Weg. Sie wollen das Virus am Eindringen in die Immunzellen des Menschen hindern - sozusagen seinen "Stachel" unbrauchbar machen. Ihr Wirkstoff blockiert ein Protein der Virushülle, das bei der Fusion der viralen Membran mit der Wirtszellmembran eine entscheidende Rolle spielt. In einer Reportage berichtete das Deutschlandradio im Dezember 2010 über den möglichen neuen Wirkstoff und die Vorgehensweise der Forscherinnen und Forscher. Den Text stellen wir mit freundlicher Genehmigung des Deutschlandradios, des Journalisten Michael Engel und der beteiligten Wissenschaftler, Professor Reinhold Schmidt und Professor Wolf-Georg Forssmann, als Informationsblatt für die Schülerinnen und Schüler zur Verfügung (deutschlandradio_aids_mit_stumpfem_stachel.pdf/rtf). Streicht man den letzten Abschnitt des Nachrichtentextes, bietet der Artikel eine gute Möglichkeit darüber zu diskutieren, ob der Wirkstoff nach seiner Zulassung HIV "besiegen" kann. Wie wirkt VIR-576? Eine Entdeckung deutscher Forscher der Medizinischen Hochschule Hannover und der Universität Ulm - hat Ende 2010 für Furore gesorgt. Die Substanz VIR-576 blockiert das Fusionsprotein (gp41) in der Hülle des HI-Virus, das beim Angriff auf eine Zelle wie ein Enterhaken funktioniert. Dieser Enterhaken tritt in Aktion, nachdem ein Protein der Virushülle (gp120) an einen Rezeptor auf der Zelloberfläche (CD4) und dieser an einen Corezeptor (CCR5/CXCR4) der Zelle angedockt hat. Dieses Manöver kann man mit dem Andocken eines Shuttles an die Internationale Raumstation vergleichen: Beide Objekte sind schon einmal miteinander verbunden - aber die Schleuse ist noch nicht geöffnet. Das Virus schleust seine Fracht jedoch nicht durch ein Schott in die Zelle, sondern durch eine Verschmelzung der Virusmembran mit der Zellmembran. Genau diesen Schritt blockiert VIR-576 durch die Bindung an das virale das Fusionsprotein. Wie wurde die vielversprechende Substanz entdeckt? Die Geschichte von VIR-576 begann bereits in den 1990er Jahren. Blutfiltrat, das bei der Dialyse von Patienten mit Nierenversagen anfällt, enthält zahlreiche körpereigene Peptide. So wie der tropische Regenwald ein Schatz der Artenvielfalt ist, so ist das Blutfiltrat ein Reservoir für Millionen von Peptiden mit unbekannten bioaktiven Eigenschaften. Professor Wolf-Georg Forssmann und Professor Frank Kirchhoff hatten die Idee, in diesem körpereigenen Peptidpool nach HIV-Hemmstoffen zu fahnden. Und sie wurden fündig: Ein natürlich vorkommendes Peptid aus 20 Aminosäuren - das Fragment eines im Blut zirkulierenden Eiweißes - blockierte im Reagenzglas den Eintritt von HIV in die Wirtszellen. (Bei dem Eiweiß handelt es sich um ?-1-Antitrypsin. Es schützt Körpergewebe vor Enzymen, die an Entzündungen beteiligt sind. ?-1-Antitrypsin ist ein Protease-Hemmer.) Verbesserung der Wirksamkeit Von dem kostbaren Fundstück stellten die Wissenschaftler im Labor mehr als 600 Varianten her. Unter diesen fanden sie ein Peptid, das die antivirale Wirkung des Originals noch um das Hundertfache übertraf - VIR-576. Die Substanz wirkt nicht nur im Reagenzglas. Ende 2010 veröffentlichten Forscher der Medizinischen Hochschule Hannover und der Universität Ulm die Ergebnisse einer ersten klinischen Studie (18 Teilnehmer). VIR-576 konnte die Viruslast HIV-Infizierter in weniger als einer Woche um mehr als 90 Prozent (1,2 Logarithmusstufen) senken - das Virus hatte sich also kaum noch vermehren können. Allerdings: VIR-576 wird im Blut sehr schnell abgebaut. Deshalb musste es den Patienten per Dauerinfusion intravenös verbreicht werden. Der Weg zum einsatzfähigen Medikament ist also noch weit und wird einige Jahre in Anspruch nehmen. Doch schon heute weckt der neuartige Wirkstoff hohe Erwartungen und große Hoffnungen: VIR-576 bekämpft nicht - wie die meisten AIDS-Medikamente - die Vermehrungsschritte der HI-Viren in den Zellen, sondern greift die Viren außerhalb der Zellen an. Zudem ist der Wirkstoff der Abkömmling eines körpereigenen Blutproteins. Auf diese Eigenschaften führen Wissenschaftler die - im Vergleich zu herkömmlichen Wirkstoffen - sehr gute Verträglichkeit von VIR-576 zurück. Das HI-Virus entzieht sich durch seine atemberaubende Mutationsrate immer wieder der Wirkung von Medikamenten, indem es deren Angriffsziele - zum Beispiel die Protease oder die Reverse Transkriptase - verändert. Das Angriffsziel von VIR-576, der virale Enterhaken, verändert sich jedoch kaum. Vermutlich führen Mutationen hier sehr schnell zum Funktionsverlust. Somit wird es dem Virus hoffentlich schwer fallen, Resistenzen gegen VIR-576 zu entwickeln. Sieg über AIDS in Sicht? Sollte die Entwicklung von VIR-576 zum marktreifen Medikament von Erfolg gekrönt sein, ist AIDS aber keineswegs besiegt. Denn eine Heilung im eigentlichen Sinne wird auch mit dem neuen Wirkstoff nicht möglich sein. Nach einer Infektion kann das Virus nicht vernichtet, sondern nur in Schach gehalten werden.

  • Biologie
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner