• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Blitze und Verhalten bei Gewitter – virtuelle Experimente

Unterrichtseinheit

Schülerinnen und Schüler erkunden am Rechner Blitzschlagrisiken in der freien Natur. In einem zweiten Experiment können Lichtbogenüberschläge zwischen zwei Elektroden unter verschiedenen Bedingungen simuliert werden. Blitze sind "hochenergetische" Naturphänomene, die uns nicht nur faszinieren, sondern auch das Fürchten lehren können. Etwa fünf Menschen sterben in Deutschland pro Jahr durch Blitzschlag. Wie Blitze entstehen ist immer noch umstritten - möglicherweise sind sogar energiereiche Strahlen aus dem Weltall daran beteiligt. Wissenschaftlich gesichert ist jedoch, dass die Blitzhäufigkeit mit dem Eisgehalt der Wolken steigt. Auf dieser Beobachtung basiert auch das derzeit gängige Modell zur Blitzentstehung: Aufwinde tragen feine Wassertröpfchen in höhere und kalte Luftschichten, wo sie zu feinen Eispartikeln gefrieren. Diese kollidieren dort mit größeren Graupelkörnern. Die schweren Graupeln "stehlen" den Eiskristallen Elektronen und fallen nach unten. Die nun positiv geladenen feinen Kristalle verbleiben dagegen in den höheren Luftschichten. Auf diese Weise entsteht ein starkes elektrisches Feld in den Gewitterwolken. Die hier vorgestellten Online-Experimente zum Thema Blitz sind Teil des SWR-Angebots Warum ... ist der Himmel blau? Weitere Informationen zum Thema Blitze und Energie gibt es auch im Ezoom zum Wissenschaftsjahr 2010 - Die Zukunft der Energie. Vorentladungen - Fangentladungen - Hauptblitz Ein Blitz ist ein Potenzialausgleich innerhalb der Gewitterwolke oder zwischen der Erdoberfläche und dem unteren Teil der Wolke. Die Spannung muss dabei einige zehn Millionen Volt betragen. Der Entladung geht eine Serie von Vorentladungen (Leitblitzen) voraus, die gegen die Erdoberfläche gerichtet sind. Kurz bevor diese den Erdboden erreichen, gehen vom Boden eine oder mehrere Fangentladungen aus - meist von hohen Objekten (Bäume, Masten, Kirchtürme). Den so entstandenen Blitzkanal heizt der folgende Hauptblitz auf rund 30.000 Grad Celsius auf. Die heiße Luft dehnt sich explosionsartig aus und erzeugt intensive Schallwellen - den Donner. Die Stromstärke einer Hauptentladung beträgt etwa 20.000 bis 30.000 Ampere. Einsatz der Animationen Mit einem interaktiven Blitzsimulator aus dem Online-Angebot von SWR-Wissen können Schülerinnen und Schüler mit der Blitzschlaggefahr experimentieren. Sie lernen dabei wichtige Regeln für das Verhalten bei einem Gewitter im Freien kennen. Die virtuellen Experimente können das Unterrichtsgespräch per Beamer-Projektion unterstützen oder auch von den Lernenden im Rahmen einer Hausaufgabe am heimischen Rechner genutzt werden. Neben den interaktiven Materialien bieten die SWR-Wissen-Internetseiten vielfältige Informationen zum Thema Blitze. Von "Elfen" und "Kobolden" Bei der Behandlung von Blitzen bietet sich auch - als zusätzlicher "Motivations-Joker" - ein kleiner Exkurs zu "Elfen" und "Kobolden" an - rätselhaften Blitzerscheinungen, die oberhalb der Wolken auftreten. Beobachtet werden diese Blitzformen daher vorwiegend aus Flugzeugen oder Space Shuttles (siehe Zusatzinformationen). Gerade solche ungeklärten Phänomene üben auf Kinder einen großen Reiz aus und sind gut geeignet, naturwissenschaftliches Interesse zu entfachen. Inhalte und Funktionen der Blitz-Experimente Die interaktiven Möglichkeiten der SWR-Online-Experimente werden hier kurz beschrieben und per Screenshot vorgestellt. Die Schülerinnen und Schüler sollen wichtige Regeln für das Verhalten bei Gewitter kennenlernen. in einem virtuellen Experiment den Einfluss von elektrischer Spannung, Luftdruck, Temperatur und relativer Luftfeuchtigkeit auf Blitzentladungen untersuchen. Thema Blitze und Verhalten bei Gewitter - virtuelle Experimente Autoren Tilman Bischoff, Dr. André Diesel Fächer Physik (Elektrizitätslehre), Geographie (Wolkenbildung) Zielgruppe ab Klasse 8 (Physik), Sekundarstufe II (Geographie) Zeitraum variabel bei der Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer Einen Beitrag zur Verhaltenserziehung bei Gewittern bietet die SWR-Gewittersimulation. Vor gefährlichen Ratschlägen wie "Eichen sollst du weichen, Buchen sollst du suchen" wird gewarnt. Um bei den Schülerinnen und Schülern eine Sensibilisierung für die Mechanismen des Blitzeinschlags zu erzielen, werden die Auswirkungen und das Risiko des Verhaltens bei einem Gewitter im Freien bewertet. Als virtuelle Versuchskaninchen sind ein Golfspieler, eine hockende Person und ein weidendes Rind auswählbar. Der Golfspieler steht stellvertretend für Personen, die metallische Gegenstände bei sich tragen und damit die Gefahr, vom Blitz getroffen zu werden, drastisch erhöhen. Am Beispiel des Tieres wird auf die Gefährlichkeit des Erdstroms eingegangen, der - auch weiter vom Ort des Einschlags entfernt - zu tödlichen Strömen durch den Körper führen kann. In einer zweiten - stärker physikalisch ausgerichteten - Simulation können Lichtbogenüberschläge zwischen zwei Elektroden im Labormaßstab simuliert werden. So lassen sich Erkenntnisse über den Einfluss von elektrischer Spannung, Luftdruck, Temperatur sowie relativer Feuchte auf die Überschlagbedingungen gewinnen.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Unterrichtsmaterial zum Lernspiel "Katis Strom-O-Mat"

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema erneuerbare Energien und Wetter basiert auf dem digitalen Lernspiel "Katis Strom-O-Mat". Die Unterrichtseinheit kann gut durch reale Experimente ergänzt werden.Erneuerbare Energien tragen in immer größerem Umfang zu unserer Stromversorgung bei. Auf vielen Hausdächern finden sich Solarmodule, und wer übers Land reist, sieht häufig Windkrafträder. Gerade bei den Windrädern ist es gut zu sehen: Sie produzieren nur Strom, wenn der Wind weht. Sonst stehen sie still. Dass erneuerbare Energien vom Wetter abhängig sind, ist das Kernthema des Online-Spiels "Katis Strom-O-Mat". Die Kinder müssen die Solarmodule nach dem Sonnenstand und das Windrad entsprechend der Windrichtung ausrichten. Bei ruhigem Wetter ist das kein Problem. Aber an manchen Tagen kann einem schon schwindelig werden, so schnell ändert sich das Wetter.Erneuerbare Energien sind in zunehmendem Maße im Alltag der Kinder präsent. Daher knüpft die Unterrichtseinheit in vielen Punkten an Begegnungen und Erfahrungen der kindlichen Lebenswelt an. Nach einem einführenden Gespräch rund um das Thema "Erneuerbare Energien" können die Kinder das Lernspiel "Katis Strom-O-Mat" ausprobieren. Es macht den Kindern grundlegende Aspekte erneuerbarer Energien begreiflich und animiert sie, das Thema anhand realer Versuche abseits des Computers zu vertiefen. Arbeit mit dem Lernspiel: Virtuelle Stromerzeugung Die Kinder bedienen Katis Stromerzeugungsmaschine und sorgen dadurch für den Betrieb von Radio, Lampe, Fön und Backofen. Erneuerbare Energien erforschen abseits des Computers Das virtuelle Ausprobieren kann gut mit Forschungsaktivitäten abseits des Computers kombiniert werden. Pädagogische Leitlinien der Stiftung Begleiten und unterstützen Sie die Kinder in ihrer natürlichen Neugier an Phänomenen aus ihrem Alltag. Fachkompetenz Die Schülerinnen und Schüler wissen, dass man mit Sonne, Wind und Wasser Strom erzeugen kann. erfahren, dass die Stromerzeugung vom Wetter abhängt. erfahren, dass verschiedene Verbraucher unterschiedlich viel Strom benötigen. lernen, dass Energie umgewandelt werden kann. Sozialkompetenz Die Schülerinnen und Schüler treffen Vereinbarungen über die Nutzung der zur Verfügung stehenden Computer. Da erneuerbare Energien in zunehmendem Maß auch im Alltag präsent sind, kann gut an das Vorwissen der Kinder angeknüpft werden. Dabei sollte auf regionale Gegebenheiten Rücksicht genommen werden. Steht in der Nähe eine Windkraftanlage? Oder gibt es eine Staumauer in erreichbarer Nähe? Vielleicht gibt es ja Kinder, auf deren Zuhause Solarzellen montiert sind? Was wissen die Kinder bereits darüber? Wie würden die Kinder eine Stromerzeugungsmaschine bauen? Zugang Das Lernspiel "Katis Strom-O-Mat" ist integriert in einen interaktiven Forschergarten, der die Kinder zu eigenständigen Entdeckungsreisen animiert. Die Figuren Juli und Tim begleiten sie dabei. Zum Spiel gelangt man über verschiedene Zugänge: über das Icon mit Kati an ihrem "Strom-O-Mat" haben Sie direkten Zugang zum Spiel (Abbildung 1, zum Vergrößern bitte anklicken). Wenn Sie im Gartenkompass (Menüpunkt am unteren Rand des Bildschirms) auf "Ausprobieren" klicken, gelangen Sie zu einer Übersicht über alle Lernspiele der Seite. Dort gibt es auch einen Link zu Katis Strom-O-Mat. Technische Hinweise Für die Nutzung der Lernspiele auf der Kinder-Website muss der kostenlose Adobe Flash Player installiert sein. Aufgrund der grafischen Benutzeroberfläche kann es beim erstmaligen Öffnen der Seite zu einer längeren Ladezeit kommen. Die Dauer hängt von Ihrer Internetverbindung ab. Ist die Seite einmal geladen, ist die Navigation einfach und schnell möglich. Einführende Geschichte Wie jedes Lernspiel in der Forscherwelt, so beginnt auch Katis Strom-O-Mat mit einer Geschichte. Der Inhalt der Geschichte wird im Spiel selbst aufgegriffen und weitergeführt. Das Intro kann auch übersprungen werden. Tutorial erläutert die Bedienung Das Spiel selbst beginnt mit einem Tutorial, das Schritt für Schritt die Bedienelemente erläutert. Für die Bedienung des Strom-O-Mats stehen punktförmige Klickflächen zur Verfügung. Die Solarzellen und die Windkraftanlage können so ausgerichtet werden. Das Wasserkraftwerk lässt sich mit einem entsprechenden Klickpunkt einschalten. Angezeigt werden zudem der Sonnenstand, der sich entsprechend der Tageszeit ändert, und das Wetter in Form von ziehenden Wolken, aus denen es auch mal regnen kann. Das Wetter ändert sich ständig Nach einem einführenden Tutorial stehen den Kindern vier verschiedene Schwierigkeitsstufen zur Verfügung. Je nach Stufe ändert sich einerseits die Häufigkeit der Wetterwechsel, andererseits aber auch das Maß des benötigten Stroms. Die Kinder lernen also, dass die Stromerzeugung aus erneuerbaren Energien von den Wetterverhältnissen abhängt. Sie lernen auch, dass unterschiedliche Stromverbraucher (Lampe, Radio, Fön und Herd) unterschiedlich viel Strom verbrauchen. Dokumente zum Ausdrucken Wer mag, kann sich nach Abschluss von Schwierigkeitsstufe vier eine Urkunde ausdrucken und damit belegen, dass sie oder er Katis Strom-O-Mat erfolgreich beendet hat. Meinung der Kinder Sprechen Sie mit den Kindern über Katis Strom-O-Mat. Hat er so funktioniert, wie sie es erwartet haben? Was war anders? Kennt jemand Unterschiede zu echten Solarzellen, Windkraftanlagen oder Wasserkraftwerken? Welche sind das? Reduziertes Abbild der Realität Natürlich kann das Spiel die Realität nicht eins zu eins abbilden. Folgende Aspekte sollten im Anschluss thematisiert werden: Solarzellen In der Praxis gibt es nur sehr wenige Solaranlagen, die der Sonne nachgeführt werden. Dementsprechend schwankt die Stromausbeute mit dem Tagesverlauf stark. Und bei schlechtem Wetter liefern echte Solarzellen nur sehr wenig Strom. Das ist im Spiel anders, damit die Kinder leichter ihr Ziel erreichen können. Windkraftanlage Echte Windkraftanlagen richten sich automatisch in Windrichtung aus. Sie müssen also nicht von Hand nachgestellt werden, wie das im Spiel der Fall ist. Wasserkraft Natürlich kann man Wasserkraft nur nutzen, wenn es vorher geregnet hat. Aber in der Praxis ist der räumliche und zeitliche Zusammenhang nicht so eng, dass man eine Anlage einschaltet wenn es regnet. Der Niederschlag kann schon vor langer Zeit in einer ganz anderen Region gefallen sein. Zum Beispiel wenn mit einer Staumauer das Wasser gespeichert wird, das zu Beginn des Winters als Schnee in den Bergen fiel. Wetter Der Monat April ist berühmt für seine Wetter-Eskapaden. Das ist aber noch gar nichts gegen Level 4 bei Katis Strom-O-Mat, wo sich stündlich die Windrichtung und Bewölkung ändert. So wird das Spiel anspruchsvoller. Realistisch sind diese Wetterwechsel natürlich nicht. Speicherung Das Stromangebot aus erneuerbaren Energien hängt vom Wetter ab und passt nicht unbedingt zum Bedarf der Verbraucher. Wohin also mit dem Strom aus Windkraftanlagen einer windigen Nacht? Wie kann der Strom gespeichert werden? Dies ist derzeit das größte Problem beim Ausbau der erneuerbaren Energien. Pumpspeicherkraftwerke können dieses Ungleichgewicht nur zu einem kleinen Teil abpuffern. Hilfreiche Texte Im Rahmen der Nachbesprechung können folgende Texte, die sich auch in der Forscherwelt befinden, hilfreich sein. Für besonders wissbegierige Kinder stehen auf der Kinder-Website weiterführende Lesetexte zur Verfügung. Sie sind aus dem Spiel über den Link "Mehr erfahren" zugänglich. Oder über den Knopf "Gartenkompass" am unteren Rand des Bildschirms. Die Kraft der Sonne sichtbar machen Es gibt verschiedene Möglichkeiten, die Kraft der Sonne spürbar oder sichtbar zu machen. Am einfachsten geht es mit Solarspielzeug, bei dem der Strom der integrierten Solarzellen einen Motor antreibt. Je nachdem, was der Motor antreibt, dreht sich zum Beispiel der Rotor eines Spielzeughubschraubers oder fährt ein kleines Auto los. Muss die Solarzelle direkt auf die pralle Sonne gerichtet sein? Was passiert, wenn die Ausrichtung zur Sonne geändert wird? Und funktioniert die Solarzelle auch mit künstlichem Licht? Der Steh-auf-Luftballon Sie brauchen eine große leere Flasche. Die Flasche muss zu Beginn möglichst kalt sein. Lassen Sie die Kinder einen Luftballon über die Öffnung stülpen. So ausgestattet muss die Flasche nun in die Sonne gelegt oder gestellt werden. Die Sonnenstrahlen erwärmen die Luft in der Flasche. Dadurch dehnt sich die Luft aus. Da sich die Flasche nicht oder nur sehr gering ausdehnt, strömt die Luft in den Ballon und beginnt, ihn aufzupusten. Überlegen Sie mit den Kindern, wie dieser Effekt verstärkt werden kann. Wie kann möglichst viel Wärme eingefangen werden? Lassen Sie die Kinder mit weißem und schwarzem Papier experimentieren. Vielleicht wird jemand von selbst auf die Idee kommen, schwarzes Papier in die Flasche zu legen. Spielt die Größe der Flasche eine Rolle? Lassen Sie es die Kinder ausprobieren. Der Solar-Bräter Kleiden Sie mit den Kindern das Innere eines Brotkorbs mit Alufolie aus, stechen Sie einen langen Nagel von hinten durch die Mitte, auf den Sie dann zum Beispiel ein Stück Käse oder einen Marshmallow stecken. Richten Sie den "Solar-Bräter" nach der Sonne aus und warten Sie, bis es brutzelt. Wenn genügend Sonnenstrahlung vorhanden ist und die Ausrichtung passt, kann man zuschauen wie sich das "Bratgut" verändert. Spätestens, wenn die Kinder Katis Strom-O-Mat bedient haben, wissen sie, dass man mit Windrädern Strom erzeugen kann. Das ist bereits eine erste Lernerfahrung. Die Funktionsweise ist für Kinder im Grundschulalter allerdings sehr abstrakt. Anhand eines einfachen Modells, das die Kinder selbst basteln können, lässt sich praktische Forschung betreiben. Dadurch ergeben sich zusätzliche Lernerfahrungen: Nicht nur der Wind kann Dinge bewegen, auch das Wasser kann etwas in Bewegung setzen. Wasserräder und Wassermühlen drehen sich aufgrund der Kraft des fließenden Wassers. Dabei wird die geradlinige Bewegung des Wassers in eine Drehbewegung übersetzt. Über einen Generator kann diese Drehbewegung in Strom umgewandelt werden. Für Juli, Tim und die anderen Kinder in der virtuellen Forscherwelt ist ein Stromausfall der Anlass zur Beschäftigung mit Katis Strom-O-Mat. Auch in der Realität bietet ein Tag ohne Strom zahlreiche Gesprächs- und Handlungsanlässe. Es gibt kein elektrisches Licht, es können keine elektrischen Geräte benutzt werden und die Heizung bleibt kalt. Am eindrucksvollsten ist es, wenn für diesen Tag tatsächlich die entsprechenden Sicherungen ausgeschaltet werden - so können die Mädchen und Jungen durch eigenes Ausprobieren direkt überprüfen, welche Geräte Strom benötigen und welche nicht, und auch ein Schummeln ist ausgeschlossen. Auch wenn ein gewisser Aufwand damit verbunden ist, der Besuch von echten Anlagen zur Gewinnung erneuerbarer Energien lohnt sich. Sicherlich steigt dadurch die Motivation zur Beschäftigung mit dem Thema. Und die Kinder bekommen eine Vorstellung von den Dimensionen echter Anlagen. Vielleicht gibt es ja auch Eltern, die eine Solaranlage auf dem eigenen Dach haben und diese gern zeigen und erläutern. Oder sie wenden sich an den regionalen Stromversorger. Viele Stadtwerke engagieren sich im Bildungsbereich und bieten Führungen an. Naturwissenschaftliche und technische Phänomene sind Teil der Erfahrungswelt von Kindern: Morgens klingelt der Wecker, die Zahncreme schäumt beim Zähneputzen, das Radio spielt Musik, der heiße Kakao dampft in der Tasse, auf dem Weg zur Schule werden blühende Blumen beobachtet, die gestern noch geschlossen waren. Kinder wollen ihre Welt im wahrsten Sinne des Wortes "begreifen" und mehr über Naturphänomene erfahren. Diese vielfältigen Anlässe im Alltag der Kinder lassen sich auch für die pädagogische Arbeit nutzen. Die Fragen der Kinder spielen deshalb beim Forschen und Experimentieren eine zentrale Rolle. Die Bildungsinitiative "Haus der kleinen Forscher" möchte vor allem Lernfreude und Problemlösekompetenzen fördern. Dabei sollen Kinder gerade nicht nach Erwachsenenverständnis "richtige" Erklärungen für bestimmte Phänomene lernen und diese auf Abruf wiedergeben können. Vielmehr möchte die Stiftung Pädagoginnen und Pädagogen Möglichkeiten an die Hand geben, um die Kinder bei einem forschenden Entdeckungsprozess zu begleiten. Dazu gehören unter anderem das Beobachten, Vergleichen und Kategorisieren, das sich Kinder zunutze machen, um die Welt um sich herum zu erkunden. Die Stiftung "Haus der kleinen Forscher" hat folgendes Bild vom Kind. Es prägt das pädagogische Handeln und beinhaltet die Vorstellung darüber, auf welche Weise Kinder lernen: Kinder sind reich an Vorwissen und Kompetenzen. Kinder wollen von sich aus lernen. Kinder gestalten ihre Bildung und Entwicklung aktiv mit. Jedes Kind unterscheidet sich durch seine Persönlichkeit und Individualität von anderen Kindern. Kinder haben Rechte. Bildung als sozialer Prozess Bildung ist ein sozialer Prozess. Kinder lernen im Austausch mit und von anderen, durch Anregung, durch individuelle Erkundung und durch gemeinsame Reflexion. Kinder lernen nicht nur von Erwachsenen, sondern auch mit und durch Zusammenarbeit mit anderen Kindern. Der pädagogische Ansatz der Stiftung ist von den zwei pädagogischen Leitlinien Ko-Konstruktion und Metakognition geprägt. Ko-Konstruktion Ko-Konstruktion bedeutet, dass Kinder durch die Zusammenarbeit mit anderen lernen. Lernprozesse sollten grundsätzlich von Kindern und pädagogischen Fachkräften gemeinsam "konstruiert" werden. Metakognition Während der gemeinsamen Gestaltung von Bildungsprozessen kann mit den Kindern thematisiert werden, dass sie lernen, was sie lernen und wie sie lernen. Dies geschieht über die Auseinandersetzung mit den eigenen kognitiven Prozessen (Gedanken, Meinungen, Einstellungen und so weiter), also das Wissen einer lernenden Person über ihr Wissen, ihre neugewonnenen Erkenntnisse und den Weg dorthin. An das Vorwissen der Kinder anknüpfen Die pädagogischen Fachkräfte bekommen eine Vorstellung von den Vorerfahrungen und Gedankengängen der Kinder, wenn sie ihnen genau zuhören, sie beobachten und nach ihren eigenen Vermutungen fragen. Mit den Kindern sprechen Die pädagogischen Fachkräfte unterstützen die Kinder durch Dialoge, den nächsten geistigen Entwicklungsschritt zu machen. Nicht erklären, sondern (hinter-)fragen! Die Kinder zum Nachdenken anregen Wenn Kinder einmal vermeintlich "falsche" Konzepte heranziehen, zum Beispiel "Der Strom ist schwarz", dann wird daraus ersichtlich, wo das Kind gerade steht. Aufgabe ist es, Kinder bei geeigneter Gelegenheit darauf aufmerksam zu machen, dass es zum Beispiel auch weiße Kabel gibt. Die pädagogische Fachkraft bringt die Kinder auf diese Weise dazu, selbst eine neue Theorie zu entwickeln. Kindern (Frei-)Raum zum Forschen geben Auf der Internetseite der Stiftung finden Sie unter "Forschen - Pädagogik - Pädagogischer Ansatz" Tipps zur Gestaltung von Forscherräumen in der Kita, welche auch auf Grundschulen übertragbar sind. Die gemeinnützige Stiftung "Haus der kleinen Forscher" unterstützt seit 2006 pädagogische Fachkräfte dabei, den Forschergeist von Mädchen und Jungen qualifiziert zu begleiten. Die Bildungsinitiative startete zunächst mit dem Fokus auf Kindern im Kindergartenalter. Seit 2011 können auch Horte und Grundschulen beim "Haus der kleinen Forscher" mitmachen. Die pädagogischen Leitlinien gelten für beide Zielgruppen. Die Themen und Phänomene, die die Kinder interessieren, bleiben ähnlich oder dieselben - egal ob Kita-Kind, Grundschul-Kind oder große Forscherin. Allerdings nimmt die Komplexität der Inhalte zu, um sie an die Kompetenzen und das höhere Vorwissen der sechs- bis zehnjährigen Kinder anzupassen. Ältere Kinder haben eine andere Verständnisebene - aus Staunen soll Verstehen werden.

  • Technik / Sache & Technik / Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf, Berufliche Bildung

Mit Dampf voran: Die Dampfmaschine

Unterrichtseinheit

Ende des 18. Jahrhunderts trat eine Maschine, die Antriebsenergie erzeugen konnte, ihren Siegeszug an: die Dampfmaschine. Doch wie wurde sie damals genutzt?Über Jahrhunderte hinweg hatten die Menschen nur vier Energiequellen, um beispielsweise Mühlräder und Kräne anzutreiben: die eigene Muskelkraft, die Kraft von Tieren wie Pferd oder Ochse, die Windkraft und die Wasserkraft. Nachdem die Dampfmaschine zu Beginn des 18. Jahrhunderts erfunden wurde, hat sie James Watt weiterentwickelt und 1769 zum Patent angemeldet. Damals ahnte wohl noch niemand, welche fundamentalen Veränderungen sie mit sich bringen würde. Heute gilt sie im wahrsten Sinne als Motor der industriellen Revolution. Hintergründe Die Schülerinnen und Schüler sollen sich anhand animierter virtueller Modelle selbsttätig entdeckend und spielerisch mit der Funktionsweise der Dampfmaschine vertraut machen sowie deren Nutzung in den Fabriken näher kennen lernen. Fächerübergreifende Ansätze Die Sequenz eignet sich auch für den bilingualen Geschichtsunterricht. Die Schülerinnen und Schülern können die englischsprachigen Animationen leicht übersetzen, die beiden Arbeitsblätter enthalten entsprechende Übersetzungshilfen der Fachbegriffe. Weitere fächerübergreifende Ansätze bieten sich mit dem Fach Physik sowie Deutsch (Vorgangsbeschreibung) an. Fachkompetenz Die Schülerinnen und Schüler sollen die Funktionsweise der Dampfmaschine kennen lernen. ihre Kenntnisse selbsttätig überprüfen. die Anwendungsmöglichkeiten der Dampfmaschine kennen lernen. Medienkompetenz Die Schülerinnen und Schüler sollen im Internet nach Informationen recherchieren. die Möglichkeiten interaktiver Animationen kennen und auswerten lernen. Textarbeit am Bildschirm zielgerichtet erproben. Thema Mit Dampf voran: Die Dampfmaschine Autor Stefan Schuch Fach Geschichte Zielgruppe Jahrgangsstufe 8 bis 12 Zeitraum 1 bis 2 Stunden Technische Voraussetzungen je ein Computer mit Internetzugang für zwei Lernende, Flash-Player

  • Geschichte / Früher & Heute
  • Sekundarstufe II, Sekundarstufe I

Ein Modell des Sonnensystems auf dem Schulhof

Unterrichtseinheit

In diesem Unterrichtsprojekt veranschaulichen die Schülerinnen und Schüler unsere "Adresse im Sonnensystem" eindrucksvoll durch ein selbst erstelltes und geeignet skaliertes Modell des Sonnensystems in der vertrauten Umgebung des Schulhofs. Wenn das Modell der Sonne an einem zentralen Ort in der Schule platziert wird, reichen die inneren Planeten meist bis auf den Sportplatz. Die äußeren Planeten können in einer Google Earth-Karte "virtuell verortet" werden. Die Lernenden untersuchen in dem hier vorgestellten Projekt nicht nur die Entfernungen innerhalb des Sonnensystems, sondern erkunden auch die Größen- und Massenverhältnisse der Himmelskörper vor unserer astronomischen Haustür. Die Lernenden entwickeln in diesem Projekt ein verkleinertes Abbild unseres Sonnensystems mit seinen Planeten und Monden. Um die riesigen Entfernungen anschaulich darzustellen, wird der Durchmesser der Sonne auf einen Meter festgelegt. In diesem Maßstab werden dann die Durchmesser und Umlaufbahnen der Planeten sowie ihrer Monde berechnet. Mit geeigneten Materialen (Styropor und Papierkugeln, Fäden und Namensschildchen) soll ein Modell des Sonnensystems gebaut und auf dem Schulgelände ausgestellt werden. Hinweise zum Unterrichtsverlauf und Materialien In arbeitsteiliger Gruppenarbeit recherchieren die Lernenden mithilfe von Lexika, Atlanten und des Internets die benötigten Daten, rechnen sie um und stellen sie in Modellen dar. Die Schülerinnen und Schüler lernen die Größenordnungen (Abstände und Massen) im Sonnensystem kennen. können die betrachteten Größen im richtigen Maßstab umrechnen. können geeignete Modelle auswählen oder selbst basteln. lernen die Eigenschaften und Besonderheiten der Planeten unseres Sonnensystems kennen und können sie in Steckbriefen präsentieren. entwickeln Gedichte, Bilder oder andere kreative Darstellungen zum Thema. können im Internet und in Büchern recherchieren. können mit Google Earth Distanzen bestimmen und Markierungen setzen. 1. Entfernungen im Sonnensystem - eine Landkarte Wenn die Sonne einen Durchmesser von einem Meter hätte, in welchem Abstand würden dann die Planeten um sie kreisen? Die Schülerinnen und Schüler tragen ihre Ergebnisse in eine Landkarte ein. Für die Sonne wird ein geeigneter Standort auf dem Schulgelände gewählt. Während die inneren Planeten noch vor der Haustür der Schule liegen, werden die Entfernungen der äußeren Planeten mithilfe von Google Earth virtuell verortet (Abb. 1, Platzhalter bitte anklicken) 2. Massenverhältnisse im Sonnensystem Wenn die Sonne soviel wie eine Tonne wiegen würde (dies entspricht dem Gewicht von einem Kubikmeter Wasser), wie viel Gramm würden dann die Planeten wiegen? Die Massenverhältnisse der Planeten werden mithilfe geeigneter Materialien veranschaulicht, zum Beispiel mit der Füllung von Gefäßen. 3. Erde und Mond Wenn die Erde einen Durchmesser von 50 Zentimetern hätte, wie groß wäre dann der Mond und in welchem Abstand würde er die Erde umkreisen? Die Lernenden basteln ein maßstabsgetreues Erde-Mond-System und verbinden die Himmelskörper mit einer Schnur. 4. Vergleich der Durchmesser der Himmelskörper Wenn die Sonne einen Meter groß wäre, wie groß wären dann die Planeten? Zur Veranschaulichung der Ergebnisse erstellen die Schülerinnen und Schüler zweidimensionale Planetenmodelle und kleben sie auf einer ein Meter großen Sonnenscheibe auf (Abb. 2). Die übrigen Gruppen beschäftigen sich mit einzelnen Planeten-Mond-Systemen. Wenn die Sonne einen Meter groß wäre, wie groß wären die Planeten der Monde und in welchen Abstand würden sie um ihre Planeten kreisen? Die Monde eines Planeten werden auf einer dünnen Angelschnur im Modellabstand aufgereiht, mit einem Namensschildchen versehen und an ihrem Planeten befestigt. Zur Größenordnung der Modelle: Jupiter hat bei einem Maßstab von 1:1,4 Milliarden einen Durchmesser von etwa 10 Zentimetern. Merkur ist dann gerade einmal 3 Millimeter groß. Die Jupitermonde liegen in der Größenordnung von Merkur (tatsächlich ist Kallisto fast gleich groß, Ganymed sogar größer). Die kleinen Monde lassen sich zum Beispiel mit kleinen Perlen oder Stecknadeln darstellen. Die gebastelten Planeten-Mond-Systeme werden in der Schule aufgehängt. Als Sonnenmodell kann ein Sitzball oder Ballon entsprechender Größe verwendet werden. Zu jedem Himmelskörper wird auch ein Steckbrief beziehungsweise ein Plakat erstellt und ebenfalls im Schulgebäude ausgestellt (Abb. 3). 5. Merkur, Venus, Mars und Erde 6. Jupiter 7. Saturn 8. Uranus 9. Neptun und die Zwergplaneten Pluto und Sedna

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Meer-Strom

Unterrichtseinheit

In diesem Lernmodul lernen die Schülerinnen und Schüler einige Möglichkeiten zur Stromerzeugung aus dem Meer kennen und lösen dazu verschiedene Aufgabenstellungen.Alle, die schon einmal mit den Füßen in der Meeresbrandung standen, konnten die Kraft der Wellen spüren. Obwohl ein Großteil der Erdoberfläche von Meer bedeckt ist, wird diese Energiequelle bisher nur in geringem Umfang zur Stromerzeugung genutzt. Viele Ideen befinden sich noch im Forschungs- und Entwicklungsstadium. In diesem interaktiven Lernmodul können sich die Schülerinnen und Schüler anhand verschiedener Beispiele kritisch mit dem Meer als regenerative Energiequelle auseinander setzen. Selbstgesteuertes Lernen Das didaktische Konzept fokussiert eine weitgehend selbstständige Erarbeitung der Inhalte. Der hohe Grad an Interaktivität und die multimediale Aufbereitung der Themen regen zum Nachforschen an. Grafische Elemente können per Drag & Drop so positioniert werden, dass dadurch inhaltliche Aussagen entstehen, zum Beispiel bei der Positionierung von Meereskraftwerken auf einer Weltkarte. Arbeitsergebnisse können in einem virtuellen Rucksack verstaut und später an geeigneter Stelle wieder ausgepackt werden. So werden Inhalte wiederholt und vertieft. Bei Bedarf können eigene Inhalte (Texte und Bilder) einfach eingefügt werden. Anpassung an individuelle Anforderungen Beim Beenden der Lerneinheit bietet das Modul die Möglichkeit, die Arbeitsergebnisse zu speichern. So kann zu einem späteren Zeitpunkt die Beschäftigung an der gleichen Stelle wieder aufgenommen werden. Dies ist nicht nur für Lernende, sondern auch für Lehrkräfte interessant: Die Option, eigene Aufgabentexte und andere digitale Materialien einzufügen, abzuspeichern und den Lernenden zur Verfügung zu stellen, ermöglicht die Erstellung individualisierter Lernmodule. Inhalte des Lernmoduls Auf dieser Seite finden Sie detaillierte Informationen zu den Inhalten des Lernmoduls. Screenshots geben einen Eindruck von der grafischen Oberfläche. Nutzung im Unterricht Hier finden Sie Hinweise zur Nutzung des Lernmoduls. Was muss an Vorbereitung stattfinden? Wie kann die Beschäftigung mit dem Lernmodul organisiert werden? Fachkompetenz Die Schülerinnen und Schüler lernen verschiedene Möglichkeiten zur Energiegewinnung aus dem Meer kennen. werden sich über das Funktionsprinzip eines Osmosekraftwerks klar. betrachten Meeresströmungskraftwerke im Vergleich zu Windkraftanlagen. setzen sich mit der Problematik von Gezeitenkraftwerken auseinander. Medienkompetenz Die Schülerinnen und Schüler bedienen eine interaktive Lernumgebung. entnehmen Informationen zur Thematik aus einem Text, verstehen wesentliche Aussagen und geben sie in eigenen Texten wieder. Zu Beginn des Lernmoduls werden bildliche Impressionen angeboten, die die Nutzer auf sich wirken lassen sollen (Abb. 1, zur Vergrößerung anklicken). Insgesamt stehen sieben Bilder zur Verfügung. Durch Anklicken der kleinen Bilder am unteren Ende der Seite können diese vergrößert werden. Themen sind beispielsweise Tidenhub, Wasserpegel, globale Meeresströmungen und Stauwerke. In einer Textbox sollen die Gedanken, die beim Betrachten in den Sinn kommen, festgehalten werden. Diese Textbox kann durch Klick auf die rechte Maustaste im virtuellen Rucksack gespeichert und zum Abschluss des Lernmoduls erneut aufgerufen werden. Diese Seite stellt mithilfe von Infotexten und Abbildungen verschiedene Typen von Meereskraftwerken vor (Abb. 2). Zum Überprüfen des Textverständnisses sollen die Lernenden anschließend per Mausklick entscheiden, ob die Aussagen in einer Textbox richtig oder falsch sind. Als Auswertung werden zu den jeweiligen Antworten Kommentare als Feedback eingeblendet. Den unterschiedlichen Salzgradienten zwischen Süß- und Salzwasser nutzen Osmosekraftwerke, um damit eine Turbine anzutreiben (Abb. 3). In einer Grafik wird die Funktionsweise eines Osmosekraftwerkes vereinfacht dargestellt. Der Arbeitsauftrag dazu lautet, die Beschriftung dieser Grafik per Drag & Drop richtig zuzuordnen. Ein Infotext hilft dabei. Das "Oyster" genannte Wellenkraftwerk vor der Küste Schottlands hat seinen Namen aufgrund des Klappmechanismus erhalten, der an eine Muschelschale erinnert (Abb. 4). Die Schülerinnen und Schüler sollen sich mit möglichen Vor- und Nachteilen dieser Form der Energiegewinnung auseinander setzen und ihre Antworten in eine Texbox eintragen. Die nächsten beiden Kapitel des Lernmoduls thematisieren zwei schwimmende Konstruktionen: einmal das Wellenkraftwerk "Pelamis", nach dem griechischen Wort für Seeschlange, und der Wellendrache, englisch "Wave Dragon" genannt (Abb. 5). Mit ihrem eigenen Worten sollen die Lernenden jeweils die Funktionsweise dieser beiden Wellenkraftwerke in einer Textbox erläutern. Abbildungen und Fotos dienen zur Illustration. Manche Meeresströmungskraftwerke sind mit ihren Rotoren denen von Windkraftanlagen gar nicht unähnlich. Im Beispiel wird das Kraftwerk "Seaflow" vorgestellt, das vor der Küste von Südengland steht (Abb. 6). Der Arbeitsauftrag fordert die Lernenden dazu auf, Wind- und Meeresströmungskraftwerke im Vergleich zu betrachten. Ein weiteres Beispiel für Energiegewinnung aus dem Meer sind Gezeitenkraftwerke. Diese nutzen die Änderung der Strömungsrichtung des Wassers bei Ebbe und Flut an Flussmündungen (Abb. 7). In dem Arbeitsauftrag sollen sich die Lernenden mit den Umweltauswirkungen dieser Staudamm-Bauwerke auseinandersetzen. Im letzten Kapitel können die Schülerinnen und Schüler noch einmal die verschiedenen Kraftwerkstypen der vorangegangenen Kapitel aufgreifen und ihr erworbenes Wissen anwenden (Abb. 8). Sie sollen auf einer Weltkarte verschiedene Meereskraftwerke positionieren und ihre Wahl anschließend begründen können. Ausführbares Programm Zur Nutzung des Lernmoduls müssen Sie die Datei "zukunft-der-energie.exe" (siehe Startseite dieser Unterrichtseinheit) kostenlos heruntergeladen und installieren. Bei der Installation wird ein neues Icon auf Ihrem Desktop angelegt: Wissenschaftsjahr 2010 - Die Zukunft der Energie. Durch Doppelklick auf dieses Icon erscheint eine Auswahl mehrerer Lernmodule. Zum Starten des entsprechenden Lernmoduls klicken Sie bitte auf die zugehörige Grafik. Internetzugang notwendig Die installierte Software bietet Ihnen den Zugang zu verschiedenen Lernmodulen. Zum Starten eines Lernmoduls benötigt diese Software allerdings Daten aus dem Internet. Das Programm "kennt" die Adresse, Sie müssen nur sicherstellen, dass Ihr Computer Internetzugang hat. Vorteil dieser Methode ist, dass Sie immer auf die aktuellste Version des Lernmoduls zugreifen. Überblick verschaffen Zunächst sollten Sie sich selbst mit dem Lernmodul vertraut machen. Dazu bietet Ihnen das Lernmodul eine integrierte Hilfe-Funktion. Ein sogenannter "Schnelleinstieg" (siehe Abb. 9) zeigt alle zur Verfügung stehenden Funktionen. Da alle Lernmaterialien und Aufgabenstellungen in dem Lernmodul integriert sind, wird Ihr Einstieg voraussichtlich nicht viel Zeit benötigen. Mögliche Individualisierung Bitte beachten Sie, dass Sie eigene Texte und Bilder einbinden können. Damit bietet Ihnen das Lernmodul die Möglichkeit, individuelle Aufgabenstellungen zu integrieren. Unter dem Menüpunkt "Funktionen" oder über einen Klick auf die rechte Maustaste können Sie eine Notiz (in Textform), eine Tabelle oder ein Medienelement (in der Regel ein Bild) einfügen. Interessant ist in diesem Zusammenhang die Möglichkeit, die individualisierte Version der Lernumgebung abzuspeichern. Die zugehörige Datei mit der Endung ".wj2010" kann auf einem beliebigen Datenträger gespeichert, kopiert und verteilt werden. Ihre Schülerinnen und Schüler können nach dem Starten des Lernmoduls über die Funktion "Öffnen" die spezielle Version der Lernumgebung einlesen. Präsentieren oder Entdecken Natürlich sollten Sie den Lernenden zunächst die Möglichkeit geben, sich mit der Bedienung der Plattform vertraut zu machen. Es bietet sich an, anhand einer Beamer-Präsentation die wichtigsten Funktionen zu erläutern. Sie können aber auch Ihren Schülerinnen und Schülern den Auftrag geben, sich mit dem "Schnelleinstieg" zu beschäftigen und ihnen etwas Zeit geben, sich selbst mit der Umgebung vertraut zu machen. Zahlreiche Hilfestellungen Bei der Erarbeitung neuer Inhalte tauchen immer wieder Begriffe auf, die für viele Lernende erklärungsbedürftig sind. Daher sind viele Begriffe mit Zusatzinformationen hinterlegt, die beim Anklicken erscheinen. Zusätzlich bietet ein integriertes Lexikon Erläuterungen zu zahlreichen Themen. Das Lernmodul ist so konzipiert, dass Ihre Schülerinnen und Schüler selbstständig die Seiten bearbeiten können. Auf jeder Seite gibt es spezifische Aufgaben und gegebenenfalls zugehörige Hilfestellungen. Bei Bedarf kann im Internet recherchiert werden. Abspeichern Das bearbeitete Lernmodul kann jederzeit gespeichert werden. Dabei bietet es sich an, dass die Schülerinnen und Schüler eine für sie oder ihre Gruppe individuelle Datei-Bezeichnung auswählen, zum Beispiel "michael_schmidt_meerstrom.wj2010". Dadurch wird einerseits gewährleistet, dass nicht durch versehentliches Vertauschen von Dateien Inhalte verloren gehen. Andererseits haben Sie dadurch die Möglichkeit, detaillierte Einsicht in die Arbeitsergebnisse zu erhalten. Präsentieren Insbesondere wenn das Lernmodul in Gruppen bearbeitet wurde, bietet es sich an, dass jede Gruppe ihre Arbeitsergebnisse vorstellt. Dazu kann entweder per Beamer die relevante Seite projiziert werden. Die Lernumgebung bietet aber auch die Möglichkeit, den Bildschirminhalt auszudrucken.

  • Physik / Astronomie / Geographie / Jahreszeiten
  • Sekundarstufe I, Sekundarstufe II

Virtueller Naturwissenschaftsunterricht mit dem "Virtual Lab" von BASF

Fachartikel
1,99 €

Dieser Artikel zum Thema "Einsatz eines virtuellen Labors im naturwissenschaftlichen Unterricht" informiert über die Einsatzmöglichkeiten des "Virtual Lab" von BASF im Präsenz- und Online-Unterricht. Neben den Themen, zu fördernden Kompetenzen sowie den Vor- und Nachteilen berichtet der Autor von seinen Erfahrungen mit dem Virtual Lab im Online-Unterricht. Funktionsweise des virtuellen Labors Die Themenbereiche des virtuellen Labors "Virtual Lab" sind wie ein reales naturwissenschaftliches Labor aufgebaut. Die Schülerinnen und Schüler können so virtuell mit den Gerätschaften aus einem Labor experimentieren und lernen zugleich deren Anwendung kennen. Unterstützt werden sie dabei vom virtuellen Assistenten "Dr. Blubber". Einführende Erklärvideos liefern zu jedem Thema Hintergrundwissen, Quizfragen ermöglichen einen selbstständigen Verständnistest. Zudem gibt es verschiedene Belohnungsmöglichkeiten für das erfolgreiche Absolvieren von Experimenten und Tests. Einsatzmöglichkeiten des virtuellen Labors Der Einsatz des Systems ist ab der Grundschule möglich. Je nach Thema ist für die Erklärungen Vorwissen erforderlich, weshalb sich manche Labore an die Klassenstufen der Sekundarstufe I richten, die dieses bereits erworben haben. Beim eigenständigen Einsatz müssen die Kinder grundlegende Fertigkeiten im Umgang mit dem PC (zum Beispiel Steuerung mit der Maus) haben. Die Einsatzmöglichkeiten im Überblick: Einsatz zur Präsentation eines Versuchs über Beamer oder Smartboard virtuelles Bearbeiten der Experimente in Einzel- Partner oder Kleingruppenarbeit im Präsenzunterricht Durchführung der Experimente als Aufgabe für den Fernunterricht. Hier liegt eine besondere Stärke des Systems, da die Schülerinnen und Schüler mit Labormaterial und Rohstoffen virtuell arbeiten können ohne diese reale anschaffen zu müssen. zur Vertiefung für besonders interessierte und begabte Kinder (Enrichment). als virtuelle Vorbereitung auf die reale Durchführung der Versuche im Unterricht. Themen des virtuellen Labors Folgende Laborthemen werden aktuell angeboten: Lüfte das Geheimnis des "grünen Wunders" (Fotosynthese) Der rote Fleckenteufel (Wirkweise von Buntwaschmittel untersuchen) Dem Boden auf den Grund gehen (physikalische Bodenuntersuchung) Nutze die Kraft der Sonne (Funktionsweise von Solarzellen) Probiere das süße Brot (Untersuchung der Bestandteile von Lebensmitteln) Werde zum Filterexperten (Experimente zum Bau einer Minikläranlage) Finde den richtigen Absender (Chromatograhie von Farbstiften) Besuche die Backstube Chemielabor (chemische Prozesse beim Kuchenbacken) Lass es blubbern (Wirkung Kohlenstoffdioix in Wasser) Die schäumenden Perlen (Vergleich von Dämmstoffen) Rostschutz für Lebensmittel (Stoffe gegen die Oxidation von Obst) Kompetenzerwerb Generell lassen sich durch den Einsatz des virtuellen Labors folgende Kompetenzen vermitteln: Fachkompetenz Die Schülerinnen und Schüler lernen oder sichern die Sicherheitsregeln im Labor. lernen oder sichern die Bezeichnung von Laborgeräten und deren Anwendungsgebiete sowie verschiedene Untersuchungsverfahren aus den Naturwissenschaften. lernen, wie man die verwendeten Stoffe nach dem Versuch richtig entsorgt. üben die Durchführung von Experimenten nach Anleitung. lernen die physikalischen und chemischen Hintergründe der einzelnen Themen kennen. Medienkompetenz Die Schülerinnen und Schüler üben den Umgang mit virtuellen Lernumgebungen. Sozialkompetenz (beim Einsatz als Partner- oder Gruppenarbeit) Die Schülerinnen und Schüler trainieren ihre Kommunikations- und Kooperationsfähigkeit, indem sie gemeinsam die gestellten Aufgaben im virtuellen Labor lösen. Grenzen des virtuellen Labors Die Schülerinnen und Schüler sehen zwar den Umgang mit den einzelnen Laborgeräten und Labormaterialien, es fehlt jedoch das praktische Nutzen. Dadurch wird die für die Laborarbeit nötige Fingerfertigkeit nicht und das genaue Arbeiten nur bedingt geübt. Möglicher Ablauf einer Unterrichtseinheit mit dem "Virtual Lab" Vor Einsatz des virtuellen Labors sollen die Regeln besprochen werden, die generell für die Laborarbeit gelten (Sicherheitsausrüstung, gängige Labormaterialien, genaues Lesen beziehungsweise Zuhören bei den Versuchsanleitungen, Reihenfolge beim Durchführen des Versuchs beachten). Diese werden zwar auch durch den virtuellen Assistenten vermittelt, allerdings verlängert dies die Zeit für die Durchführung einzelner Versuche massiv. Wichtig sind beim Einsatz im Präsenzunterricht klare Absprachen, was im virtuellen Labor genutzt werden darf. Das System bietet auch einige spielerische Elemente als Ergänzung. Diese sollten die Schülerinnen und Schüler aufgrund der Ablenkungsgefahr nicht nutzen dürfen. Nach der Einführung können die Lernenden in der gewünschten Sozialform den virtuellen Versuch durchführen. Damit jeder Schüler und jede Schülerin die Chance hat einen Teil zu übernehmen, sollte die Gruppengröße drei Personen nicht überschreiten. Vor Öffnen des Versuchs sollen die Schülerinnen und Schüler Vermutungen zur Fragestellung des Versuchs notieren. Im Anschluss an den Versuch werden Durchführung und Ergebnisse in der Klasse besprochen und offene Fragen geklärt. Erfahrungen des Autors zum Einsatz des Labors im Fernunterricht Der Autor dieses Artikels hat das virtuelle Labor im Rahmen eines virtuellen Biologiekurses für hochbegabte Grundschulkinder ergänzend eingesetzt. Es handelte sich um Kinder der zweiten bis vierten Klasse. Im Rahmen einer Videokonferenz wurden zuvor die Regeln für Laborarbeit und das Vorgehen bei Versuchen besprochen. Zur Anwendung kam das Labor zur Fotosynthese. In der Konferenz wurden zudem Hypothesen gesammelt, was alles für die Fotosynthese nötig ist und was dabei hergestellt wird. Die Funktionsweise des virtuellen Labors wurde mithilfe der Bildschirmübertragung erklärt. Nach der Konferenz führten die Kinder zu Hause selbstständig das virtuelle Experiment durch. In der Folgekonferenz wurden Beobachtungen und Ergebnisse besprochen. Es stellte sich heraus, dass alle Kinder gut mit dem virtuellen Labor zurechtkamen und Spaß an der Durchführung hatten. Das nötige Wissen wurde durch den Versuch und die Erklärungen des virtuellen Labors vermittelt. Zwei Versionen des Virtual Lab Neben der Schülerversion mit allen spielerischen Elementen gibt es eine Version für den Unterrichtseinsatz, bei dem das Belohnungsspiel entfernt wurde. Fazit Das "virtual Lab" von BASF bietet vielfältige Möglichkeiten zu Hause oder bei fehlender Laborausstattung in der Schule spannende Experimente durchzuführen. Es kann jedoch nicht dauerhaft den experimentellen praktischen Unterricht ersetzen. Quellen Vorstellung des Virtual Lab durch den Anbieter Informationen über die Schulversion

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Biologie / Ernährung und Gesundheit / Natur und Umwelt / Chemie / Natur & Umwelt /
  • Sekundarstufe II

Saturn - einen Blick auf den Ringplaneten vergisst man nicht

Unterrichtseinheit

In der Unterrichtseinheit "Saturn" nehmen die Lernenden den Ringplaneten unter Beobachtung. Die Observation der Saturnringe mit eigenen Augen hinterlässt einen bleibenden Eindruck. Auch der außergewöhnliche Mond Titan kann mit einfachen Mitteln gesichtet werden. Ein Blick auf den Gasriesen lohnt sich besonders während der Monate um die jährlichen Oppositionen. Mit dem Erscheinungsbild des Saturn und seines eindrucksvollen Ringssystems sind wir bestens vertraut: Im Internet und in Fernsehsendungen begegnen uns immer wieder Bilder der Raumsonden Voyager und Cassini. Und trotzdem löst der Blick mit dem eigenen Auge auf das Original - auch in vergleichsweise kleinen Amateurgeräten - Verwunderung, Überraschung und Faszination aus. Zur Vorbereitung und Auswertung von Saturn-Beobachtungen steht eine ganze Palette digitaler Werkzeuge kostenfrei zur Verfügung. Der fachliche Hintergrund kann mithilfe von Internetrecherchen und interaktiven Online-Anwendungen im Computerraum oder am heimischen Rechner abwechslungsreich und auch spielerisch vertieft werden. Informationen zur Sichtbarkeit des Planeten am Abendhimmel finden Sie unter Links und Literatur . Zur Vorbereitung der Beobachtung können mithilfe kostenfreier Planetarium-Software (z.B. Stellarium ) Simulationen durchgeführt und Sternkarten ausgedruckt werden. Die Beschäftigung mit dem Thema Saturn kann im Rahmen einer Astronomie AG oder des Differenzierungsunterrichts methodisch und inhaltlich sehr vielseitig gestaltet werden: Neben Internetrecherchen und der Nutzung des Rechners als Werkzeug gilt es die positiven Effekte eines gemeinsamen Naturerlebnisses mitzunehmen. Inhaltlich spannt sich der Bogen von den Beobachtungen und Zeichnungen Galileo Galileis (1564-1642) und Christiaan Huygens' (1629-1695) bis hin zur Landung einer Sonde auf der Oberfläche des Saturnmonds Titan im Jahr 2005 und den Ergebnissen der Cassini-Mission. Beobachtung der Saturnringe Was sieht man von den Ringen mit welcher Ausrüstung? Wie entstehen die verschiedenen Ringstellungen? Welche Ausstattung benötigt man für fotografische Dokumentationen? Der Saturnmond Titan Titan ist bereits mit leichtem Gerät sichtbar. Er ist der einzige Mond des Sonnensystems mit einer Atmosphäre. Dies macht ihn zum Spekulationsobjekt der Exobiologie. Virtuelle Exkursionen Mit Online-Anwendungen von ZDF und NASA können Schülerinnen und Schüler das Saturnsystem virtuell erkunden. Eigene Beobachtungen werden mit Stellarium vorbereitet. Die Schülerinnen und Schüler beobachten gemeinsam den Abendhimmel und finden mithilfe einer Aufsuchkarte (Planetariumsoftware) den Planeten Saturn. sehen mithilfe eines Spektivs (wie es zum Beispiel Hobby-Ornithologen verwenden) oder eines Amateurteleskops (Schulteleskop, Volkssternwarte) das Ringsystem des Planeten mit eigenen Augen. verstehen die Entwicklung der Ringöffnung im Laufe eines Saturnjahres und schulen so ihr räumliches Vorstellungsvermögen. identifizieren den Saturnmond Titan am Himmel und lernen die Ergebnisse der Huygens-Mission kennen. wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. informieren sich mithilfe von Internetrecherchen und interaktiven Online-Anwendungen über Saturn und Titan, seinen größten Mond. lernen Stellarium und Bildbearbeitungssoftware als Werkzeuge zur Vorbereitung kennen und nutzen diese. Zudem erlernen sie die Dokumentation und Auswertung astronomischer Beobachtungen. Der Besuch einer Volkssternwarte lohnt sich! Betrachtet man den gelblich leuchtenden Saturn in einem fest montierten Fernglas bei 15-facher Vergrößerung, kann man bei entsprechender Ringstellung bereits eine elliptische Form erkennen. Im Jahr der Veröffentlichung dieses Artikels hat sich sich dieser Effekt allerdings nicht eingestellt, denn zur Zeit der Opposition im Jahr 2010 beträgt die Ringöffnung nur 3,2 Prozent. Bei 40-facher bis 60-facher Vergrößerung sieht Saturn dann daher wie ein "Durchmesser-Symbol" aus - das Ringsystem erscheint als Strich. Dieser Anblick lässt sich bereits mit einem guten Spektiv erzielen, wie es von Hobby-Ornithologen verwendet wird. Eine Volkssternwarte in Ihrer Nähe finden Sie mithilfe des German Astronomical Directory: German Astronomical Directory (GAD) Hier finden Sie eine Zusammenstellung astronomischer Vereine, Sternwarten und Planetarien von David Przewozny. Geringe Ringöffnung Eine "Kantstellung" der Ringe macht sich durch eine relativ geringe Leuchtkraft des Planeten in diesem Jahr bemerkbar: Bei maximal geöffneten Ringen reflektieren diese 1,5 Mal soviel Licht wie das Planetenscheibchen selbst, das im Jahr 2010 mehr oder weniger auf sich allein gestellt ist. Bei weit geöffneten Ringen ist die Cassini-Teilung mit Amateurteleskopen, wie sie Schul- oder Volkssternwarten zur Verfügung stehen, unter sehr guten Bedingungen zu erkennen (150- bis 200-fache Vergrößerung). Abb. 1 zeigt eine Aufnahme des Saturns von Thomas Borowski mit einem Amateurteleskop (Februar 2009, 150 Millimeter Fernrohröffnung, 4.800 Millimeter Brennweite). Zum Zeitpunkt der Aufnahme präsentierte uns Saturn sein Ringsystem in "Kantstellung". Form und Atmosphäre Eine Kantstellung der Ringe begünstigt die Wahrnehmung der abgeplatteten Gestalt des Planeten (siehe Abb. 1). Diese ist eine Folge der Kombination aus geringer mittlerer Dichte (in Wasser würde Saturn schwimmen) und schneller Rotation (ein Saturntag dauert weniger als elf Stunden). Der Äquatordurchmesser beträgt 120.000 Kilometer, der Poldurchmesser nur 108.000 Kilometer. Wolkenbänder sind in kleineren Amateurgeräten (ohne Bildbearbeitung) nicht zu erkennen. Das heißt aber nicht, dass es in der Saturnatmosphäre ruhig zugeht - hier treten Windgeschwindigkeiten von 1.800 Kilometern pro Stunde auf! Das Ringsystem des Saturns ist um etwa 27 Grad zur Bahnebene des Planeten geneigt. Da die Ringe "raumfest" sind, präsentieren sie sich uns während einer Sonnenumrundung des Planeten - die etwa dreißig Erdenjahre in Anspruch nimmt - aus ganz unterschiedlichen Perspektiven. Dies wird durch die Fotoserie in Abb. 2 deutlich. Die Bilder zeigen verschiedene Ringstellungen, die das Hubble-Weltraumteleskop in den Jahren 1996 bis 2000 aufgenommen hat. Die verschiedenen Etappen, über die ein kompletter Ringzyklus verläuft, werden in der folgenden Aufzählung kurz skizziert. Etwa alle 15 Jahre schließen sich dabei die Ringe, sodass wir von der Erde aus auf ihre "Kante" blicken. Für eine kurze Zeit scheinen Sie dann zu verschwinden. Der Wechsel der Ringstellungen verläuft über folgende Etappen: Der Planet wendet uns seine Südhalbkugel maximal zu. Seine Ringe sind maximal geöffnet. Etwa 7,5 Jahre später blicken wir auf die Ebene der Ringe, die dann nur als Strich erscheinen und für kurze Zeit verschwinden. Nach weiteren etwa 7,5 Jahren wendet uns der der Planet seine Nordhalbkugel maximal zu, und die Ringe erscheinen wiederum weit geöffnet. In den nächsten Jahren schließen sich die Ringe für uns wieder, bis wir nach 7,5 Jahren wiederum ihre Kante betrachten. Danach öffnen sie sich und nach dreißig Jahren ist ein "Ringzyklus" vollendet: Saturn wendet uns wieder seine Südhalbkugel bei maximal geöffneten Ringen zu. Dokumentation der Eigenbewegung des Planeten Mit einer einfachen Digitalkamera und einer kostenfreien Bildbearbeitungssoftware können Schülerinnen und Schüler die Eigenbewegung des Planeten vor dem Fixsternhimmel dokumentieren. Abb. 3 (Platzhalter bitte anklicken) zeigt ein mögliches Teilergebnis: Drei Einzelbilder (in diesem Beispiel erstellt mit einer Planetarium-Software) wurden zu einem Bild addiert, das drei Positionen des Saturns unterhalb des Sternbilds Löwe zeigt (Simulation für das Jahr 2009). Durch eine entsprechende Fotoserie lässt sich eine Spur erzeugen, die die Bewegung des Planeten über mehrere Wochen oder Monate zeigt. Praktische Hinweise zur Bedienung der Digitalkamera und eine kurze Anleitung, wie aus den Einzelfotos die Spur des Saturns mit der kostenfreien Software Fitswork rekonstruiert werden kann, finden Sie in dem folgenden Beitrag: Saturn-Portraits Wer Gelegenheit hat, mit einem Schulteleskop oder in Zusammenarbeit mit einer Volkssternwarte Saturn bei 150- bis 200-facher Vergrößerung zu fotografieren oder zu filmen, kann die kostenfreie Software RegiStax nutzen, um aus einer Vielzahl von Einzelbildern ein optimiertes Summenbild zu berechnen. Dieses bringt Einzelheiten zum Vorschein, die beim Blick durch das Teleskop nur andeutungsweise oder gar nicht erkennbar sind. Abb. 4 (Platzhalter bitte anklicken) zeigt ein in RegiStax geladenes Einzelfoto des Planeten. Nach dem Abschluss des so genannten "Stacking" ("Stapeln" von Bildern) sind die Cassini-Teilung sowie Wolkenbänder deutlich erkennbar (Abb. 5). Eine ausführliche Beschreibung der entsprechenden Arbeitschritte mit Screenshots finden Sie in diesem Artikel: Das gute alte Zeichnen trainiert wie kaum eine andere Übung die naturwissenschaftliche Grundfertigkeit des genauen Beobachtens. Das Zeichnen zwingt uns, wirklich genau hinzusehen und ermöglicht die Wahrnehmung vieler Details, die dem in der Regel flüchtigen ersten Blick fast immer entgehen. Zeichenstunden am Teleskop Lernende auf den Spuren Galileis: Objekte werden studiert und die naturwissenschaftlichen Grundtechniken des genauen Beobachtens und Protokollierens geübt. Im Rahmen der Beschäftigung mit dem Thema Saturn sollten die Schülerinnen und Schüler auch die Meilensteine der Saturnforschung kennen lernen und insbesondere wissen, was Galileo Galilei (1564-1642) und Christiaan Huygens (1629-1695) mit den Teleskopen ihrer Zeit gesehen und wie sie ihre Beobachtungen interpretiert haben. Informationen dazu bieten die folgenden Internetseiten: astronomy2009.org: Darstellung der Venusphasen von Galileo Galilei Die Darstellung von 1623 zeigt Saturn, Jupiter, Mars und die Phasen der Venus (aus: Il saggiatore, In Roma, appresso Giacomo Mascardi). Galilei deutete die Ringe als "Henkel". Astrolexikon: Die Erforschung des Saturn Meilensteine in der Saturnforschung; hier finden Sie unter anderem eine Skizze von Christiaan Huygens, der als erster die Natur der Saturnringe verstand. Titan ist schon in einem lichtstarken Feldstecher als leicht rötlicher Begleiter des Ringplaneten zu sehen. Mit einem Durchmesser von 5.150 Kilometern ist er nach dem Jupitermond Ganymed der zweitgrößte Mond im Sonnensystem. Auch die anderen größeren Saturnmonde, wie Dione und Rhea, sind für mittlere Amateurteleskope kein Problem. Insgesamt kennt man heute etwa 60 Saturntrabanten. Die Positionen der fünf hellsten Saturnmonde kann man über ein Applet auf der Webseite der Western Washington University für jeden gewünschten Zeitpunkt anzeigen lassen: Western Washington University Planetarium Das Java-Applet zeigt die Position der fünf größten Saturnmonde. Beachten Sie die verschiedenen Darstellungsmöglichkeiten („Direct view“, Inverted view“, „Mirror reversed“). Einzigartige Atmosphäre Titan ist der einzige Mond in unserem Sonnensystem, der eine dichte Atmosphäre besitzt. Auf seiner Oberfläche herrscht mit 1,5 bar ein höherer Druck als auf der Erde. Wie die Atmosphäre der Erde besteht die von Titan hauptsächlich aus Stickstoff. Der orangefarbene Nebel, der den Mond verhüllt (Abb. 6), enthält zudem einen interessanten Cocktail verschiedener organischer Verbindungen. Sauerstoff ist in der Atmosphäre praktisch nicht vorhanden. Da diese Bedingungen denen auf der Urerde ähneln könnten, ist Titan ein interessantes Spekulationsobjekt für die Exobiologen. Über erste Schritte einer "chemischen Evolution" wird Titan aufgrund der niedrigen Temperaturen (etwa -170 Grad Celsius) aber nicht hinausgekommen sein. Leben, wie wir es kennen, kann dort nicht existieren. Die Erkundung der Oberfläche Im Rahmen der Cassini-Huygens-Mission von NASA und ESA wurde im Januar 2005 der Lander Huygens auf der Titanoberfläche abgesetzt. Dieses Projekt gewährte erstmals einen Blick auf die Oberfläche des Mondes im sichtbaren Licht. Während des turbulenten Abstiegs an Fallschirmen gab der Dunst erst ab einer Höhe von 20 Kilometern den Blick frei auf eine vielfältig interpretierbare Landschaft mit küstenartigen Formationen, Abflussgräben, mäandrierenden Flusssystemen oder Dünenformationen. Bilder vom Landeplatz (Abb. 7) kommen uns "vertraut" vor: Die Ebene mit zahlreichen Brocken erinnert an die Marsoberfläche. Die Brocken auf dem Titan bestehen jedoch nicht aus Gestein, sondern - wie auch der Boden - aus gefrorenem Wasser und Kohlenwasserstoffen. Wie entstehen die Bilder? Abb. 7 zeigt ein nachbearbeitetes Foto vom Landeplatz der Huygens-Sonde - die Originaldaten lieferten lediglich Schwarzweiß-Bilder. Am Beispiel der Fotos von der Titanoberfläche kann der Frage nachgegangen werden, wie die Bilder aus den weit entfernten Winkeln des Sonnensystems entstehen und was sie eigentlich zeigen. Was ist "real", was "künstlerisch-spekulativ" und was durch die technische Bearbeitung aus den Daten zum Zwecke der Auswertung "herausgekitzelt" oder "überhöht"? Anregungen dazu finden Sie in dieser Unterrichtseinheit: Die reale Beobachtung kann durch virtuelle Exkursionen vor- oder auch nachbereitet werden. Lernende können dabei Informationen "tanken", die die Live-Begegnung mit Saturn und Titan bereichern. Für jüngere Schülerinnen und Schüler bietet sich dafür das virtuelle ZDF-Raumschiff Pegasus an. Abb. 8 zeigt einen Screenshot aus dem Cockpit mit Blick auf den Saturn. Informationen zu den Planeten und ihren Monden können über das "Infosystem" der Pegasus aufgerufen werden - Daten, Bilder und zum Teil auch Animationen (Abb. 9). Zudem informiert ein Sprecher über den jeweils anvisierten Himmelskörper. Anregungen zum Einsatz dieses Online-Angebots im Unterricht inklusive Arbeitsblatt finden Sie in dieser Unterrichtseinheit: Mit dem NASA-Simulator können sich ihre Schülerinnen und Schüler auf Planeten und Monde des Sonnensystem versetzen, zum Beispiel den Saturn auf dem Mond Mimas umrunden und dabei den Ringplaneten am Nachthimmel seines kleinen Mondes betrachten. Auch der ungewohnte Blick auf das Ringsystem "von oben" ist möglich (Abb. 10). Zudem kann man aus der Perspektive verschiedener Raumsonden (zum Beispiel Voyager, Cassini oder Deep Impact) Planeten und Monde betrachten. Datum, Uhrzeit und Blickwinkel beziehungsweise Größe der Objekte können frei gewählt werden. Maßanfertigung von Himmelskarten Stellarium ist ein ideales Werkzeug zur Vorbereitung astronomischer Beobachtungen. Mit der kostenfreien und plattformunabhängigen Software können Sie den Sternhimmel zu jeder Zeit an jedem Ort simulieren. Abb. 11 zeigt als Beispiel einen Blick auf den Kölner Abendhimmel am 22. März 2010 um etwa 21:00 Uhr in Richtung Südosten. Klicken Sie zur Vergrößerung des Ausschnitts die Himmelskarte an. Saturn hat seine Opposition erreicht und ist unterhalb des Löwe in dem eher unscheinbaren Sternbild Jungfrau nicht zu verfehlen. Stellarium als virtuelles Teleskop Das Online-Applet des Western Washington University Planetarium zur schnellen Bestimmung Position der Saturnmonde haben wir bereits vorgestellt (siehe Der Saturnmond Titan ). Zu diesem Zweck können Sie auch Stellarium verwenden, indem Sie sich "teleskopmäßig" an den Planeten heranzoomen (Abb. 12, Platzhalter bitte anklicken). Die Positionen der Monde können sich im Laufe einer Nacht deutlich ändern. (Allerdings kann Stellarium bei der Simulation der Mondbewegungen kleine Ungenauigkeiten zeigen.) Durch "Bedeckungen" und "Durchgänge" (Dione und Enceladus in Abb. 14) sind nicht immer alle Monde zu sehen. Die astronomischen Jahrbücher informieren über die Positionen von Planeten und Monden: Ahnert Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft (Heidelberg) Keller Kosmos Himmelsjahr, Kosmos Verlag

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Herstellung und Untersuchung von Nano-Goldpartikeln

Unterrichtseinheit

Lernende stellen im Schülerexperiment Nano-Goldpartikel her und erkennen die Farbe der Goldsole als größenabhängige Eigenschaft der Nanopartikel. Interaktive Lernumgebungen visualisieren die Reaktionen auf der Teilchenebene und ermöglichen die Untersuchung der Nanopartikel im virtuellen Elektronenmikroskop.Der erste Teil der fächerübergreifenden Unterrichtseinheit (Chemie und Physik) findet im Schul- oder Schülerlabor statt. Die Lernenden präparieren mithilfe einer Versuchsvorschrift unterschiedlich große Gold-Nanopartikel in Dispersion (Kolloidchemie). Die verschiedenen Größen der Goldpartikel werden schon bei der Präparation an der unterschiedlichen Farbe erkennbar. Der zweite Teil der Unterrichtseinheit findet im Rechnerraum statt. Die Schülerinnen und Schüler wiederholen die Präparation der Gold-Nanopartikel noch einmal im Rahmen eines virtuellen Experiments und können dabei beobachten, was auf der Teilchenebene passiert. Mithilfe eines interaktiven Lernmoduls lernen sie zudem Schritt-für-Schritt die Funktion und Betriebsweise eines Elektronenmikroskops kennen: Sie können ein virtuelles Transmissionselektronenmikroskop bedienen, die (virtuell und/oder real) hergestellten Partikel anschauen und sich davon überzeugen, dass den verschiedenfarbigen Goldsolen unterschiedlich große Nanopartikel zugrunde liegen. Kombination von Realexperiment und Computereinsatz Die Nanotechnologie und speziell die chemische Nanotechnologie bieten Schülerinnen und Schülern keinen unmittelbaren Zugang. Nanoplättchen, Nanostäbchen oder Nanopartikel lassen sich im Schülerexperiment zwar leicht herstellen, zum Beispiel durch Fällungen, jedoch lichtmikroskopisch nicht sichtbar machen. Ein Elektronenmikroskop wäre dafür erforderlich, aber eine solche Hochtechnologie-Apparatur ist für Schule und Schülerlabor viel zu teuer und zu empfindlich. Aus diesem Dilemma heraus entstand die vorliegende Unterrichtseinheit: Für die Präparation von Nanopartikeln sollen die Schülerinnen und Schüler vorzugsweise selbstständig experimentieren und damit die Faszination des Experiments erleben. Die Untersuchung der Produkte im virtuellen Elektronenmikroskop einer interaktiven Lernumgebung erfolgt nach dem Realexperiment im Rechnerraum der Schule. Eine Alternative: Außerschulische Lernorte Falls die räumlichen Möglichkeiten für das Schülerexperiment in der Schule nicht gegeben sind, kann dieser Teil der Unterrichtseinheit in einem außerschulischen Schülerlabor, zum Beispiel an einer Universität, stattfinden. Alternativ kann die Lehrperson den Versuch als Demonstrationsexperiment vorführen. In jedem Fall können die Schülerinnen und Schüler den Versuch am Rechner multimedial durchführen beziehungsweise wiederholen. Teil 1: Kolloidale Systeme Nach der (optionalen) Herstellung von Nano-Goldpartikeln werden die Vorgänge auf der Teilchenebene mithilfe einer Lernumgebung visualisiert. Teil 2: Das Transmissionselektronenmikroskop (TEM) Schülerinnen und Schüler lernen die Funktionsweise eines Elektronenmikroskops kennen und untersuchen virtuell die Größe von Nano-Goldpartikeln. Materialien Hier finden Sie Hinweise zum Einsatz der klassischen Arbeitsblätter und der Lernumgebungen sowie detaillierte Handreichungen zu den virtuellen Experimenten. Fachkompetenz - kolloidale Systeme Die Schülerinnen und Schüler sollen die Begriffe Kolloid und Nanopartikel und ihren Zusammenhang kennen. die Dimension nanoskaliger Materialien kennen und zu bekannten Materialien anderer Dimensionen in Beziehung setzen können. den Begriff kolloidale Dispersion kennen und kolloidale Dispersionen in Zweistoffsystemen je nach Aggregatzustand der dispersen Phase und des Dispersionsmittels klassifizieren können. Methoden zur Unterscheidung zwischen "echten" Lösungen, kolloidalen Dispersionen und grobdispersen Systemen kennen. die Synthese von Goldkolloiden durchführen. wissen, dass die optischen Eigenschaften der hergestellten Goldkolloide im Zusammenhang mit der Größe der Kolloide stehen. den Begriff Koagulation/Aggregation kennen. Fachkompetenz - Transmissionselektronenmikroskop Die Schülerinnen und Schüler sollen das TEM als Werkzeug zur Visualisierung von Nanopartikeln kennen. begründen, warum Nanopartikel nicht mithilfe eines Lichtmikroskops beobachtet werden können. den Aufbau und den Strahlengang des Elektronenstrahls im TEM kennen. wissen, warum im Vakuum gearbeitet werden muss. die Bilderzeugung im TEM als Wechselwirkung zwischen Elektronenstrahl und Probe kennen. elastisch und unelastisch gestreute Elektronen als Ursache für die verschiedenen Kontraste im elektronenmikroskopischen Bild kennen. Thema Herstellung und Untersuchung von Nano-Goldpartikeln Autoren Katrin Prete, Dr. Walter Zehren, Prof. Dr. Rolf Hempelmann Fächer Chemie, Physik Zielgruppe ab Klasse 9 Technische Voraussetzungen Möglichkeit für chemisches Experimentieren (optional); Rechner in ausreichender Anzahl (Partnerarbeit), mindestens ein Präsentationsrechner mit Beamer, Flash-Player 9 Dr. Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab. Umrechnung von Maßeinheiten Die Schülerinnen und Schüler müssen in der Lage sein, verschiedene Maßeinheiten (Meter, Millimeter, Nanometer) ineinander umzurechnen. Diese Kompetenzen werden im Fach Mathematik in Klasse 5 erworben. Aggregatzustände Die Lernenden benötigen Kenntnisse über Aggregatzustände und über die verschiedenen Typen chemischer Stoffgemische. Diese Kompetenzen werden im Fach Chemie in Klasse 8 erworben. Redox-Reaktionen Zum Verständnis der Synthese der Gold-Nanopartikel müssen die Schülerinnen und Schüler den erweiterten Redox-Begriff kennen: Redox-Reaktionen müssen als Elektronenübertragungsreaktionen bekannt sein. Dies wird im Fach Chemie in Klasse 9 thematisiert. Der erste Teil der Unterrichtseinheit behandelt einige Aspekte der Kolloid- und Nanochemie und besteht aus einem Experimentalteil und einer interaktiven Lernumgebung zur Herstellung von Goldsol, also einer Suspension von Gold-Nanopartikeln. Gold- und auch Silber-Nanopartikel zeigen einen interessanten Farbeffekt im sichtbaren Spektralbereich: Die resonante Anregung von Oberflächenplasmonen führt dazu, dass sich die Farbe des Metalls in Abhängigkeit von der Größe und Form der Nanoteilchen stark verändert (Abb. 1). Zum Beispiel sehen Suspensionen von kleinen Gold-Nanopartikeln in Wasser rot aus (im Gegensatz zu dem gelblichen Schimmer, den Gold normalerweise zeigt). Aggregiert man diese Partikel teilweise, so ändert sich die Farbe zu dunkelblau bis violett. Einstieg und Schülerexperiment Der erste Teil der Unterrichtseinheit gliedert sich in zwei Abschnitte. Zunächst erfolgt eine Einführung in das Thema kolloidale Systeme. Durch geeignete Aufgabenstellungen wird den Schülerinnen und Schülern zunächst die Dimension, also der Größenbereich, der Nanochemie nahe gebracht, und es werden die Begriffe Nanopartikel beziehungsweise Kolloid geklärt. Danach folgt eine Reihe von Experimenten, welche die Schülerinnen und Schüler mit den bis zur Klasse 9 erworbenen Vorkenntnissen in Eigenarbeit durchführen können. Der Einfluss des Zerteilungsgrades (des Dispersionsgrades) auf die Eigenschaften von Stoffen und die Unterscheidung zwischen echten Lösungen und kolloidalen Dispersionen können im Experiment selber entdeckt werden. Zum Abschluss werden Goldkolloide verschiedener Größen hergestellt. Die Herstellung von Goldkolloiden ist gleichzeitig die Überleitung zum zweiten Abschnitt des ersten Teils der Unterrichtseinheit, der Multimedia-Anwendung. Virtuelles Experiment, Visualisierung der Teilchenebene Die interaktive Lernumgebung zeigt zunächst noch einmal den zuvor durchgeführten Versuch zur Herstellung von Goldkolloiden. Dabei werden die Schritte der Reaktion auf der Teilchenebene visualisiert (Abb. 2, Platzhalter bitte anklicken), und den Schülerinnen und Schülern wird schließlich die unterschiedliche Farbe der Goldsole erklärt (Abb. 3). An die Animation zum Versuch schließt sich eine Wiederholungsphase an, in der die Lernenden interaktiv den Zusammenhang zwischen Partikelgröße und Farbe der Goldsole bearbeiten können (Abb. 4). Weiter geht es mit einer Übungsphase, in der Schülerinnen und Schüler das Gelernte anwenden. Methodenvielfalt Im ersten Teil der Unterrichtseinheit wird also mit verschiedenen Medien gearbeitet: Arbeitsblätter, Schülerexperimente und Multimedia-Anwendungen. Durch diese Methodenvielfalt wird auf die Heterogenität der Lernvoraussetzungen und der Interessen der Schülerinnen und Schüler eingegangen, wodurch möglichst viele Lernende erreicht und für die Beschäftigung mit dem Nanobereich motiviert werden sollen. Die einzelnen Schritte und Inhalte des gesamten virtuellen Experiments werden in einer Handreichung (tutorial_goldsole_virtuelles_experiment.pdf) ausführlich beschrieben und mit zahlreichen Screenshots dargestellt. Glühelektrischen Effekt, Kondensator Die Schülerinnen und Schüler müssen Kenntnisse über den Glühelektrischen Effekt und das Prinzip eines Kondensators besitzen (Physik, Oberstufen-Grundkurs). Linke-Hand-Regel Die Lernenden müssen in der Lage sein, mithilfe der Linke-Hand-Regel die magnetischen Feldrichtungen einer Spule zu bestimmen (Physik, Klasse 9). Lorentzkraft Die Schülerinnen und Schüler müssen Kenntnisse über die Bewegung von elektrischen Ladungsträgern im magnetischen Feld besitzen. Sie müssen die Richtung der Kraftwirkung der Lorentzkraft mit der Drei-Finger-Regel bestimmen können (Physik, Klasse 9). In einem interaktiven Lernmodul werden der Aufbau und die Funktionsweise des TEM Schritt-für-Schritt erläutert. Damit wird eine wichtige Methode der Nanotechnologie eingeführt. Sie erlaubt es, die zuvor im (realen und/oder) virtuellen Experiment hergestellten Nanopartikel zu visualisieren. Ein Elektronenmikroskop ist ein Mikroskop, welches das Innere oder die Oberfläche einer Probe mithilfe von Elektronen abbilden kann. Da schnelle Elektronen eine sehr viel kleinere Wellenlänge als sichtbares Licht haben und die Auflösung eines Mikroskops durch die Wellenlänge begrenzt ist, kann mit einem Elektronenmikroskop eine deutlich höhere Auflösung (etwa 1 Nanometer; mit einem einem Höchstleistungs-TEM bis zu 0,1 Nanometer) erreicht werden als mit einem Lichtmikroskop (typischerweise etwa 1 Mikrometer, im Extremfall bis zu 200 Nanometer). Die einzelnen Seiten, Inhalte und Funktionen der Lernumgebung zum Transmissionselektronenmikroskop (TEM) werden in einer Handreichung (tutorial_goldsole_TEM.pdf) ausführlich beschrieben und mit Screenshots dargestellt. Tutorielles System zur Funktion des TEM Die Lernumgebung erlaubt es, die hergestellten Gold-Nanopartikel "virtuell" zu untersuchen. Die Schülerinnen und Schüler erfahren, wie die zuvor bereits verwendeten TEM Aufnahmen (vergleiche Abb. 4 ) entstehen. Dabei kommt eine Multimedia-Anwendung im Stil eines tutoriellen Systems zum Einsatz. Auf der Startseite wird das Thema dargestellt, und den Lernenden wird ein motivierender Einstieg in das Thema geboten. Außerdem wird auf dieser Seite ein Einblick gegeben, welche Lerninhalte nachfolgend bearbeitet werden. Informationsseiten An die Startseite knüpfen dann Informationsseiten an, auf denen den Schülerinnen und Schülern Lerninhalte durch Texte, Animationen oder Bilder präsentiert werden, die in individueller Geschwindigkeit bearbeitet werden können (Abb. 5, Platzhalter bitte anklicken). Sie können dabei auch zu vorangegangenen Lerninhalten zurückzuspringen, um nicht Verstandenes zu wiederholen. Übungen und Ergebnissicherung Die Informationsseiten bilden Themenblöcke oder "Bausteine". Nach jeweils einem Baustein schließen sich Übungsseiten an, mit deren Hilfe das Gelernte überprüft und die Lernergebnisse gefestigt werden (Abb. 6). Dabei kommen in der Regel recht kurz gehaltene Multiple-Choice-Aufgaben, Lückentexte oder Wortpuzzles zum Einsatz, an einigen Stellen allerdings auch komplexere Aufgabenstellungen. Die Übungen bieten auch die Möglichkeit zur Differenzierung - leistungsstärkere Schülerinnen und Schüler, die schneller mit dem Programm fertig werden, können zusätzliche Aufgaben lösen. Den Abschluss des Programms bildet eine Lückentextübung zum TEM. Anwendungssimulation Im Anschluss an das tutorielle System folgt eine kleine Simulation. Hier haben die Schülerinnen und Schüler ein virtuelles TEM vor sich, in dem sie die Goldsole virtuell untersuchen können. Hierbei handelt es sich um eine Anwendungssimulation. Die Lernenden sollen die Handhabung des TEM prinzipiell verstehen. Dabei führen sie dieselben "Handgriffe" aus, die sie auch im Umgang mit einem realen TEM ausführen müssten (Abb. 7). Bei Fehlern - wenn zum Beispiel vergessen wird, in der Probenkammer ein Vakuum anzulegen - gibt das Programm eine entsprechende Rückmeldung ("Vorsicht, überprüfe dein Vorgehen"). 1. Partikel mit Potenzial: Nanoteilchen und Kolloide Das erste Arbeitsblatt (1_nanoteilchen_groessenvergleiche.pdf) führt die Begriffe Nanoteilchen und Kolloide ein. Der Text beginnt mit den Begriffsbestimmungen. Daran knüpfen sich fünf Aufgaben an, die den Schülerinnen und Schülern helfen sollen, sich die Dimensionen der Nanowelt in Relation zur Lebenswelt zu veranschaulichen: Die Lernenden sollen die Dimension des Nanometers durch Vergleiche mit Gegenständen aus ihrem alltäglichen Erfahrungsbereich erfassen. Nur durch diese Vergleiche ist es möglich, die winzigen Dimensionen zu verdeutlichen. Unbekanntes wird auf Bekanntes zurückgeführt und kann besser gelernt und verstanden werden. Aufgabe 3 ermöglicht es den Lernenden mit einem kleinen Experiment, sich selbst die Größe zu veranschaulichen und die Ergebnisse direkt zu sehen. Die Dimension des Nanometers wird im Experiment natürlich nicht erreicht, dennoch wird sie erlebbar und besser vorstellbar. 2. Eigenschaften von Nanopartikeln und Kolloiden Das zweite Arbeitsblatt (2_eigenschaften_nanoteilchen_kolloide.pdf) soll die Veränderung der physikalischen, chemischen und biologischen Eigenschaften eines Stoffs in Abhängigkeit von seinem Zerteilungsgrad veranschaulichen. Die Verkleinerung eines Stoffes in nanoskalige Dimensionen führt zu völlig neuen Werkstoffeigenschaften. In der ersten Aufgabe wird zunächst veranschaulicht, dass mit zunehmendem Zerteilungsgrad die Oberfläche eines Stoffes wächst und somit eine viel größere Oberfläche reagieren kann. Die Auswirkung einer größeren Oberfläche auf die Reaktionsgeschwindigkeit kennen die Schülerinnen und Schüler aus Standard-Experimenten des Chemieunterrichts, wie zum Beispiel der Verbrennung eines Eisennagels gegenüber der Verbrennung von Stahlwolle. In einem Versuch sollen die Lernenden nun entdecken, dass sich mit zunehmendem Zerteilungsgrad auch physikalische Eigenschaften verändern, wie zum Beispiel das magnetische Verhalten eines Stoffs. Die Reaktionsgleichung wird auf den Arbeitsblättern angegeben, da sie mit dem den Schülerinnen und Schülern zu Verfügung stehenden Vorwissen nicht aufgestellt werden kann, von diesen aber zum Verständnis der Reaktion benötigt wird. Zusätzlich wird der Begriff des Hydrats kurz vorgestellt, da als Ausgangsstoffe Eisen(III)-chlorid-Hexahydrat und Eisen(II)-Chlorid-Tetrahydrat eingesetzt werden und der Hydrat-Begriff aus dem Unterricht in dieser Form nicht geläufig ist. 3. Unterscheidung zwischen echten und kolloidalen Dispersionen Mit dem dritten Arbeitsblatt (3_dispersionen.pdf) lernen die Schülerinnen und Schüler den Tyndall-Effekt als eine Möglichkeit kennen, zwischen echten Lösungen und kolloidalen Systemen zu unterscheiden. In einem Versuch werden verschiedene Lösungen beziehungsweise Dispersionen mithilfe des Tyndall-Effektes identifiziert. Mit der Aufgabe, für die Dispersionen das Dispersionsmittel und die disperse Phase anzugeben, wird an das Vorwissen der Lernenden angeknüpft, da die Einteilung von Stoffgemischen bereits in Klasse 8 erlernt wird. 4. Herstellung von Goldkolloiden Das vierte Arbeitsblatt (4_goldkolloide.pdf) beschreibt einen Versuch zur Herstellung von Gold-Nanopartikeln unterschiedlicher Größe. Zum Einstieg werden Verwendungsmöglichkeiten von Gold-Nanopartikeln aufgezeigt und hervorgehoben. Durch die Herstellung von Gold-Nanopartikeln wird mit der Farbe eine weitere spezifische Stoffeigenschaft angesprochen. Sie ändert sich mit zunehmendem Zerteilungsgrad von dem charakteristischen Goldgelb bis hin zu Rot. Hierbei handelt es sich um einen Größenquantisierungseffekt (englisch "quantum size effect"): sehr kleine Teilchen unterliegen mit abnehmender Teilchengröße zunehmend den Gesetzen der Quantenmechanik, woraus sich die Änderung der Eigenschaften von Nanopartikeln im Vergleich zu grobkristallinen Stoffen der gleichen chemischen Zusammensetzung erklärt. Die einführenden Texte dienen zur Motivation der Schülerinnen und Schüler, in einem Experiment selbst Gold-Nanopartikel herzustellen. 5. Arbeitsblatt und interaktive Lernumgebung Für die Bearbeitung der Aufgabenstellungen des fünften Arbeitsblatts (4_2_goldkolloide.pdf) kann die Flash-Lernumgebung zur Herstellung von Goldkolloiden herangezogen werden. Die Aufgabe greift auf bereits vorhandenes Wissen zurück, wie zum Beispiel den erweiterten Redox-Begriff, und fungiert auch als Ergebnissicherung für neu erlernte Inhalte. Die Fragen können nach der Arbeit mit der Lernumgebung beantwortet werden. Teilweise müssen Lerninhalte aus den vorangegangenen Arbeitsblättern angewendet werden, sodass durch zusätzliche Wiederholung eine Festigung des Gelernten gewährleistet werden kann. Einsatzmöglichkeiten Das virtuelle Experiment zur Herstellung verschiedenfarbiger Goldsole veranschaulicht die Vorgänge auf der Teilchenebene. Mit ihm wird auch erarbeitet, dass die Farbe der Goldsole von der Größe der Nano-Goldpartikel abhängig ist. Die Lernumgebung kann flexibel eingesetzt werden: Schülerexperiment und virtuelles Experiment Nach der experimentellen Herstellung von Goldsolen im Schülerversuch (im Chemielabor der Schule oder in außerschulischen Schülerlaboren) kann die Lernumgebung zur Herstellung von Goldsolen zur "virtuellen Wiederholung" und insbesondere zur Darstellung der Vorgänge auf der Teilchenebene genutzt werden. Lernende experimentieren nur "virtuell" Besteht keine Möglichkeit, den Versuch als Schülerexperiment durchzuführen, können die Lernenden die Herstellung von Goldsolen auch ausschließlich am Rechner durchführen - im Idealfall in Partnerarbeit im Computerraum der Schule. Präsentation per Beamer Alternativ oder zusätzlich zur Bearbeitung im Computerraum kann die Lehrperson die Flash-Animationen zur Unterstützung des Unterrichtsgesprächs im Fachraum per Beamer einsetzen. Die Lehrperson oder einzelne Schülerinnen und Schüler können den Prozess dann noch einmal für alle beschreiben. Einsatzmöglichkeiten Dieses Lernmodul ist für die Einzel- oder Partnerarbeit am Rechner konzipiert. Alternativ können die Animationen und interaktiven Übungen aber auch zur Unterstützung des Unterrichtsgesprächs (Beamerpräsentation) genutzt werden. Die Lernumgebung zum TEM kann natürlich auch in anderen unterrichtlichen Zusammenhängen - unabhängig von der Herstellung von Goldsolen - zum Einsatz kommen. Prete, Katrin Visualisierung von Nanopartikeln mittels TEM und STM, aufgearbeitet als eine mediengestützte Unterrichtseinheit, Wissenschaftliche Staatsexamensarbeit, Saarbrücken 2009 Zehren, Walter Forschendes Experimentieren im Schülerlabor , Dissertation, Saarbrücken 2009 Sepeur, Stefan Nanotechnologie - Grundlagen und Anwendungen, Vincentz Network, Hannover 2008 Dörfler, Hans-Dieter Grenzflächen und kolloid-disperse Systeme, Springer-Verlag, Berlin und Heidelberg 2002 Hempelmann, Rolf; Zehren, Walter; Mallmann, Matthias Nanotechnologie im Schulunterricht, NanoBioNet Newsletter II/2008, nanotechnologie aktuell 2, 88-91 (2009) Walter Zehren ist Studienrat an der Saarbrücker Marienschule und teilabgeordnet an die Universität des Saarlandes. Dort leitet er das Schülerlabor NanoBioLab und hat zum Thema Forschendes Experimentieren im Schülerlabor promoviert. Rolf Hempelmann ist Professor für Physikalische Chemie und Geschäftsführender Leiter des Transferzentrums Nano-Elektrochemie an der Universität des Saarlandes. Er ist Betreiber des Schülerlabors NanoBioLab und Sprecher des Saarländischen Schülerlaborverbunds SaarLab.

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Ökologie und Umwelt

Unterrichtseinheit

Hier finden Sie Informationen und Anregungen für den Unterricht im Themenkomplex Ökologie und Umwelt, Klimawandel, Umweltschutz und Klimapolitik. Oft kommen Kinder mit Fragen, die in den Medien diskutiert werden, in die Schule und erwarten Erklärungen. "Umwelt im Unterricht" greift jede Woche ein aktuelles Thema mit Umweltbezug auf und bietet dazu Hintergrundinformationen, Medien und Materialien sowie Unterrichtsideen. Sie können flexibel an verschiedene Lernniveaus und Altersstufen angepasst werden. Flexible Nutzung Die Inhalte sind darauf ausgerichtet, Themen auch bei knappem Zeitbudget kurzfristig in den Unterricht aufnehmen zu können. Daher erfordern die Unterrichtsideen wenig Zeit, sind aber leicht erweiterbar. Die Informationen werden verständlich und kompakt aufbereitet und erleichtern die Vorbereitung. Die Textinhalte stehen unter einer Creative Commons-Lizenz und dürfen bei Bedarf bearbeitet werden. Medien können heruntergeladen werden, um sie in der gewünschten Form im Unterricht zu verwenden. Aktuelle Anlässe Die Materialien greifen Anlässe auf, die in den Medien präsent oder aus anderen Gründen für Schülerinnen und Schüler aktuell sind. Dazu gehören auch Themen, die erst auf den zweiten Blick Umweltthemen sind - auch Events wie Olympia oder die Fußball-WM haben mittlerweile Nachhaltigkeitskonzepte. Und es gibt die "leisen" Themen, die im Leben von Schülerinnen und Schülern immer wieder wichtig sind. Im Sommer zum Beispiel die Qualität von Badegewässern. Langfristig relevant Über welche Ereignisse wird im Fernsehen berichtet? Was ist zurzeit Gesprächsthema bei Schülerinnen und Schülern? Die Redaktion der Website beobachtet kontinuierlich Medien und atuelle Themen und wählt besonders präsente Anlässe aus. Aufbereitet werden nur Themen, die auch langfristig relevante Fragen aufwerfen. Weit gefächertes Archiv Die Hintergrundinformationen und Vorschläge für den Einstieg im Unterricht schlagen die Brücke vom aktuellen Anlass zu grundlegenden Fragestellungen. Die Materialien sind jedoch auch anlassunabhängig verwendbar. So entsteht auf der Website ein wachsendes Archiv, das nach Themen und Stichworten bequem durchsucht werden kann. Lebenswirklichkeit im Fokus Für die Aufbereitung der Materialien wurden redaktionelle Standards entwickelt, die sich an den Maßstäben der Bildung für nachhaltige Entwicklung (BNE) orientieren. Die Unterrichtsinhalte sollen an die Lebenswirklichkeit von Kindern und Jugendlichen anknüpfen. Neben ökologischen Aspekten eines Themas sollen auch ökonomische und soziale Aspekte einbezogen werden. Der Unterricht zielt darauf, Gestaltungskompetenz zu erwerben - die Fähigkeit, gemeinsam mit anderen Lösungen zu entwickeln. Darum werden partizipative Unterrichtsformen berücksichtigt. Rückmeldung erwünscht! Die Idee zum Konzept von "Umwelt im Unterricht" basiert auf der Rückmeldung von Lehrkräften. In Evaluationsworkshops zu umfangreichen Unterrichtseinheiten des Bundesumweltministeriums im Print-Format wurde das Bedürfnis an Hintergrundinformationen zu aktuellen Themen und flexibel einsetzbaren Materialien deutlich. Kontinuierliche Weiterentwicklung "Umwelt im Unterricht" soll auch weiterhin an die Bedürfnisse der Nutzerinnen und Nutzer angepasst und kontinuierlich weiterentwickelt werden. Auch die Redaktion von "Umwelt im Unterricht" möchte lernen und lädt im Blog zum Austausch ein. Darüber hinaus bietet sie dort Einblicke in die Werkstatt: Geplant ist, dort ergänzende hilfreiche Informationen zu veröffentlichen, die während der Arbeit am Projekt gesammelt werden - zum Beispiel kommentierte Informationsquellen, Links zu Foto-Archiven oder Tipps zum Umgang mit digitalen Medien. "Umwelt im Unterricht" wird im Auftrag des Bundesumweltministeriums von einem Team von Fachleuten für Online-Bildungsmedien in Zusammenarbeit mit Autorinnen und Autoren für Unterrichtsmaterialien erstellt. Koalitionswechsel per Vertrauensfrage Allerdings verweist Schröder auf historische Vorbilder. Seinen Amtsvorgänger Helmut Kohl (CDU) hatte der Bundestag 1982 zum Bundeskanzler gewählt. Zuvor hatte die FDP, die unter Bundeskanzler Helmut Schmidt eine Koalition mit der SPD eingegangen war, ihren Koalitionspartner gewechselt. CDU und FDP konnten das konstruktive Misstrauensvotum für sich entscheiden und Helmut Schmidt musste Helmut Kohl weichen. Ein Nationalpark dient dem Schutz der Natur. Sie wird dort möglichst sich selbst überlassen, der Mensch hat nur in Randbereichen Zugang. Im Gegensatz dazu schützen Biosphärenreservate gerade das Miteinander von Mensch und Natur. Es handelt sich dabei um Gebiete, in denen sich durch die nachhaltige Bewirtschaftung eine einzigartige Kulturlandschaft entwickelt und erhalten hat. Die hier beschriebene interaktive Lernumgebung vermittelt anhand des Rhönschafs Hintergründe und Zusammenhänge, warum beispielsweise die Kulturlandschaft der Rhön schützenswert ist. Eine weitere Aufgabenstellung befasst sich mit der Planung eines fiktiven Naturschutzgebietes und dem Konflikt, einerseits Besuchern Zugang zu gewähren, andererseits die Natur möglichst unbeeinflusst zu belassen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Biosphärenreservat und Nationalpark kennenlernen. die Bedeutung des Rhönschafs für die gleichnamige Kulturlandschaft erfahren. sich mit den Ansprüchen der verschiedenen Interessensgruppen auseinandersetzen. wirtschaftliche, ökologische und soziale Aspekte des Rhönschafs kennenlernen. ein fiktives Naturschutzgebiet planen und dabei eine Reihe von Vorgaben berücksichtigen. Die Schülerinnen und Schüler sollen eine interaktive Lernumgebung bedienen. Informationen zur Thematik aus einem Text entnehmen, wesentliche Aussagen verstehen und in eigenen Texten wiedergeben können. das Internet als Informationsquelle kennen- und anwenden lernen. Die Schülerinnen und Schüler sollen durch die fachübergreifende und interaktive Aneignung der Thematik mithilfe einer Lernsoftware interdisziplinär Erkenntnisse gewinnen und handeln können. Thema Biosphärenreservate und Nationalparks Autor Uwe Rotter Fächer Biologie, Geographie, Politik Zielgruppe Klasse 8 bis 10 Zeitraum circa 2 bis 4 Unterrichtsstunden, abhängig von der Verteilung der Arbeitsaufträge Technische Voraussetzungen Betriebssystem Windows ab Version 98, Internet-Explorer ab Version 6, Flash-Player, Installation der kostenlosen Software "bildungsservice-digital" (siehe "Download"), Beamer für die Einführung, Internetzugang Selbstgesteuertes Lernen Das didaktische Konzept fokussiert eine weitgehend selbstständige Erarbeitung der Inhalte. Der hohe Grad an Interaktivität und die multimediale Aufbereitung der Themen regen zum Nachforschen an. Grafische Elemente können per Drag & Drop so positioniert werden, dass dadurch inhaltliche Aussagen entstehen, zum Beispiel durch das Verschieben eines Wanderweges auf einer interaktiven Karte. Arbeitsergebnisse können in einem virtuellen Rucksack verstaut und später an geeigneter Stelle wieder ausgepackt werden. So werden Inhalte wiederholt und vertieft. Bei Bedarf können eigene Inhalte (Texte und Bilder) einfach eingefügt werden. Anpassung an individuelle Anforderungen Beim Beenden der Lerneinheit bietet das Modul die Möglichkeit, die Arbeitsergebnisse zu speichern. So kann zu einem späteren Zeitpunkt die Beschäftigung an der gleichen Stelle wieder aufgenommen werden. Dies ist nicht nur für Lernende, sondern auch für Lehrkräfte interessant: Die Option, eigene Aufgabentexte und andere digitale Materialien einzufügen, abzuspeichern und den Lernenden zur Verfügung zu stellen, ermöglicht die Erstellung individualisierter Lernmodule. Hinweise zur Nutzung Hier finden Sie Hinweise und Vorschläge, wie Sie das Lernmodul im Unterricht einsetzen können. Screenshots geben Ihnen einen Eindruck davon. Kostenlose Client-Software Um dieses Lernmodul zu nutzen, benötigen Sie eine spezielle Client-Software. Diese Software können Sie nach dem Herunterladen der Datei "bildungsservice-digital.exe" (siehe Startseite dieser Unterrichtseinheit) kostenlos installieren. Bei der Installation wird ein neues Icon auf Ihrem Desktop angelegt: Bildungsservice digital. Durch Doppelklick auf dieses Icon erscheint eine Auswahl mehrerer Lernmodule. Zum Starten des entsprechenden Lernmoduls klicken Sie bitte auf die zugehörige Grafik. Internetzugang notwendig Die installierte Client-Software bietet Ihnen den Zugang zu verschiedenen Lernmodulen. Zum Starten eines Lernmoduls benötigt diese Software allerdings Daten aus dem Internet. Das Programm "kennt" die Adresse, Sie müssen nur sicherstellen, dass Ihr Computer Internetzugang hat. Vorteil dieser Methode ist einerseits, dass Sie immer auf die aktuellste Version des Lernmoduls zugreifen und andererseits, dass Sie automatisch Zugang zu weiteren Kursen haben, sobald diese von uns freigeschaltet werden. Überblick verschaffen Zunächst sollten Sie sich selbst mit dem Lernmodul vertraut machen. Dazu bietet Ihnen das Lernmodul eine integrierte Hilfe-Funktion. Ein so genannter "Schnelleinstieg" zeigt alle zur Verfügung stehenden Funktionen. Da alle Lernmaterialien und Aufgabenstellungen in dem Lernmodul integriert sind, wird Ihr Einstieg voraussichtlich nicht viel Zeit benötigen. Mögliche Individualisierung Bitte beachten Sie, dass Sie eigene Texte und Bilder einbinden können. Damit bietet Ihnen das Lernmodul die Möglichkeit, individuelle Aufgabenstellungen zu integrieren. Wenn Sie diese Option nutzen wollen, sollten Sie sich etwas intensiver mit der Funktion "Eigenes Medienelement einfügen" beschäftigen. Wichtig ist in diesem Zusammenhang auch die Möglichkeit, die individualisierte Version der Lernumgebung abzuspeichern. Über die Funktion "Öffnen" können Ihre Schülerinnen und Schülern dann Ihre spezielle Version der Lernumgebung nutzen. Gruppenbildung Im Rahmen des Lernmoduls werden schwerpunktmäßig folgende Themenbereiche behandelt: "Wie plane ich ein Schutzgebiet?", "Das Rhönschaf" und "Möglichkeiten, selbst aktiv zu werden". Dadurch ist die Bearbeitung des Lernmoduls sehr gut für die Aufteilung in Gruppen geeignet. Jede Gruppe könnte sich mit "ihrem" Thema beschäftigen und die im Lernmodul integrierten Aufgaben bearbeiten. Schließlich können sich alle Gruppen wieder zusammenfinden und ihre Arbeitsergebnisse präsentieren und diskutieren. Präsentieren oder Entdecken Natürlich sollten Sie Ihren Schülerinnen und Schülern zunächst die Möglichkeit geben, sich mit der Bedienung der Plattform vertraut zu machen. Es bietet sich an, anhand einer Beamer-Präsentation die wichtigsten Funktionen zu erläutern. Sie können aber auch Ihren Schülerinnen und Schülern den Auftrag geben, sich mit dem "Schnelleinstieg" zu beschäftigen und ihnen etwas Zeit geben, sich mit der Umgebung vertraut zu machen. Zahlreiche Hilfestellungen Bei der Erarbeitung neuer Inhalte tauchen immer wieder Begriffe auf, die für viele Schülerinnen und Schüler erklärungsbedürftig sind. Daher sind viele Begriffe mit Zusatzinformationen hinterlegt, die beim Anklicken erscheinen. Anhand der Lernmodul-Seite "Nationalparks und Biosphärenreservate - Infoblatt" können sich die Schülerinnen und Schüler mit der Bedeutung solcher Schutzgebiete beschäftigen. Auf zwei Übersichtskarten sind alle deutschen Nationalparks und Biosphärenreservate eingetragen. Anhand von Internetlinks können weitere Informationen darüber aufgerufen werden. Hohe Interaktivität Zu jedem der angebotenen Themenbereiche ("Wie plane ich ein Schutzgebiet?", "Das Rhönschaf" und "Möglichkeiten, selbst aktiv zu werden") gibt es kleine Online-Aktivitäten und zugehörige Aufgaben. Schülerinnen und Schüler, die Unterstützung benötigen, können sich in der Regel einen Tipp in der Lernumgebung aufrufen. Um Ihnen einen Eindruck von der Lernumgebung zu geben, werden nachfolgend exemplarisch drei Seiten vorgestellt. Beim Anklicken der Grafiken öffnet sich jeweils der zugehörige Screenshot der kompletten Seite des Lernmoduls. Planung eines Schutzgebiets Auf dieser Seite steht eine Karte eines fiktiven Schutzgebietes zur Verfügung, auf der ein Wanderweg, ein Mountainbikekurs und ein asphaltierter, behindertengerechter Zugang visualisiert werden. Die zugehörigen Elemente können interaktiv verschoben werden, wobei eine Reihe von Vorgaben (zum Beispiel, dass Wildtiere nicht gestört werden dürfen, dass eine Aussichtsplattform gut zugänglich sein soll...) zu berücksichtigen sind. Das Rhönschaf Das Rhönschaf ist ein Beispiel für eine Nutztierrasse, die in ihrem Verbreitungsgebiet das Landschaftsbild prägt. Durch das Weiden der Tiere haben Bäume und Sträucher keine Chance zu wachsen, die Landschaft bleibt offen. Auf dieser Seite des Lernmoduls sollen sich die Lernenden mit den Wechselwirkungen der Schafhaltung mit ihrer Umgebung beschäftigen. Welche wirtschaftlichen, ökologischen und sozialen Aspekte gibt es? Wo kann ich mich engagieren? Es gibt zahlreiche Möglichkeiten, selbst im Natur- und Artenschutz aktiv zu werden. Hier sollen sich die Schülerinnen und Schüler über ausgewählte Organisationen informieren. Ergänzt werden soll die Auflistung um örtliche Vereine oder sonstige Organisationen, bei denen sich Jugendliche engagieren können. Abspeichern Das bearbeitete Lernmodul kann jederzeit gespeichert werden. Dabei bietet es sich an, dass die Schülerinnen und Schüler eine für sie oder ihre Gruppe individuelle Datei-Bezeichnung auswählen, zum Beispiel "michael_schmidt_schutzgebiet.nebs". Dadurch wird einerseits gewährleistet, dass nicht durch versehentliches Vertauschen von Dateien Inhalte verloren gehen. Andererseits haben Sie dadurch die Möglichkeit, detaillierte Einsicht in die Arbeitsergebnisse zu erhalten. Präsentieren Insbesondere wenn das Lernmodul in Gruppen bearbeitet wurde, bietet es sich an, dass jede Gruppe ihre Arbeitsergebnisse vorstellt. Dazu kann entweder per Beamer die relevante Seite projiziert werden; die Lernumgebung bietet aber auch die Möglichkeit, den Bildschirminhalt auszudrucken. Die Lösung (siehe Abb. 5) müssen folgende Aspekte berücksichtigen: Schwarzstörche sind Waldbrüter und sehr scheu. Um die Schwarzstörche zu schützen, muss rund um die zwei Brutplätze jeweils ein 500-Meter-Umkreis zur absoluten Ruhezone erklärt werden. Die Besucherplattform sollte durch einen Weg von Süden erreichbar sein, um die absolute Ruhezone nicht zu kreuzen und um möglichst wenig Fläche zu versiegeln. Die Parkplätze sollten möglichst weit außerhalb geplant werden, gegebenenfalls in der Nähe der Straße, dafür kann der asphaltierte Weg länger sein. Der Wanderweg kann zunächst rechtsseitig entlang des Baches geführt werden, sollte danach abknicken und am westlichen Waldrand entlangführen (Schatten!). Eine Brückenlösung zum Überqueren des Baches wäre zwar denkbar, ist aber ein verhältnismäßig großer Eingriff. Die Heidefläche wird im südlichen Teil durchkreuzt, der Weg führt dann entlang der Ostseite des Waldes zurück zum Ausgangspunkt. Die Mountainbike-Strecke kann parallel zum Besucherweg geführt werden, sollte ihn aber nicht kreuzen. Der Parcours beginnt sinnvollerweise am linken, steileren Hang. Die Schülerinnen und Schüler entdecken, dass das Rhönschaf im Mittelpunkt eines Beziehungsgeflechts steht (Auswahl): Das Schaf liefert dem Menschen Nahrung (Fleisch), die zum Beispiel der Metzger beziehungsweise der Landwirt verarbeitet und verkauft, unter anderem auch an die örtliche Gastronomie. Das Schaf frisst auch junge Baumtriebe und hält damit die Landschaft offen (Beweidung), dadurch bleibt der Erlebniswert für Wanderer erhalten. Davon wiederum lebt die örtliche Gastronomie. Das Schaf liefert Mist, der zur Düngung der Felder genutzt wird, dazu Fleisch und Wolle. Die Produkte werden entweder direkt verarbeitet und dann vermarktet oder vom Landwirt weitergegeben. Wirtschaftliche Aspekte Das Schaf liefert Fleisch und Wolle, die verarbeitet und vermarktet werden. Ökologische Aspekte Die extensive Schafbeweidung erhält die typische Offenlandschaft des Mittelgebirges Rhön, ohne durch zu hohen Fraßdruck eine Schädigung der lokalen Vegetation zu verursachen. Durch die Offenhaltung der Landschaft können sich zahlreiche Tiere und Pflanzen dort ansiedeln beziehungsweise erhalten, für die eine offene Feldflur notwendig ist. Soziale Aspekte Die Schafhaltung ermöglicht Arbeitsplätze und Wirtschaftsbetriebe, die direkt vom Haustier abhängen: Schäfer, Landwirte, Metzger, Gastwirte, Tierärzte. Indirekt ist auch der Fremdenverkehr betroffen (Gastronomie, Dienstleister im Tourismus allgemein). Was können die Schülerinnen und Schüler mit ihrem neu erworbenen Wissen anfangen? Insbesondere die Biosphärenreservate in Deutschland bieten eine Fülle von Angeboten zur Mitarbeit für Jugendliche aller Altersstufen. Sie können hier zum Beispiel bei der Gestaltung von Lehrpfaden mitwirken, am Junior-Ranger-Programm teilnehmen oder ein Praktikum ableisten. Weitere Informationen finden Sie auf den Internetseiten der einzelnen Biosphärenreservate. Schauen Sie bei der Dachorganisation EUROPARC vorbei, dort finden Sie die einzelnen Internetlinks. Biosphärenreservate und Nationalparks Über diesen Link gelangen Sie zurück zur Startseite der Unterrichtseinheit. Der Einstieg erfolgt über aktuelle Medienberichte zu Klimakonferenzen und ein Video, das das Zwei-Grad-Ziel erläutert. Ein Arbeitsblatt aktiviert das Vorwissen der Schülerinnen und Schüler zum Ökosystem Wald und beleuchtet die Bedeutung des Waldes für die Kohlenstoff-Speicherung. Der (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1097849) beinhaltet die Formulierung der Leitfrage der Unterrichtseinheit und der Arbeitsaufträge für das Gruppenpuzzle und die Sicherung, in der ein Brief formuliert werden soll. Thema Das Ökosystem Wald und seine Funktion als Kohlenstoff-Speicher Autorin Anne Thiel-Klein Fach Biologie Zielgruppe Sekundarstufe I Zeitraum 2 Schulstunden Technische Voraussetzungen Computer mit Internetzugang Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1097849) Einstieg Ein Video der ZDF-Kindersendung logo! und aktuelle Medienberichte auf tagesschau.de verdeutlichten die Wichtigkeit des Themas und sollen die Schülerinnen und Schüler für die Erarbeitung motivieren. Erarbeitung I Das Arbeitsblatt (siehe Download-Bereich) aktiviert das Vorwissen der Schülerinnen und Schüler zum Ökosystem Wald und betont die Bedeutung des Waldes als Kohlenstoff-Speicher. Die Bearbeitung erfolgt in Einzel-oder Partnerarbeit oder gemeinsam im Unterrichtsgespräch. Mitunter sind Hilfsmaterialien bereitzustellen. Erarbeitung II Als Vorentlastung erläutert die Lehrkraft das Portal Klimafolgenonline.com und den Arbeitsauftrag. Die Arbeit sollte in heterogenen Gruppen von bis zu sechs Schülerinnen und Schülern erfolgen. Die Lehrkraft steuert Zeitmanagement und Phasenwechsel. Sicherung Innerhalb der Stammgruppen werden Kleingruppen gebildet, die sich auf einen Adressaten einigen und entsprechend einen Brief formulieren. Die Ergebnisse werden entweder exemplarisch vorgelesen oder von der Lehrkraft eingesammelt. Auf Basis des Portals KlimafolgenOnline.com werden im PIKee-Projekt, dem aktuellen Umweltbildungsprojekt am Potsdam-Institut für Klimafolgenforschung, interdisziplinäre Unterrichtseinheiten und Handreichungen für Lehrkräfte entwickelt. Dadurch können Schülerinnen, Schüler und Lehrkräfte die mögliche Entwicklung des Klimas in Deutschland anhand selbst gewählter Szenarien nachvollziehen. Das Portal liefert bis auf Landkreisebene aufgelöste Daten für verschiedene Sektoren wie Klima, Landwirtschaft, Forstwirtschaft und Energie. Mehr Informationen finden Sie hier . Die Schülerinnen und Schüler nutzen den Computer zur Darstellung und Auswertung von Messreihen oder zur Simulation biologischer Abläufe. diskutieren Handlungsoptionen im Sinne der Nachhaltigkeit. bestimmen einheimische Pflanzen und erläutern ihre Umweltansprüche. Die Schülerinnen und Schüler nutzen Computer mit Internetzugang zur Bearbeitung einer konkreten Aufgabenstellung. nutzen das Internet zur individuellen Recherche. verfassen einen formalen Brief mit korrekter Formatierung und adressatengerechter Sprache. Die Schülerinnen und Schüler arbeiten in verschiedenen Gruppen mit variierender Gruppengröße von zwei bis sechs Lernenden zusammen. unterstützen sich gegenseitig beim Prozess des Erkenntnisgewinns. diskutieren unterschiedliche Ansichten und halten unvereinbare Meinungen aus. versuchen sich auf einen gemeinsamen Standpunkt zu einigen. Mit steigender Population wächst auch der Fleischkonsum, der langfristig nicht mehr gedeckt werden kann. Die Haltung großer landwirtschaftlicher Nutztiere geht zudem mit einer Belastung der Umwelt einher. Um diesem Problem entgegenzuwirken, schlagen Wissenschaftlerinnen und Wissenschaftler vor, stattdessen Insekten zu konsumieren. Die Lernenden planen ein Menü für die Schulkantine, das sowohl Insektengerichte als auch bekannte Gerichte enthalten soll. Sie wenden dabei überzeugende Kommunikationsmethoden und Wissen über natürliche Ressourcen an, um andere von der Alternative, Insekten zu essen, überzeugen zu können. Thema Esst Insekten! Anbieter ENGAGE Fach Fächerverbindend: Biologie, Chemie, Politik/SoWi, Deutsch Zielgruppe Klasse 8-10 Zeitraum 1-2 Schulstunden Technische Voraussetzungen Computer mit Beamer Tabellarischer Verlaufsplan Verlaufsplan "Esst Insekten!" Wissenschaftliches Arbeiten Wissenschaftliches Vokabular, Mengen, Einheiten, Symbole und Fachausdrücke: Anwendung wissenschaftlichen Vokabulars, wissenschaftlicher Terminologie und Definitionen. Chemie Erde und Atmosphäre: Die Erde als Quelle begrenzter Ressourcen; die Produktion von Kohlendioxid durch menschliche Aktivität. Chemie Kohlendioxid und Methan als Treibhausgase: Evaluation zusätzlicher durch den Menschen verursachte Gründe für den Klimawandel; Wasservorkommen auf der Erde. Die Schülerinnen und Schüler lernen, ihre Meinung mithilfe von Beweisen überzeugend darzustellen. wenden wissenschaftlichen Erkenntnisse über die natürlichen Ressourcen der Erde an. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Ambrosia oder Ambrosia artemisiifolia ist eine invasive Pflanze, die sich in ganz Europa ausbreitet. Aufgrund von Krankheiten durch ihre allergenen Pollen und dem Konkurrenzkampf mit Nutzpflanzen, entstehen für Europa jedes Jahr Kosten in Höhe von ungefähr 4,5 Milliarden Euro. Die Einführung nicht-heimischer Käfer könnte hierfür die Lösung sein. Bei dieser Unterrichtseinheit bewerten die Schülerinnen und Schüler Vor- und Nachteile der Anwendung biologischer Schädlingsbekämpfung, um die Invasion dieser standortfremden Pflanze einzudämmen. Thema Ambrosia-Invasion Anbieter ENGAGE Fach Biologie Zielgruppe Sekundarstufe I Zeitraum 1-2 Schulstunden Technische Voraussetzungen Computer mit Internetzugang, Beamer Planung Verlaufsplan: "Ambrosia-Invasion" Biologie Beziehungen im Ökosystem: Gegenseitige Beeinflussung von Organismen und Umwelt; Darstellung der Bedeutung von Wechselbeziehung und Wettbewerb in einer Pflanzengemeinschaft. Wissenschaftliches Arbeiten Entwicklung wissenschaftlichen Denkens: Erklärung alltäglicher und technologischer Anwendung von Wissenschaft; Evaluation von persönlichen, gesellschaftlichen, wirtschaftlichen und umweltbedingten Auswirkungen; Entscheidungen auf Grundlage der Evaluation der Beweise und Argumente treffen. Analyse und Evaluation: Interpretation von Beobachtungen und Daten, einschließlich Identifizierung von Mustern und Anwendung von Beobachtungen, um Rückschlüsse zu ziehen und Konsequenzen aufzuzeigen. Die Schülerinnen und Schüler, lernen die gegenseitige Beeinflussung von Organismen in Bezug auf das Ökosystem kennen. bewerten die Lösung für ein Problem. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Europäer lieben Schokolade - sie verschlingen mehr als die Hälfte des weltweiten Bedarfs! Die schlechte Nachricht ist, dass mehr Kakao gegessen wird, als produziert werden kann. Somit könnte Schokolade bald ein seltenes und kostbares Gut werden, da die Bauern Probleme haben, den Bedarf zu decken. Die Schülerinnen und Schüler nutzen ihr vorhandenes Wissen über Bestäubung, um über die Gründe des Rückgangs der Kakaoerträge auf einer Plantage zu diskutieren. In einem Rollenspiel, in dem ein Treffen zur Aufbringung finanzieller Mittel nachgestellt wird, lernen sie anschließend, warum wissenschaftliche Forschung so teuer ist. Thema Schokolade adé Anbieter ENGAGE Fach Biologie Zielgruppe Sekundarstufe I Zeitraum Eine Schulstunde Technische Voraussetzungen Computer mit Internetzugang Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1079478) Biologie Beziehungen im Ökosystem: Die Bedeutung der Pflanzenreproduktion durch Insektenbestäubung für die Ernährungssicherheit der Menschen Chemie Erde und Atmosphäre: Die Erde als Quelle begrenzter Ressourcen; die Produktion von Kohlendioxid durch menschliche Aktivität Wissenschaftliches Arbeiten Gesprochene Sprache: Klare und präzise Artikulation wissenschaftlicher Konzepte Die Schülerinnen und Schüler erkennen, warum die Bestäubung durch Insekten so wichtig für unsere Lebensmittelproduktion ist. verstehen, warum wissenschaftliche Forschung so teuer ist. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Die fast 1.400 Kilometer lange ehemalige innerdeutsche Grenze steht in der didaktischen Aufarbeitung der deutschen Teilung bislang eher im Schatten der Berliner Mauer. Ihre Auswirkungen auf Tiere und Pflanzen bieten aber einen guten Anknüpfungspunkt, um bereits Lernende in der Grundschule an das Thema heranzuführen. Der fächerübergreifende Ansatz dieser Unterrichtseinheit verknüpft Geschichte mit Ökologie und verdeutlicht die Folgen politischen Handelns für Mensch und Umwelt. Diese lassen sich mit einem Besuch des Grenzlandmuseums Eichsfeld am Grünen Band auch direkt erfahrbar machen. Die Schülerinnen und Schüler sollen von der historischen Teilung Deutschlands in zwei Staaten erfahren. Wissen über die geografische Lage der deutschen Bundesländer erwerben (Grundschule) beziehungsweise wiederholen (Sekundarstufe 1). den ehemaligen Grenzverlauf und die Besonderheit der ehemaligen innerdeutschen Grenze erkennen. die Auswirkungen des Grenzstreifens auf Menschen, Tiere und Pflanzen verstehen. natürliche Lebensräume, Pflanzen und Tiere im Grünen Band kennenlernen. ihr Wissen zur ehemaligen deutschen Teilung und zum Grünen Band mit dem Besuch des außerschulischen Lernortes Grenzlandmuseum Eichsfeld vertiefen. Die Schülerinnen und Schüler sollen das Internet und Bücher als Informationsträger anwenden. vorgegebene Internetseiten online und offline aufrufen und Sachinformationen daraus entnehmen. die Bedeutung des Internets als "Erinnerungsort" erkennen. sich in der Erstellung von PowerPoint-Präsentationen üben (Sekundarstufe 1). eine historische Textquelle analysieren (Sekundarstufe 1). interaktiv einen Lückentext bearbeiten. Die Schülerinnen und Schüler sollen Regelungen für die Nutzung der Computer-Arbeitsplätze treffen und einhalten. einander bei der Arbeit helfen. gemeinsam ein Plakat gestalten. in einem Rollenspiel lernen, sich sachlich mit Gegenpositionen auseinanderzusetzen (Sekundarstufe 1). Thema Das Grüne Band: Natürliches Mahnmal der Teilung Deutschlands Autor Birgit Pieplow Fächer Fächerübergreifend: Sachunterricht, Deutsch (Grundschule); Politik/Sowi, Geschichte, Biologie, Geographie (Sekundarstufe 1) Zielgruppe Klasse 4, Sekundarstufe 1 Zeitraum 6 bis 8 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetanschluss oder offline zur Verfügung gestellte Internetseiten, Sound-Karte, RealPlayer oder Windows Media Player, Download eines Google Earth-Web-Plugins (kostenfrei), Microsoft PowerPoint oder OpenOffice, Beamer, Lautsprecherboxen, (Drucker) Erforderliche Vorkenntnisse Allgemeiner Umgang mit dem Computer; vorgegebene Internetseiten online und offline aufrufen und darin navigieren; Bedienung der Zoom-Funktion in Google Earth Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:933634) Modularer Aufbau Die Unterrichtseinheit ist modular aufgebaut und eignet sich für ein fächerübergreifendes Projekt. Die Materialien sind so konzipiert, dass sie zur Vorbereitung eines Besuchs des außerschulischen Lernorts Grenzlandmuseum Eichsfeld, aber auch unabhängig davon genutzt werden können. Ein Besuch des Grenzlandmuseums Eichsfeld bietet sich an, um das im Unterricht erworbene Wissen zu vertiefen und durch praktische Anschauung der Grenzanlagen sowie der im ehemaligen Grenzstreifen entstandenen Biotope erlebbar zu machen. Teamarbeit erwünscht Die Schülerinnen und Schüler arbeiten überwiegend in Teams zusammen. Eine Vielzahl multimedialer und interaktiver Angebote im Internet kann in den Unterricht eingebunden werden, vom virtuellen Rundflug auf Google Earth bis zu Zeitzeugenberichten. Die Internetseiten können den Lernenden online, teilweise auch offline, zur Verfügung gestellt werden. Arbeitsergebnisse werden auf Arbeitsblättern, aber auch Plakaten oder Stellwänden, von Schülerinnen und Schülern der Sekundarstufe 1 auch in einer kleinen PowerPoint-Präsentation vorgestellt. Ein Rollenspiel für die Sekundarstufe 1 ermöglicht eine intensive Auseinandersetzung mit Argumenten konkurrierender Interessensgruppen am Grünen Band und fördert die kommunikativen Kompetenzen sowie die Urteilsfähigkeit der Schülerinnen und Schüler. Folgende Vorbereitungen sollten Sie vor Start der Unterrichtseinheit treffen: Bereitstellen eines Lehrkraft-Computers mit Soundkarte, RealPlayer oder Windows Media Player, Microsoft Powerpoint sowie optimalerweise mehrerer Computer mit Internetanschluss für die Schülerinnen und Schüler; Beamer, Lautsprecherboxen, gegebenenfalls Drucker. Download von Google Earth sowie eines Plugins für den virtuellen Flug entlang des Grünen Bandes (kostenlos). Auswahl von Bildmaterial zur Einführung in das Thema. Bereitstellen von Atlanten (vor 1990) oder alten Karten der Bundesrepublik Deutschland (BRD) und der Deutschen Demokratischen Republik (DDR). Aufziehen einer Abbildung der DDR-Grenzsperranlagen auf ein Plakat. Beschriften von Rollenkarten (nur für die Sekundarstufe 1). Es ist zwar nicht kurz vor zwölf, dennoch müssen wir uns intensiv damit auseinandersetzen, welche Energien außer den fossilen als Alternativen für eine sichere Zukunft zur Verfügung stehen. Bei diesen Überlegungen darf natürlich auch nicht die globale Klimaproblematik außer Acht gelassen werden. Ein Lösungsvorschlag ist Bioethanol. Bereits heute ist in Deutschland gesetzlich geregelt, dass dieser aus Pflanzen hergestellte Kraftstoff dem herkömmlichen Benzin beigemischt werden muss. Doch wer ist eigentlich auf die Idee gekommen, ausgerechnet Alkohol als Kraftstoff zu verwenden? Woraus und wie erfolgt die Herstellung in Deutschland? Ist das Ganze ökonomisch sowie ökologisch tragbar? Welches Potenzial steckt in Bioethanol? In dieser Unterrichtsreihe erarbeiten die Schülerinnen und Schüler in einem Lernzirkel viel Interessantes rund um das Thema Bioethanol. Die Schülerinnen und Schüler sollen wichtige Stationen in der Geschichte des Bioethanols in einem Zeitstrahl einordnen. die Herstellung von Bioethanol erklären. Haupt- und Nebenprodukte der Bioethanolproduktion nennen. experimentelle Untersuchungen zur Fermentation durchführen. in selbst erhobenen oder recherchierten Daten Trends, Strukturen und Beziehungen erklären und geeignete Schlussfolgerungen ziehen. Die Schülerinnen und Schüler sollen unterschiedliche Textquellen für die Recherchen zum Thema Bioethanol nutzen. fachlich korrekt und folgerichtig argumentieren. Die Schülerinnen und Schüler sollen die Arbeit im Team strukturieren und planen. Thema Bioethanol - Herstellung und Anwendungen Autor Rolf Goldstein Fächer Biologie, Chemie, Geographie, Politik/SoWi Zielgruppe Klasse 9 oder 10 Schulformen Hauptschule, Realschule, Gymnasium Zeitraum 4 Schulstunden Technische Voraussetzungen ein Computer mit Internetzugang pro Kleingruppe Relevanz des Themas im Unterricht Nachhaltiges Handeln wird in Bezug auf die uns zur Verfügung stehenden Energieressourcen immer wichtiger. Fossile Lagerstätten von Energieträgern sind nicht unbegrenzt vorhanden, zudem erwächst aus der Verbrennung fossiler Brennstoffe eine zunehmende Klimaproblematik. Daher bedarf es neuer Wege, Kraftstoffe bereitzustellen, und das möglichst umweltfreundlich. Eine Möglichkeit kann hier das Bioethanol sein. Was in den USA und Brasilien begonnen hat, wird seit Beginn des 21. Jahrhunderts im großen Stil betrieben: die Herstellung des klimaneutralen Kraftstoffs aus nachwachsenden Rohstoffen wie zum Beispiel Getreide und Zuckerrüben. Bei der Herstellung von Bioethanol entstehen in großem Umfang zahlreiche Nebenprodukte (auch Kuppel- oder Koppelprodukte genannt), wie Futter- und Düngemittel. Wirtschaftlich und politisch aktuell und lebensnah Mehrere wissenschaftliche Arbeitsgruppen arbeiten zudem an Optimierungsmöglichkeiten im Herstellungsprozess sowie an der Nutzung anderer Ausgangsstoffe, wie zum Beispiel Lebensmittelabfälle. Dies zeigt, dass "Biosprit" in den Augen vieler Wissenschaftler eine Zukunft hat. Auch politisch ist das Thema Bioethanol aktuell, da zum Beispiel die obligatorische Beimischung zu fossilem Ottokraftstoff gesetzlich geregelt ist. Die wirtschaftliche und politische Aktualität wie auch die Verknüpfung zum Alltag der Schülerinnen und Schüler (die eigene Mobilität) können die Motivation steigern. Lehrplanbezug und Voraussetzungen Die Einordnung des Themas in die Lehrpläne der verschiedenen Schulformen wird dargestellt. Außerdem erhalten Sie wertvolle Tipps zur technischen Umsetzung. Hinweise zum Unterrichtsverlauf Die Unterrichtseinheit ist in Form eines Lernzirkels aufgebaut, den die Schülerinnen und Schüler in Kleingruppen durchlaufen. Die Schülerinnen und Schüler sollen gemäß der Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss in der Lage sein unterschiedliche Internetquellen für ihre Recherchen zu nutzen und themenbezogene und aussagekräftige Informationen für eine Diskussion auszuwählen. (K1/K2) die Ergebnisse ihrer Internetrecherche im Rahmen einer fiktiven Umweltkonferenz zu präsentieren. (K7) im Rahmen einer Diskussion fachlich korrekt und folgerichtig zu argumentieren. (K8) ihre Arbeit als Team zu planen, zu strukturieren, zu reflektieren und zu präsentieren. (K10) erneuerbare Energien aus unterschiedlichen Perspektiven zu diskutieren und zu bewerten. (B5) Thema Gibt es "die" erneuerbare Energie? - Diskussion im Rahmen einer fiktiven UN-Umweltkonferenz Autor Kristina Gojkovic, Thorsten Möller, überarbeitet von Rolf Goldstein Fach Biologie/Chemie, fächerübergreifend Zielgruppe Klasse 9-10, Realschule/Gymnasium Zeitraum 6 Stunden Technische Voraussetzungen Computer mit Internetzugang in ausreichender Anzahl (idealerweise für Partnerarbeit) Geht es nicht auch ohne Energie? Energie geht alle etwas an - nicht zuletzt aus dem Grund, da jede und jeder im Alltag darauf angewiesen ist. Im 21. Jahrhundert funktioniert nahezu nichts ohne den "Stoff" aus der Steckdose oder dem Tiger im Tank. Das Problem besteht lediglich darin, dass die fossilen Energieträger, wie beispielsweise Erdöl und Braunkohle mittelfristig zu Neige gehen werden. Zudem sorgen diese für nicht unerhebliche CO2-Emissionen, welche das Erdklima nachweislich beeinflussen. Sicherlich findet man hier und da technologische Optimierungen. So werden Automotoren entwickelt, die bei geringem Treibstoffverbrauch und CO2-Ausstoß sehr effizient arbeiten. Auch wurde die Glühbirne bereits verdrängt, und neueste, energiesparende LED-Technik setzt sich auf dem Markt durch. Doch irgendwann ist Schluss mit den Energieeinsparungen, spätestens dann, wenn im Kohlekraftwerk keine Kohle mehr bereitsteht! Auf der Suche nach Alternativen Erneuerbare und CO2-neutrale Energien sind in Zukunft mehr als gefragt. Doch welche Alternativen gibt es überhaupt? Wie ist der derzeitige Entwicklungsstand? Wo sind die Vor- und Nachteile? Der hier vorgestellte BlogQuest lässt sich gut in den Regelunterricht der Klasse 9 oder 10 einbauen. Es bieten sich hier viele Möglichkeiten (siehe dazu auch Einordnung in den Lehrplan). Der BlogQuest kann auch im Rahmen eines fächerübergreifenden Projekt- oder Methodentages zum Einsatz kommen. Einsatz des BlogQuest im Unterricht Die Unterrichtseinheit richtet sich an Schülerinnen und Schülern der Realschule und des Gymnasiums. Die Arbeit mit dem BlogQuest gestaltet sich für die Lernenden recht einfach, da sie sich von Seite zu Seite vorarbeiten. Lehrplanbezug und Voraussetzungen Die Einordnung des WebQuests in die Lehrpläne von Realschule und Gymnasium sowie in die Typologie des WebQuest-Erfinders Bernie Dodge wird dargestellt. Hinweise zum Unterrichtsverlauf Zeiteinteilung und Ablauf der Unterrichtseinheit werden skizziert. Selbst gesteuertes, problemlösendes und (quellen-)kritisches Arbeiten stehen dabei im Mittelpunkt. Quellen für die Recherche Die aufgelisteten Internetseiten dienen den Arbeitsgruppen als Informationsquellen für den BlogQuest. Der weltweite Wasserverbrauch steigt rasant an. Das UN-Millenniumsziel, bis 2015 eine Halbierung des Anteils der Menschen ohne dauerhaft gesicherten Zugang zu hygienisch einwandfreiem Trinkwasser zu erreichen, ist in Gefahr. Schon heute ist Trinkwasser knapp, schon heute sind eine Milliarde Menschen auf Grundwasserreserven angewiesen, Tendenz steigend. Bei weiterer Klimaerwärmung drohen die Gletscher zu schmelzen, die für viele Menschen und Regionen eine Trinkwasserreserve darstellen. Die zunehmende Wasserverschmutzung durch uns stellt eine zusätzliche Gefahr dar. Heute schon zählt der WWF in einem vor Kurzem veröffentlichten Bericht mehr als 50 bewaffnete Konflikte, ausgelöst durch den Kampf um Wasser. Expertinnen und Experten gehen davon aus, dass zunehmend Kriege um Wasser beziehungsweise Trinkwasserreserven geführt werden. Das "blaue Gold" wird immer mehr zu einem Objekt der Begierde. Die Schülerinnen und Schüler sollen erkennen, dass die Erde als Ganzes ein geschlossener Wasserkreislauf ist, die Ressource Wasser aber ungleich verteilt und ungleich genutzt/verschwendet wird. den Begriff des "virtuellen Wassers" kennen und anwenden können. die größten Wasserverschwender in Form des Wasser-Fußabdrucks begründet benennen können. lernen, dass nur "nachhaltige" Wassernutzung zur Bekämpfung des Problems der (zukünftigen) Trinkwasserknappheit führt. anhand des Beispiels der baden-württembergischen Stadt Knittlingen eine mögliche Form der Wassernutzung kennenlernen und das hier vorgestellte Konzept erklären können. die Vor- und Nachteile des Landgewinnungsprojektes nahe der Stadt Turbajal benennen und dessen Nutzen kritisch reflektieren können. die Aussage, dass das Wassersparen in Deutschland nichts bringt außer Rohrverstopfungen, erörtern können. Thema Globaler Wasserverbrauch: Der Kampf ums "blaue Gold" Autorin Sandra Schmidtpott Fächer Biologie, Chemie, Geographie Zielgruppe Klasse 9 bis 10 Zeitraum 4 bis 5 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetanschluss in ausreichender Zahl, Beamer oder interaktives Whiteboard Die Thematik "Wasser und Wasserverbrauch" auf nationaler und globaler Ebene wird in dieser Unterrichtseinheit dargestellt. Sie umfasst vier bis fünf Unterrichtsstunden und soll anhand dreier Arbeitsblätter erarbeitet werden. Die Sequenz kann an fast jeder Stelle in der Abfolge der curricular vorgesehenen Themen für die Jahrgangsstufen 9 und 10 durchgeführt werden. Besondere Vorkenntnisse sind nicht erforderlich, da die Schülerinnen und Schüler bereits mit den meisten Begriffen rund ums Wasser vertraut sind - auch aufgrund der Vorarbeiten in anderen Fächern. Die Bearbeitung der Arbeitsblätter kann in Einzel- oder Partnerarbeit erfolgen. Ablauf der Unterrichtseinheit "Globaler Wasserverbrauch" Die Lernenden setzen sich intensiv mit den Themen Wasserverbrauch, Wasserknappheit und Wasserverschwendung im nationalen und globalen Kontext auseinander. Diese Unterrichtseinheit entstand im Rahmen von MS Wissenschaft 2012 - Zukunftsprojekt ERDE. Im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) schickt Wissenschaft im Dialog (WiD) das schwimmende Science Center auf Tour durch Deutschland und Österreich. Die interaktive Ausstellung an Bord des Schiffes steht im Wissenschaftsjahr 2012 ganz im Zeichen der Nachhaltigkeitsforschung. Die Ausstellung zum Ausprobieren, Mitmachen und Mitforschen wendet sich an Besucherinnen und Besucher ab zehn Jahren. Unter www.ms-wissenschaft.de steht der Tourplan zur Verfügung und Schulklassen und größere Gruppen können Termine für einen Besuch auf dem Ausstellungsschiff buchen. Die Schülerinnen und Schüler sollen für die Bedeutung sauberen Wassers sensibilisiert werden. den Stellenwert der Filtration von Wasser für die menschliche Zivilisation einschätzen lernen. die Verschmutzung von Wasser untersuchen. verschiedene Techniken zur Filtrierung von Wasser sowie deren jeweilige Wirksamkeit kennenlernen. die Details moderner Techniken (Querstromfilterung, Wafer-Membran) verstehen lernen (ab Klasse 7). Thema Das Wasser - Filtration und Reinhaltung Autor Martin Wetz Fach Biologie, Naturwissenschaften, fächerverbindender Unterricht, Sachkunde Zielgruppe Klassen 3 bis 9 Zeitraum 2-4 Unterrichtsstunden Wasser ist, zumal bei jüngeren Schülerinnen und Schülern, ein dankbares Unterrichtsthema, das sich ohne Weiteres an alltäglichen Erfahrungen anknüpfen lässt. Diese Erfahrungen lassen sich aber auch recht leicht mit dem Stichwort "sauberes Wasser" problematisieren. Im Zentrum dieser Unterrichtseinheit steht das technische Problem, Wasser durch Filter zu reinigen. Damit lässt sie sich in den naturwissenschaftlichen Unterricht in der Sekundarstufe I - in reduzierter Form auch im Sachunterricht im Primarbereich - einbauen. Hat man Zeit und organisatorische Möglichkeiten, lassen sich insbesondere im Technik-Unterricht eigene Filtersysteme erproben. Darüber hinaus kann man sich dem Thema fächerübergreifend kulturgeschichtlich nähern und betrachten, wie die Entwicklung technischer Möglichkeiten Hand in Hand ging mit der Entwicklung der Zivilisation. Bedeutung sauberen Wassers Die Bedeutung von Wasser für die Menschheit und das Erkennen nicht sichtbarer Inhaltstoffe im Wasser führt die Schülerinnen und Schüler in die Thematik ein. Wie wird das Wasser sauber? In Übungen sammeln die Schülerinnen und Schüler erste Erfahrungen mit der Wasserfiltration. Was können Filter leisten? Der Aufbau eines starken Filters sowie der Blick auf moderne Filtertechniken und weiterführende Aspekte können die Unterrichtseinheit abschließen. Das interaktive Lernmodul zur Artenvielfalt soll es Schülerinnen und Schülern ermöglichen, mithilfe einer innovativen Lernform Zugang zum Thema Biologische Vielfalt zu finden. Anhand von naturwissenschaftlichen Frage- und Problemstellungen zeigt das Modul auf, welchen Nutzen die Natur in ihrer Vielfalt für den Menschen hat und was er von der Natur lernen kann. Das Lernmodul weckt zudem Verständnis dafür, warum diese Vielfalt geschützt werden muss und wie sie geschützt werden kann. Fachkompetenz Die Schülerinnen und Schüler sollen sogenannte "Hotspots" der Artenvielfalt auf einer Weltkarte identifizieren können. geographische und natürliche Gemeinsamkeiten dieser Länder beschreiben können. die gesellschaftlichen Problemkreise und deren Verflechtung dieser Länder erkennen und verstehen: Hohe Bevölkerungszahl, Armut, Ausbeutung der Ressourcen (Umweltzerstörung). Probleme nicht-nachhaltiger Entwicklung verstehen. wesentliche Gründe für das heutige Artensterben kennenlernen. Informationen zur Thematik aus einem Text entnehmen und wesentliche Aussagen verstehen können. Kausalkategorien zu den unterschiedlichen Texten identifizieren und zuordnen können. Argumente für die Erhaltung der Artenvielfalt kennenlernen. differente Standpunkte für die Erhaltung der Artenvielfalt und deren Hintergründe verstehen. einzelne Gründe/Argumente bewerten und gewichten und in diesem Zusammenhang Kontroversen demokratisch austragen. Thema Artenvielfalt weltweit Autorin Sabine Preußer Fächer Biologie, Geographie, Politik, Ethik, Religion Zielgruppe 8. bis 10. Schuljahr Zeitraum variabel, je nach Vertiefungsgrad Technische Voraussetzungen Betriebssystem Windows ab Version 98, Internet-Explorer ab Version 6, Flash-Player, Installation der kostenlosen Software "artenvielfalt-weltweit" (siehe "Download"), Beamer für die Einführung Selbstgesteuertes Lernen Die Aufbereitung des Lernstoffes in Form einer Lernsoftware bietet den Lernenden genau die Handlungsfreiheiten, die zur Gestaltung individueller selbstgesteuerter Lernprozesse benötigt werden. Durch die kursorientierte Aufbereitung des Lernstoffes erhalten die Lernenden die Möglichkeit, sich dem Thema kleinschrittig zu nähern. Gleichzeitig ermöglicht die Lernsoftware durch den offenen und freien Ansatz auch das selbstständige Erarbeiten der wichtigsten Themenkreise. Eine Erweiterung der Aufgabenstellungen ist dadurch jederzeit gegeben. Einstieg und individuelle Vertiefung Die Lernsoftware stellt einen motivierenden ersten Einstieg in die Thematik dar und kann an vielen Stellen beliebig vertieft und erweitert werden. Zusätzliche Lernmöglichkeiten zu dem Thema bieten die jeweiligen Verlinkungen und sind, je nach Zusammensetzung der Lerngruppe, auch durch weiterführende Arbeitsaufträge möglich. Die Lehrkraft kann hier selbst entscheiden, wie umfangreich der Lernstoff für die Schülerinnen und Schüler werden soll beziehungsweise kann den Schwierigkeitsgrad differenzieren. Unterrichtsverlauf "Artenvielfalt weltweit" Hier finden Sie Hinweise und Vorschläge, wie Sie das Lernmodul im Unterricht einsetzen können. Screenshots geben Ihnen einen Eindruck von dem Lernmodul. Biopiraterie Im Zusammenhang mit der Diskussion über den Wert der Artenvielfalt kann auch das Thema Biopiraterie behandelt werden. Waldbrände kommen in vielen Regionen der Welt als natürlicher Teil eines Kreislaufes vor, durch den die Voraussetzungen für die Nährstoffversorgung der folgenden Baumgenerationen geschaffen werden. Ihre Auswirkungen können jedoch auch verheerend sein. Anhand von Satellitenbildern können die Schülerinnen und Schüler mithilfe eines interaktiven Computer-Moduls die Folgen nachvollziehen und sichtbar machen. Materialien und Anwendungen stammen aus dem Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Unterrichtseinheit gibt es mit einem eigenen Computermodul auch für den Geographieunterricht: Feuerspuren im Satellitenbild - Eingriffe in Landschaften . Die Schülerinnen und Schüler sollen Satellitenbilder interpretieren und zur Analyse von Stabilität und Dynamik von Ökosystemen nutzen können. das elektromagnetische Spektrum und unterschiedliche Wellenlängenbereiche beschreiben können. Reflexionseigenschaften von Pflanzen vergleichen und zuordnen können. Vegetationsindizes für die Veränderungsanalyse anwenden können. Thema Feuerspuren im Satellitenbild Autor Dr. Kerstin Voß, Dr. Roland Goetzke, Henryk Hodam Fach Biologie Zielgruppe Jahrgangsstufe 12 Zeitraum 3 Stunden Technische Voraussetzungen Adobe Flash-Player oder Apple Quick Time Player (kostenloser Download) Die vorliegende Unterrichtseinheit hat zum Ziel, den Schülerinnen und Schülern den Themenkomplex "Stabilität und Dynamik von Ökosystemen" näher zu bringen. Die Lernenden sollen am Ende diese Sequenz in der Lage sein, Zusammenhänge zwischen dem elektromagnetischem Spektrum, der Aufnahme und der Entstehung von Satellitenbildern sowie der Erfassung von Veränderungen innerhalb von Ökosystemen aufzuzeigen und zu verstehen. Anhand von zu verschiedenen Zeitpunkten aufgenommenen Satellitenbildern können die Jugendlichen Veränderungen der entsprechenden Region in Griechenland feststellen. Dabei lernen sie, wie die Pflanzen das Licht für die Photosynthese verwenden und welche Wellenlängenbereiche von Pflanzen reflektiert werden. Als wissenschaftliche Grundlage dient dabei die Einführung in die Methodik der Fernerkundung. Aufbau des Computermoduls Interaktive Aufgaben führen die Lernenden durch verschiedene thematische Bereiche, Quizfragen dienen zur Sicherung der Ergebnisse. Inhalte des Computermoduls Die Lernenden analysieren anhand von Satellitenbildern die Situation einer Region vor und nach den Waldbränden. Dr. Roland Goetzke ist promovierter Geograph und arbeitet als wissenschaftlicher Mitarbeiter am Geographischen Institut der Universität Bonn im Projekt "Fernerkundung in Schulen". Seine Schwerpunkte liegen in den Bereichen GIS und Fernerkundung. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Die Schülerinnen und Schüler sollen eine Auswahl der in der Hecke lebenden Tiere angeben. die Art der Nutzung einer Hecke durch die verschiedenen Tiere nennen. den Rückgang unterschiedlicher Tierarten auf unseren Feldern begründen. eigene Beobachtungen (aus dem Spiel) formulieren können. Hypothesen (über den Spielausgang) aufstellen können. durch eine spielerische Auseinandersetzung für reale Vorgänge sensibilisiert werden. Die Schülerinnen und Schüler sollen eigene Beobachtungen beschreiben können und das Formulieren ihrer Erkenntnisse üben. die animierte Entwicklung einer Hasen- und Fuchspopulation grafisch adäquat darstellen können. die Bedeutung des biologischen Gleichgewichtes wiedergeben können. die Animation kritisch betrachten und unberücksichtigte Faktoren benennen können. Thema Das biologische Gleichgewicht Autorin Ulrike Frenzel Fach Biologie Zielgruppe Klassen 5 und 6; auch Jahrgangsstufen 12 und 13 Technische Voraussetzungen Computer in ausreichender Zahl (Partner-/Gruppenarbeit), Macromedia Shockwave Player (kostenloser Download) Unterrichtsplanung Verlaufsplan "Biologisches Gleichgewicht" (Klassen 5 und 6) für die Erarbeitung des biologischen Gleichgewichtes Je nach Rechneranzahl arbeiten die Schülerinnen und Schüler zu zweit oder in Kleingruppen zusammen. In Abhängigkeit der Anzahl der Hasen vermehrt oder verringert sich die Anzahl der Füchse. Die eingesetzte Animation zeigt einen nicht endenden Kreislauf: Je mehr Hasen, desto mehr Füchse; je mehr Füchse, desto weniger Hasen; je weniger Hasen, desto weniger Füchse; je weniger Füchse, desto mehr Hasen ... In Abhängigkeit der Altersstufe arbeiten die Schülerinnen und Schüler entweder vorwiegend gelenkt oder eher frei mit den Materialien. Hinweise zum Einsatz der Materialien Alle Animationen und Arbeitsblätter können Sie hier einzeln herunterladen. Grafische Auswertung der Ergebnisse und Diskussion Blockdiagramme und Mittelwertbildung sind bei der Interpretation der Daten sinnnvoll. Die Schülerinnen und Schüler sollen: Nachwachsende Rohstoffe als alternative Energiequellen kennen lernen. einen typischen Pflanzenvertreter der Gruppe Nachwachsender Rohstoffe kennen lernen. die Charakteristika von C4-Pflanzen kennen lernen. Thema Anbau Nachwachsender Rohstoffe in Deutschland Autorin Jana Haberstroh Fächer Biologie; fächerübergreifend Geographie und Politik Zielgruppe Sekundarstufe II Zeitraum 3-4 Stunden Technische Voraussetzungen Computer mit Internetzugang (Recherche, Präsentation von Animationen per Beamer) Ziel der Unterrichtseinheit ist es, eine allgemeine Übersicht über Nachwachsende Rohstoffe zu geben und anhand des ausgewählten Beispiels von Miscanthus auf einen speziellen Vertreter dieser Pflanzenklasse einzugehen. Forscherinnen und Forscher entwickeln zurzeit immer neue Ideen, wie nachwachsende Rohstoffe im Alltag genutzt werden können. Dank der raschen Entwicklung und der zukünftigen Bedeutung Nachwachsender Rohstoffe kann die Unterrichtseinheit beispielsweise im Fach Biologe im Kontext C3-und C4-Pflanzen eingebettet werden. Zu den Kernaufgaben der Landwirtschaft gehört neben der Nahrungsmittelproduktion der Anbau nachwachsender Rohstoffe. Bevor die Menschenheit beispielsweise Kohle, Erdöl oder Erdgas als Energielieferanten entdeckt hatten, wurden Pflanzen zur Energiegewinnung und Materialherstellung genutzt. Brennholz, Bauholz, Wolle, Faser-und Färberpflanzen für Textilien, Futtermittel für Zugtiere oder Arzneipflanzen sind nur einige Anwendungsbeispiele. Falls die gesamte globale Bevölkerung auf diese Methoden und Pflanzen wieder ausweichen müsste, stehen uns jedoch heutzutage innovative technische Verfahren zur Verfügung, die viele neue Produkte und Anwendungen bei wesentlich effizienterer Umwandlung ermöglichen. Miscanthus dient als Häckselgut oder in gepresster Form der Strom- und Hochtemperaturwärmerzeugung, der Kraftstofferzeugung, der Biogaserzeugung und der Niedertemperaturwärmeerzeugung. Hierunter wird die Erzeugung von Warmwasser bis 100 Grad Celsius verstanden. Eine C4-Pflanze erobert den Energiemarkt Das Chinagras, dessen botanischer Name Miscanthus lautet, ist eine C4-Pflanze mit hoher Biomasseleistung. Miscanthus ist spätestens seit der Veröffentlichung des Buches "Schilfgras statt Atom" von Franz Alt als Biomasse-Lieferant in aller Munde. Viele kennen das Gras als Zierpflanze im Garten. Miscanthus ist mehrjährig und zeichnet sich durch eine sehr effektive Photosyntheserate und hohe Biomasseproduktion aus. Das Gras kann an einem einzigen Tag bis zu fünf Zentimeter wachsen. Die Pflanze ist ein ausgesprochenes Multitalent, welches einerseits hohe Erträge liefert und gleichzeitig das Treibhausgas Kohlenstoffdioxid bindet. Systematik und Verbreitung Miscanthus gehört zur großen Familie der Süßgräser (Poaceae). Die Gattung umfasst rund 20 Arten, die vorrangig in China, Japan, Nepal und Tibet beheimatet sind. Der anthropogen erzeugte Klimawandel ist ein viel diskutiertes Thema. In dieser Unterrichtseinheit sollen sich die Lernenden jedoch nicht mit seinen Folgen auseinandersetzen, sondern mit der Kohlenstoffdioxid bindenden Funktion des Waldes und dem damit verbundenen positiven Einfluss auf die Folgen des Klimawandels. Mithilfe von Satellitenbildern messen sie Flächen in Deutschland aus und erhalten erste Einblicke in die Methodik der Fernerkundung (Kartenerstellung, Klassifikation). So können sie die Größe der Waldflächen und damit deren Bedeutung vor dem Hintergrund des Klimawandels ermitteln. Die Unterrichtseinheit ist im Rahmen des Projekts "Fernerkundung in Schulen" (FIS) am Geographischen Institut der Universität Bonn entstanden. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Schülerinnen und Schüler sollen erklären können, wie und wofür Waldflächen mit Satellitenbildern erfasst werden können. die Bedeutung des Waldes als Kohlenstoffdioxid-Speicher bewerten können. Thema Der Wald als Klimaretter!? Autoren Dr. Hannes Feilhauer, Dr. Roland Goetzke, Henryk Hodam, Dr. Kerstin Voß Fach Biologie Zielgruppe Klasse 7-8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) In der Unterrichtseinheit zum Themenfeld Klimawandel soll das Verständnis grundlegender Funktionen des Waldes sowie deren Bedeutung in Bezug auf den Klimawandel und seine Folgen vermittelt werden. In diesem Zusammenhang soll geklärt werden, ob der Wald in Deutschland als Kohlenstoffsenke ausreicht, um den landesweiten Ausstoß an Kohlenstoffdioxid zu kompensieren. Als wissenschaftliche Grundlage dient eine Einführung in die Methodik der Fernerkundung, mit deren Hilfe die Schülerinnen und Schüler das Ausmaß der Waldflächen in Deutschland ermitteln und dabei einen ersten Einblick in die Erstellung von Karten gewinnen. Inhalte und Einsatz der Lernumgebung im Unterricht Hinweise zum Aufbau der Lernumgebung. Screenshots veranschaulichen die Funktionen und die interaktiven Übungen zu dem Themenfeld "Wald, Klimawandel und Fernerkundung". (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:702938) ist Akademische Rätin am Geographischen Institut der Universität Bonn und leitet das Projekt "Fernerkundung in Schulen". Sie studierte Geographie an der Universität Bonn und schloss ihre Dissertation 2005 im Bereich Fernerkundung ab. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:707451) ist promovierter Geograph und arbeitet als wissenschaftlicher Mitarbeiter am Geographischen Institut der Universität Bonn im Projekt "Fernerkundung in Schulen". Seine Schwerpunkte liegen in den Bereichen GIS und Fernerkundung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:702944) studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Die Schülerinnen und Schüler erwerben Wissen über das Ökosystem Regenwald, seine Bedrohung und über den Schutz des Regenwaldes und können dieses Wissen anwenden. stellen eine Verbindung zwischen dem Regenwald und unserem Alltag in Deutschland her und hinterfragen diese kritisch. sind in der Lage, Verständnis für globale Vernetzungen und Abhängigkeiten zu entwickeln. erlangen Entscheidungs- und Bewertungsfähigkeit und entwickeln selbst Maßnahmen, die zum Schutz des Regenwaldes beitragen. Die Schülerinnen und Schüler sind in der Lage, individuelle und kulturelle Leitbilder zu reflektieren. können das eigene Handeln als kulturell bedingt und veränderbar wahrnehmen. entwickeln eigenständige Handlungsalternativen. können die eigene Meinung äußern, akzeptieren andere Standpunkte und arbeiten kooperativ im Team. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen und Grafiken hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben und zusammenzufassen. Thema Weil wir es wert sind Autorinnen Birthe Hesebeck, Vera Pfister, Elisa Rödl Fächer Biologie, Geographie, Politik, Soziales, Wirtschaft Zielgruppe Schülerinnen und Schüler an Haupt- und Förderschulen Zeitraum variabel Medien optional: Computer, Internetzugang, Beamer Der Regenwald ist sehr fern und viele Jugendliche schalten beim Thema Umwelt aus unterschiedlichen Gründen ab. Deshalb ist es wichtig, einen Einstieg zu finden, der die Emotionen der Schülerinnen und Schüler berührt und zeigt, warum das Thema auch sie betrifft. In dieser Unterrichtseinheit geht es darum, das Wissen der Jugendlichen zum Thema zu vertiefen, zu hinterfragen und mit dem bestehenden Wissen zu vernetzen. Vor allem auf den Austausch kommt es an: Diskutieren Sie mit Ihren Schülerinnen und Schülern so viel wie möglich, damit sie sich im Gespräch eine eigene Meinung zum Thema bilden können, denn nur so erhält das Thema Relevanz für die Jugendlichen. Im nächsten Schritt müssen Sie den Schülerinnen und Schülern Handlungsorientierung bieten. Was kann jede und jeder Einzelne tun? Zuletzt sollten die Jugendlichen ihr Wissen praktisch umsetzen können, sei es durch alltägliche Handlungen wie Einkaufen oder durch die vorgeschlagenen Praxisprojekte. Hintergrundinformationen und Vorbemerkungen Hintergrundinformationen zum Themenkomplex Regenwald sowie Bemerkungen zu zentralen Ansätzen der Unterrichtseinheit sind hier kurz zusammengefasst. Die Praxisprojekte Jedes Praxisprojekt hat einen Schwerpunkt und ein eigenes Medium, mit dem das Thema Regenwald umgesetzt wird. Materialien von OroVerde Das Materialpaket "Weil wir es wert sind" ist Lehrmaterial, das die Tropenwaldstiftung OroVerde konzipiert und herausgegeben hat. Neben den Materialien für Haupt- und Förderschulen gibt es außerdem Materialien für die Grundschule (3. und 4. Klasse, "Schokolade wächst auf Bäumen?!"), für die 5. und 6. Klasse ("Warum regnet es im Regenwald?") und für Schülerinnen und Schüler ab der 8. Klasse ("Geist ist geil!" - Werbung und Natur). Die Schülerinnen und Schüler werden für das Thema Umwelt- und Klimaschutz sensibilisiert. lernen, wie sie im Schulalltag aktiv den Umweltschutz fördern können. lernen das Thema Nachhaltigkeit und sein Bedeutung anhand konkreter Alltagsfragen kennen. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen, Grafiken und Bilder hinsichtlich relevanter Informationen auswerten setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben bzw. zusammenzufassen. Thema Grüne Schule. Ideen für mehr Umweltschutz in der Schule Autorin Anke Helle, Redaktion Focus Schule Fächer Biologie, Sachunterricht Zielgruppe Klassenstufen 3 bis 10 aller Schulformen Zeitraum etwa 8 bis 10 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetzugang, Beamer, Mozilla Firefox oder Internet Explorer, Flash-Player Die Aktion "Grüne Schule" bezieht sich direkt auf das Alltagsleben der Schülerinnen und Schüler. Sie haben die Möglichkeit aktiv für den Umwelt- und Klimaschutz einzutreten und lernen, dass vor allem die kleinen Veränderungen im täglichen Leben den Schutz der Umwelt vorantreiben. Dazu werden 15 konkrete Bereiche vorgestellt, in denen die Schülerinnen und Schüler einen Beitrag zur Nachhaltigkeit leisten können: vom Inhalt des Mäppchens über den Weg zur Schule bis zur Klassenfahrt. Sie untersuchen die häufigen Fehler und Nachlässigkeiten und entwickeln dann konkrete Verbesserungsvorschläge, die sie direkt umsetzen können. 15 Ideen zum Umweltschutz an Schulen Die Redaktion von Focus Schule hat 15 konkrete Ideen zum Umweltschutz im Schulalltag zusammengestellt. Das Bildungsmagazin Focus Schule startete die bundesweite Aktion "Grüne Schule" gemeinsam mit der Deutschen Bundesstiftung Umwelt im Schuljahr 2009/10. Die Aufklärungskampagne an Schulen zu den Alltagsaspekten des Klima- und Umweltschutzes soll Umweltbewusstsein bei Schülerinnen und Schülern, Lehrkräften und Eltern fördern und das Thema für junge Leute attraktiver machen. Anhand vier interaktiver Lernmodule ("Biokraftstoffe aus der Landwirtschaft", "Abbau von Bodenschätzen im Tagebau", "Umgang mit dem Ökosystem Wald" und "Flächennutzung") erarbeiten sich die Schülerinnen und Schüler die Auswirkungen einer anthropogenen Entwicklung auf die drei Nachhaltigkeitsdimensionen - Umwelt, Wirtschaft, Gesellschaft - mithilfe einer Vielzahl vorgegebener Informationsquellen. Einen Schwerpunkt bilden dabei die Analyse und Auswertung von digitalen Fernerkundungsdaten in Form von Luft- und Satellitenbildern. Das angeeignete Wissen über die ökonomischen, ökologischen und sozialen Folgen einer Entwicklung bildet die Grundlage für eine Bewertung unter dem Gesichtspunkt der Nachhaltigkeit. Dabei steht auch die selbstständige Erforschung der Heimat im Fokus. Die Schülerinnen und Schüler lernen verschiedene geographische Räume in Deutschland sowie weltweit kennen. lernen die Auswirkungen einer anthropogenen Entwicklung auf Mensch, Umwelt und Wirtschaft in dem betrachteten Raum kennen. können die Satellitenbildauswertung mit anderen erarbeiteten Informationen sowie die aus eigener Geländearbeit gewonnenen Informationen kombinieren und hinsichtlich einer Fragestellung beurteilen. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen, Grafiken, Fotos, Luft- und Satellitenbilder hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben bzw. zusammenzufassen. Thema Raumentwicklungen bewerten lernen Autoren Michelle Haspel, Markus Jahn, Alexander Siegmund Fächer Biologie, Geographie, EWG, GWG Zielgruppe Module "Abbau von Bodenschätzen im Tagebau" und "Umgang mit dem Ökosystem Wald" für die Klassenstufen 5 bis 7; Module "Biokraftstoffe aus der Landwirtschaft" und "Flächennutzung" für die Klassenstufen 8 bis 10 Zeitraum etwa 3 bis 5 Unterrichtsstunden für ein Raumbeispiel, abhängig von Einzelarbeit oder Gruppenarbeit Technische Voraussetzungen Computer mit Internetzugang (am besten für je 2 Personen), Beamer, Mozilla Firefox oder Internet Explorer, Flash-Player Neben weltweit verorteten Raumbeispielen (globale Ebene) rücken in dieser Unterrichtseinheit auch in Deutschland auftretende Entwicklungen (lokale Ebene) in den Blickpunkt der Untersuchung. Den eigenen Heimatraum erkunden die Jugendlichen auf Satellitenbild-Karten der Bundesrepublik von verschiedenen Zeitpunkten und in unterschiedlichen Farbdarstellungen. Wichtige Bildinformationen können ausgedruckt oder kostenlos heruntergeladen werden, um sie bei der Untersuchung des persönlichen Umfelds unter dem Aspekt der Nachhaltigkeit als Datengrundlage und zur Orientierung im Gelände einzusetzen. Die Begegnung mit der realen Umwelt wird unterstützt durch zahlreiche Anleitungen zur Durchführung von geo-/umweltwissenschaftlichen Feldmethoden sowie durch Arbeitsblätter für den praktischen Einsatz vor Ort. Hinweise zur Arbeit mit dem Portal GLOKAL Change stellt globale Bezüge zur lokalen Lebenswelt der Schülerinnen und Schüler her. Die Schülerinnen und Schüler erwerben Wissen über das Ökosystem Regenwald, seine Bedrohung und über den Schutz des Regenwaldes und können dieses Wissen anwenden. stellen eine Verbindung zwischen dem Regenwald und unserem Alltag in Deutschland her und hinterfragen diese kritisch. sind in der Lage, Verständnis für globale Vernetzungen und Abhängigkeiten zu entwickeln. erlangen Entscheidungs- und Bewertungsfähigkeit und entwickeln selbst Maßnahmen, die zum Schutz des Regenwaldes beitragen. Die Schülerinnen und Schüler sind in der Lage, individuelle und kulturelle Leitbilder zu reflektieren. können das eigene Handeln als kulturell bedingt und veränderbar wahrnehmen. entwickeln eigenständige Handlungsalternativen. können die eigene Meinung äußern, akzeptieren andere Standpunkte und arbeiten kooperativ im Team. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen und Grafiken hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben und zusammenzufassen. Thema Tatort Tropenwald: Ein Mitmach-Krimi Autorinnen Birthe Hesebeck, Maike Lambrecht Fächer Biologie, Geographie, Politik, Soziales, Wirtschaft Zielgruppe Schülerinnen und Schüler ab Klasse 7 Zeitraum Krimispiel mit Auswertung: 1 Doppelstunde; Nachbereitung und Vertiefung: variabel, 1 bis 4 Unterrichtsstunden Medien optional: Computer, Internetzugang, Beamer Die Unterrichtseinheit Tatort Tropenwald führt die Schülerinnen und Schüler in der Rolle als Ermittler in einem Krimi spielend-entdeckend an die Themen Tropenwaldschutz und Erhaltung der Biodiversität heran. In Kleingruppen untersuchen sie Schritt für Schritt die komplizierte Vernetzung zwischen menschlichem Leben und der Existenz der Tropenwälder als Lebensraum für Millionen von Pflanzen- und Tierarten. Ebenso setzen sie sich mit sozialpolitisch und gesellschaftlich relevanten Bereichen auseinander. Im Fokus der Recherche stehen auch die unterschiedlich motivierten Interessensgruppen am Regenwald vor Ort - etwa Grundbesitzer, einheimische Volksstämme, Kleinbauern und die globale Großindustrie. Sie hinterfragen Produktion und Konsum in den Industrienationen und deren Auswirklungen auf den Bestand des tropischen Regenwalds. Interessant ist dabei auch, welche Rolle Journalisten in diesem "Mordfall" spielen. Hintergrundinformationen und Vorbemerkungen Hintergrundinformationen zum Themenkomplex Regenwald sowie Bemerkungen zu zentralen Ansätzen der Unterrichtseinheit sind hier kurz zusammengefasst. Inhalt und Ablauf des Krimispiels Der Mitmach-Krimi verfolgt einen handlungs- und erfahrungsorientierten Ansatz. Detailliertere Informationen zur Umsetzung im Unterricht finden Sie hier. Materialien von OroVerde Der Mitmachkrimi "Tatort Regenwald" für den Unterricht ist Lehrmaterial, das die Tropenwaldstiftung OroVerde konzipiert und herausgegeben hat. Neben dem Krimispiel gibt es außerdem Materialien für die Grundschule (3./4. Klasse, "Schokolade wächst auf Bäumen?!"), für die 5. und 6. Klasse ("Warum regnet es im Regenwald?") und für Schülerinnen und Schüler ab der 8. Klasse ("Geist ist geil!" - Werbung und Natur). Projektträger ist OroVerde, die Stiftung zur Rettung der Tropenwälder. In Addition zum Pilotprojekt "Weil wir es wert sind" entstanden die Materialien für den Unterricht.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

Crossmedia-Environments: zwischen real und virtuell

Unterrichtseinheit

Im fächerverbindenden Unterricht zwischen Kunst, Informatik und Physik realisiert eine Klasse Mixed-Reality-Ausstellungen, die reale Objekte mit traditionellen künstlerischen Mitteln und programmierten Elementen verknüpfen.Mit den Begriffen "Crossmedia" und "Mixed Reality" werden Environments beschrieben, die Elemente aus der virtuellen und der realen Welt miteinander verbinden. Solche Environments werden vor allem in der Medienkunst und Unterhaltungsbranche verwendet, zunehmend aber auch in Wissenschaft, Forschung und Pädagogik übertragen. Das pädagogische Konzept ?Mixed Reality? lässt sich als Erweiterung des realen Raums um Virtualität beschreiben: als eine produktive Verschränkung verschiedener Realitätsebenen mit dem Ziel, den Computer in eine neue Lernkultur zu integrieren, in der die Sinne und ein soziales Miteinander die Hauptrolle spielen. Fächerverbindender und vorhabenbezogener Projektunterricht Die Unterrichtseinheit wurde für die Fächer Kunst, Informatik und Physik entwickelt, lässt sich im Prinzip aber auf andere Fächerverbindungen übertragen. Zwar ist die Organisation des schulischen Lernens weiterhin vorwiegend fachgebunden und projektorientiertes Lernen bleibt nach wie vor die Ausnahme. Alle Fächer arbeiten aber zunehmend vorhabenbezogen. Fächerverbindende Zusammenarbeit ist eine wichtige Voraussetzung für die Orientierung an Leitthemen und dieses Unterrichtsprinzip setzt sich von der Grundschule an aufwärts immer mehr durch. Alle Fächer sollten in diesem Zusammenhang Gestaltungsfertigkeiten als ästhetische Schlüsselkompetenzen vermitteln. Der Projektverlauf Alle Arbeitsphasen der "Lernumgebung mit Werkstattcharakter" im Überblick Inhaltliche Ziele Die Schülerinnen und Schüler sollen multimediale Environments als eine Form zeitgenössischer Kunst kennen lernen. eigene Phantasiewelten in raumbezogene Gestaltungskonzepte umsetzen lernen. in projektorientierten Lernzusammenhängen gemeinsam Handlungsziele formulieren, Wege zu ihrer Verwirklichung erarbeiten, untereinander abstimmen und umsetzen. Ziele im Bereich der Medienkompetenz Die Schülerinnen und Schüler sollen digitale Medien in der aktiven Gestaltung neu erfahren. ikonische Programmierungen durchführen und Einblicke in Programmierungsprozesse erhalten. eine interaktive multimediale Präsentation besucherorientiert gestalten. Das Besondere der Ausstellungskonzepte: Reale Objekte werden mit traditionellen künstlerischen Mitteln und programmierten Elementen verknüpft. Die Besucherinnen und Besucher können gestaltete Elemente und Effekte, die programmiert und durch Sensoren ausgelöst werden, im Raum interaktiv erleben. Das Prinzip bietet Kindern und Jugendlichen die Möglichkeit, zeitgenössische Kunstformen kennen zu lernen und selbst gestaltend zu erarbeiten. Thema Crossmedia-Environments: zwischen real und virtuell Autor Ingrid Höpel Fach Kunst, Informatik, Physik sowie fächerverbindender Unterricht Zielgruppe Sekundarstufe II Zeitraum Kursthema für ein Halbjahr Verlaufsplan Verlaufsplan Crossmedia-Environments zur Unterrichtseinheit Medien Notebooks, elektronische Lastrelais, Lego Mindstorms: Lego-Cam, Lego-Sets mit RCX-Baustein und Infrarotsender Software Lego-Software RoboLab und Vision Command Voraussetzungen Computer-Grundkenntnisse Mixed Reality - Medien eröffnen neue Räume Ingrid Höpel, Michael Herczeg, Daniela Reimann, Thomas Winkler: "Mixed Reality" - Medien eröffnen neue Räume. In: Karl Ermert, Annette Brinkmann, Gabriele Lieber (Hrsg.): Ästhetische Erziehung und Neue Medien. Zwischenbilanz zum BLK-Programm "Kulturelle Bildung im Medienzeitalter", Wolfenbüttel: Bundesakademie für Kulturelle Bildung 2004, Seite 148-160. Multimediale interaktive Environments Ingrid Höpel: Multimediale interaktive Environments. In: BDK Materialien. Computer - Fachtypische Anwendungen im Kunstunterricht. Beiheft zu BDK-Mitteilungen 1/04, Seite 26. Mixed Reality in Lernprozessen (CD-ROM) Die CD-ROM aus dem Jahr 2003 dokumentiert die hochschulübergreifende Zusammenarbeit von Studierenden des Instituts für Multimediale und Interaktive Systeme der Universität Lübeck und der Christian-Albrechts-Universität Kiel. Bestellung unter info-artdecom@imis.uni-luebeck.de Kinder und Jugendliche bewegen sich in ihrer Freizeit mit großer Sicherheit und Selbstverständlichkeit in einer von digitalen Medien bestimmten Welt. Sie bedienen sich des Handys, sie spielen Computerspiele, sie chatten mit Freunden und Unbekannten im Internet. Die Angebote der Medien machen Schülerinnen und Schüler aber in der Regel zu passiven Nutzern vorgefertigter Abläufe und Programme. Diese Passivität wird beim Lernen in Crossmedia-Projekten aufgebrochen: Kinder und Jugendliche erfahren an konkreten Beispielen, wie sich der Computer durch Programmierung aktiv einbeziehen lässt. Sie lernen die informatische Modellbildung verstehen und anwenden. Sie werden zu kompetenten und kritischen Nutzern von Computer, Internet, Chat und Computerspiel. Räumliche Flexibilität Eine wichtige Voraussetzung für den Ansatz der Lernumgebung mit Werkstattcharakter ist, dass als Lernumgebung nicht der Computerraum dient. Der Computer wird als transportables Medium in Form von Notebooks in den Klassenraum, Kunstraum, in den Werkstattbereich oder an den Ort der Installation mitgenommen. Der Unterricht findet dort in wechselnden Sozialformen statt: Sie reichen vom Lehrervortrag über Einzel- und Partnerarbeit bis zur selbstorganisierten Gruppenarbeit. Organisation des Unterrichts Für das Gelingen des Unterrichts sind die räumlichen und zeitlichen Bedingungen wichtig. In unseren Projekten war die Unterrichtszeit zwar meist auf eine wöchentliche Doppelstunde festgelegt, im Lauf des Projekts bestimmten aber zunehmend die sachlichen Erfordernisse Arbeitszeit und -organisation. Das ist im schulischen Rahmen nur dann möglich, wenn ein offener Werkstattraum zur Verfügung steht. Dennoch ist der Unterricht nicht zwingend an einen Kursunterricht gebunden. Er kann in unterschiedlicher Intensität und Länge stattfinden: im normalen Klassenverband in der wöchentlichen Doppelstunde des Kunstunterrichts (dann aber über einen Zeitraum von mindestens sechs Wochen), punktuell intensiv an Projekttagen oder im Idealfall in halbjährigen Projektkursen. Voneinander lernen Bei der Beobachtung und Auswertung eines fächerverbindenden Projektunterrichts fällt immer wieder auf, wie Schülerinnen und Schüler sich gegenseitig unterrichten und im sozialen Miteinander voneinander lernen. Dabei können sich häufig gerade solche Schülerinnen und Schüler besonders gut einbringen, die im Kunstunterricht sonst desinteressiert oder leistungsschwach erscheinen. Eine ausgeprägte Kompetenz als Mediennutzer ermöglicht es ihnen, Fähigkeiten und Fertigkeiten im Umgang mit dem Programm zu zeigen und ihren Mitschülerinnen und Mitschülern weiterzugeben. Sie erarbeiten sich leichter als andere den Schritt aus der Rolle des passiven Mediennutzers heraus und erweisen sich dabei in der Lage, ihre Klassenkameraden mitzunehmen. Dadurch verändert sich in Medienprojekten die traditionelle Rolle der Lehrkräfte noch mehr, als es sich in anderen Formen projektorientierten Unterrichts beobachten lässt. Der Handlungsraum für Lernende und Lehrende umfasst sowohl den physischen Raum als auch den digitalen Raum. Beide Bereiche werden über Schnittstellen zwischen Mensch und Maschine miteinander verknüpft. Dafür werden unterschiedliche Formen von "Tangible Media" eingesetzt: Nicht nur die Maus wird als Eingabegerät benutzt, sondern darüber hinaus andere Schnittstellen wie Sensoren, die programmierbare Kamera oder auch Grafik-Tabletts. Das, was sich beim Lernen im Kopf abspielt, wird über die sinnliche Wahrnehmung, über soziale Kommunikationsprozesse und Handlungen vor dem Computer und im Virtuellen zum Auslöser für Veränderungen im digitalen und physischen Raum. Sinne fungieren als Kontrollinstanz Ein wichtiges Prinzip der Lernumgebungen für die Erstellung von Crossmedia-Environments ist die räumliche und zeitliche Nähe zwischen der Programmierung am Computer und der Kontrolle des geschriebenen Programms durch die eigenen Sinne. Zum Einsatz kommen hierfür Mikrocomputer und Programme der Produktfamilie Lego Mindstorms. Die mit einer ikonischen Programmierkette auf den Notebooks geschriebenen Programme werden sofort nach ihrer Erstellung über den Infrarotsender auf den gelben Mikrocomputer übertragen. Auf diese Weise können sie unmittelbar neben dem Computer ausprobiert werden. Für den Erfahrungs- und Lernprozess ist die räumliche und zeitliche Nähe dieser Erfahrung besonders wichtig, weil die Welt der Programmierung mit der sinnlich erfahrbaren Welt zu kommunizieren beginnt. Auswirkungen des eigenen Programmierhandelns im Computer werden in der physischen Welt sofort wahrnehmbar und nachprüfbar. Ganz konkret erweist es sich, ob das Programm läuft und was es bewirkt: Lichter gehen an, Geräusche werden erzeugt, über kleine Motoren wird Bewegung im Raum ausgelöst. Ikonische Programmierung Als ikonische Programmierung wird in der Informatik ein Programm bezeichnet, das es erlaubt, über einzelne vorgefertigte Bausteine eine Wenn-Dann-Relation hervorzurufen. Wenn beispielsweise ein Tastsensor mit einer bestimmten Stärke berührt wird, schaltet sich ein Licht oder eine Tonfolge ein. Das Licht bleibt unter bestimmten Bedingungen an und beginnt unter veränderten Bedingungen zu blinken oder erlischt. Die selbst geschriebene Programmierkette wird auf dem Bildschirm durch Ikons dargestellt. Zugänge zur Medienkunst Für viele Schülerinnen und Schüler sind die Möglichkeiten der Begegnung mit zeitgenössischer Kunst immer noch selten: vor allem in der "kulturellen Provinz" fernab von den großen Ausstellungszentren. Erfahrungen mit Kunst aus zweiter Hand über Abbildungen, Dias, Videos und Internet können diesen Mangel nur unzureichend ausgleichen. Arbeiten wie die von Peter Weibel, Jeffrey Shaw oder Art+Com können den Schülerinnen und Schülern über das Internet vorgestellt werden, so dass sie einen ersten Eindruck von interaktiven Environments gewinnen können. Der Entwurf und die praktische Umsetzung eines eigenen Installationskonzepts unterstützen und vertiefen diesen Zugang. Die Nutzerinnen und Nutzer des interaktiven Mediums verwandeln sich idealerweise in kompetente Gestalter. Medienkunst im Unterricht Auf der Suche nach Medienkunstwerken trifft man immer wieder auf opulente Werke, wie beispielsweise im Zentrum für Kunst und Medientechnologie Karlsruhe (ZKM). Im Schulunterricht muss allerdings in Kauf genommen werden, dass die Soft- und Hardware-Komponenten aus Kostengründen zurzeit noch erheblich eingeschränkt sind. Auf längere Sicht werden aber Software und interaktive Schnittstellen kostengünstiger und variabler zur Verfügung stehen. Programmierung Dem Computer kommt im Szenario des Crossmedia-Environments eine zentrale Rolle zu, weil die Programmierung als Kernstück der Installation die interaktive Komponente trägt. Er leistet damit einen spezifischen und durch nichts anderes zu ersetzenden Beitrag. Im Verlauf des Projektfortgangs wird der Umgang mit dem Computerprogramm für die Schülerinnen und Schüler jedoch offensichtlich zunehmend unwichtiger. Der Computer entwickelt sich mehr und mehr zu einem gleichrangigen Gestaltungsmedium neben anderen - gleichwertig auch gegenüber den traditionellen Medien im Kunstunterricht wie etwa der Kulissenmalerei. Der Umgang mit dem Computer gewinnt somit an Selbstverständlichkeit. Bei anstehenden Gestaltungsaufgaben werden die Möglichkeiten, die er neben den traditionellen Medien bietet, realistischer eingeschätzt. Er ordnet sich ein oder vielmehr unter. Körper und Sinne Ungewöhnlich für den Gebrauch der digitalen Medien im Crossmedia-Zusammenhang ist, dass Lernen grundsätzlich Körper und Sinne einbezieht. Das sollte besonders betont werden, weil es für das Lernen mit dem Computer und den digitalen Medien im allgemeinen Verständnis immer noch ungewöhnlich ist. Dabei ist angestrebt, die traditionelle Grenze zwischen Künsten, Natur- und Geisteswissenschaften ansatzweise aufzubrechen. Für das Gelingen der Projekte sind wahrnehmungsbezogene, künstlerische, informatische und soziale Fähigkeiten im Zusammenspiel notwendig. Charakteristika und Leitideeen Charakteristisch für Crossmedia-Environments sind: Gestaltungsorientierung Multisensualität Erweiterung durch Digitalität Werkstattorientierung Prozessorientierung Interdisziplinarität Leitideen im Crossmedia-Projekt sind: informatische und ästhetische Prozesse im Kontext von hybriden Lernumgebungen miteinander zu verbinden. das Programmieren des Verhaltens von Mikrocomputern für die Lernenden als kreativen und gestaltenden Prozess erfahrbar zu machen. die Charakteristika digitaler Medien als programmierbar und manipulierbar zu erkennen. die Möglichkeiten und Leistungen virtueller Welten im Zusammenhang mit der physischen Welt zu reflektieren. Raum- und Themenwahl Ein Projektkurs des 13. Jahrgangs hat im fächerverbindenden Unterricht zwischen Kunst, Informatik und Physik interaktive Environments in Anlehnung an zeitgenössische Medienkunst inszeniert. Dabei wurden an einem außergewöhnlichen Ort, dem Dachboden der Schule, digitale Werkzeuge und nicht-digitale Objekte arrangiert, programmiert und zu einem begehbaren, hybriden Erlebnisraum gestaltet. Der Dachboden diente normalerweise nur als Abstellraum und konnte deshalb für den Projektunterricht während der gesamten Projektlaufzeit unabhängig von den üblichen Unterrichtszeiten als offene Werkstatt genutzt werden. Das Ambiente eines offenen Dachstuhls in einem Jugendstilbau wirkte zu Beginn des Projekts auf alle Teilnehmerinnen und Teilnehmer besonders reizvoll, wurde aber in den Inszenierungen nicht thematisiert. Die Schülerinnen und Schüler entschieden sich stattdessen für die Inszenierung von Naturräumen als Phantasielandschaften. Traum- und Märchenlandschaften Ausgangspunkt war für die Schülerinnen und Schüler die Faszination, durch den Einsatz der neuen Technologie die Traum- und Märchenlandschaften ihrer Kindheit Wirklichkeit werden zu lassen: Wüste, Moor, Ruine, Gewitterlandschaft, Vulkan, Regenwald. Weitgehend unabhängig vom bestehenden Raumeindruck entwarfen sie zunächst aus ihrer Erinnerung an Exotik und Abenteuer fremde und deshalb für sie attraktive Räume, die stark von Klischeevorstellungen geprägt waren: etwa von einer orientalisch und märchenhaft anmutenden Atmosphäre in der Art von "Tausend-und-einer-Nacht" oder von Expedition und Abenteuer. Von der Nachahmung zur Abstraktion Während für die Schülerinnen und Schüler zunächst der Reiz in einer täuschend echten Nachahmung der phantasierten Welten bestand, gelangten sie im Lauf des Projekts durch die Betrachtung zeitgenössischer Kunst an den Punkt, die Präsentation ihrer Welten zu stilisieren, zu übertreiben oder ironisch zu brechen. Durch eine noch stärkere Lenkung zu Beginn hätte vielleicht ein noch höherer Abstraktionsgrad der Welten erreicht werden können. Auf alle Fälle war es wichtig, den in der Sekundarstufe II immer noch vorwiegend imitativ geprägten Impuls der Schülerinnen und Schüler ernst zu nehmen. Abstraktionsprozesse setzten so erst in der Realisierungsphase nachhaltig ein. Pappmaché und Programmierung In traditionellen Techniken wurden aus Pappmaché, Stoff und Farbe zunächst kleine Modelle im Kasten gebaut, die in einer zweiten Phase in großformatige Objekte und Kulissen umgesetzt wurden. Zeitgleich entwarfen die Schülerinnen und Schüler interaktive Reaktionen und Handlungsabläufe, die sich beim Betreten der Kulissen abspielen sollten. Für diese Konzepte mussten mit der ikonischen Programmier-Software RoboLab an den Notebooks Programme geschrieben werden. Die fertigen Programme wurden über Infrarot-Schnittstellen auf die Mikrocomputer RCX übertragen. Mischformen digitaler und realer Objekte Die Besucherinnen und Besucher lösten beim Betreten der Räume durch Tast-, Licht- und Wärmesensoren die programmierten Abläufe aus und bestimmten durch ihre Bewegung Reihenfolge und Intensität der Effekte. Über elektronische Lastrelais konnten handelsübliche Elektrogeräte angesteuert werden, so dass Bilder wahlweise über einen Beamer oder über Diaprojektoren projiziert wurden. Auch Geräusche konnten abgespielt oder Motoren in Gang gesetzt werden. Mit dem Einbau einer programmierbaren Kamera, die auf bestimmte Farben oder auf Bewegung reagierte, war es möglich, bestimmte Effekte auszulösen. Auf diese Weise entstanden Mischformen digitaler und realer Objekte und Räume. Dabei spielten die Schnittstellen zwischen Programmierung und physikalischen Abläufen eine wichtige Rolle. Wüste Die Wüste bestand aus einem hellen Raumsegment, das durch weiße Leinwände vom übrigen Raum abgeteilt worden war. Der gesamte Boden war mit Sand ausgelegt. Das Betreten war nur von einer einzigen Seite her möglich und löste bereits auf der Schwelle durch einen Lichtsensor leise Musikuntermalung aus. Auf einer gegenüberliegenden Leinwand wurde eine Dia-Projektion einer Dünenlandschaft gestartet, die den Raumeindruck fortsetzen sollte. Der knirschende, weiche Sand unter den Füßen unterstützte die Wirkung. Ging die Betrachterin oder der Betrachter auf die Dünenlandschaft zu, wurde ein weiterer Sensor ausgelöst, der einen hellen Scheinwerfer als Sonne einschaltete. Ein zweites Dia einer Fata Morgana legte sich über das erste. Musik, Licht und Projektion erloschen beim Verlassen des Raums durch den Ausgang. Gewitter Der als Black Box gestaltete, sehr kleine Raum war vollständig abgedunkelt und besaß nur einen Zugang, der als Ein- und Ausgang diente. Die Besucherin oder der Besucher musste an einem Platz stehen und hatte wenig Bewegungsraum. Erst nach einer relativ lang erscheinenden Wartezeit startete ein einziger Lichtsensor das gesamte Programm: Zuerst erklang Musik, dann wurde auf eine dunkle Wand ein Blitz projiziert; Donnergeräusche wurden mit Musik unterlegt; ein Ventilator und eine Wasserspritze erzeugten Wind und Wassergeräusche, Luftbewegung und den Eindruck von Luftfeuchtigkeit; eine Stroboskoplampe leuchtete mehrmals als Blitz auf. Die Effekte steigerten sich zum Ende der Präsentation und ließen den Besucher zuletzt wieder im Dunkeln stehen. Moor Das im Halbdunkel liegende, lang gestreckte Raumsegment der Moorlandschaft war durch grünbraun gefärbte und bemalte Leinwände begrenzt. Der Boden hatte Torfbelag und strömte einen intensiven Geruch nach Torf aus. Der Raum konnte nur auf einem durch Platten vorgezeichneten Weg begangen werden. Unter diesen Platten befanden sich Tastsensoren, die auf Druck reagierten und Effekte auslösten. Ein erster Impuls schaltete viele kleine Lämpchen an der Decke ein, die zum Teil dauerhaft leuchteten, zum Teil blinkten. Andere Tastsensoren setzten einen Motor in Gang, der einen Ventilator betrieb, so dass die Luft in Bewegung kam und seitlich angebrachte Zweige sich im Wind bewegten. War die Besucherin oder der Besucher bis zur Mitte des Raums gelangt, startete ein weiterer Tastsensor eine kleine Wasserfontäne, deren Plätschern auch akustisch wahrnehmbar war. Durch die Verbindung von optischen, akustischen, haptischen und olfaktorischen Elementen war der synästhetische, stimmungshafte Erlebniseindruck in diesem Raum besonders intensiv. Der Dachboden wurde zu einem interaktiven Lern- und Erfahrungsraum für Besucherinnen und Besucher umgestaltet. Einen Höhepunkt der Arbeitsprozesse stellte die abschließende Ausstellung "Natürlich - Künstlich" dar. Die Schülerinnen und Schüler organisierten den Ablauf von der Ankündigung in der Presse über die Einladung und Plakatierung bis zur Besucherbetreuung. Besucherinnen und Besucher konnten die interaktiven Environments begehen und die Phantasielandschaften erleben. Da immer nur wenige Personen zugleich die Räume erleben konnten, hatten die Schülerinnen und Schüler für die Wartenden eine Einführung in die Programmiersoftware an den Notebooks organisiert und Informationsmaterialien über das Projekt ausgelegt.

  • Kunst / Kultur
  • Sekundarstufe I

Modelle bilden und diskutieren: Schätzung eines Populationsbestandes

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Modellbildung wird die Modellierung zur Schätzung eines Populationsbestandes genutzt, um mithilfe eines Realexperimentes und einer Simulationsumgebung den Prozess der Modellbildung und die Qualität von Modellen zu diskutieren.Wie viele Tiere leben in einem definierten Gebiet? Diese Frage lässt sich gar nicht so einfach beantworten. Sie stellt sich zum Beispiel, wenn man prüfen möchte, ob natürliche oder vom Menschen verursachte Veränderungen Auswirkungen auf die Population einer bestimmten Spezies haben. Dann kommt man zumindest um ein Schätzen der aktuellen Bestandgröße nicht herum. Die dafür gängigen Verfahren beruhen auf Modellierungsprozessen, die sich auch im schulischen Kontext thematisieren lassen. Diese Unterrichtseinheit liefert dafür neben der Beschreibung eines Realexperimentes ("Bonbons aus einem Eimer fischen") eine kleine Simulation ("Wenn der Förster seine Hasen zählen will ... "), mit der die Schülerinnen und Schüler das Fang-Wiederfang-Verfahren zur Schätzung einer virtuellen Hasenpopulation selbstständig und explorativ durchführen können.Für die Ermittlung von Schätzwerten zur Größe von Tierpopulationen stehen verschiedene Verfahren zur Verfügung. Zu diesen zählt das Fang-Wiederfang-Verfahren (auch "capture-recapture-" oder "mark-recapture"-Verfahren). Der Name charakterisiert bereits das Wesen dieser Methode. In einem bestimmten Gebiet werden zu einem konkreten Zeitpunkt Individuen einer Spezies gefangen, gezählt und markiert. Zu späteren Zeitpunkten wird unter möglichst gleichen Bedingungen das Fangverfahren wiederholt (Wiederfang). Dabei wird neben der Gesamtzahl der gefangenen Individuen auch die Anzahl der davon markierten, also wiedergefangenen, Tiere ermittelt. Die Anzahl der durchgeführten Wiederfangverfahren kann variieren. In der Regel wird das Wiederfangverfahren einmal (2-Punktmethode) oder zweimal (3-Punktmethode) durchgeführt. Bei jedem Fang ist ein spezielles Markierungsmuster zu verwenden. Einen Schätzwert für die aktuelle Populationsgröße erhält man, wenn man die ermittelten Daten ins Verhältnis setzt. Realexperiment und Simulation Für den schulischen Kontext ist die Modellierung zur Schätzung eines Populationsbestandes ein gutes Beispiel, um den Prozess der Modellbildung und die Qualität von Modellen zu diskutieren. Das zur Verfügung gestellte Arbeitsblatt soll den Schülerinnen und Schülern eine möglichst selbstständige Auseinandersetzung mit der Problematik ermöglichen. Das beschriebene Modellexperiment ("Bonbons aus einem Eimer fischen") erlaubt es, sich zunächst nichtvirtuell als "Fänger und Wiederfänger" im Klassenzimmer zu probieren. Für eine intensivere explorative Beschäftigung mit der Thematik wird die Simulationsumgebung "Wenn der Förster seine Hasen zählen will ... " zur Verfügung gestellt, die das Durchführen des Fang-Wiederfang-Verfahrens in Abhängigkeit der Parameter Anzahl der vorhandenen Individuen (in diesem Fall Hasen) Anzahl der aufgestellten Fallen Anzahl der Wiederfänge in kurzer Zeit erlaubt. Eine kleine Gebrauchsanwesiung für die Installation und die Nutzung der Simulationsumgebung, ausgestattet mit vielen Screenshots, ermöglicht eine selbstständige Arbeit der Schülerinnen und Schüler mit dem Programm. Unterrichtsverlauf "Modellbildung zur Schätzung eines Populationsbestandes" Eine Variante der Unterrichtsdurchführung könnte darin bestehen, die Schülerinnen und Schüler in Gruppen einzuteilen (jeweils zwei bis drei Lernende pro Gruppe) und ihnen das Arbeitsblatt mit den Fragestellungen 1-3 zur Verfügung zu stellen. Den Lernenden wird ausreichend Zeit eingeräumt (etwa 15-20 Minuten), um sich mit der Problematik auseinander zu setzen. Nach der Diskussion der Vor- und Nachteile der von den Schülerinnen und Schülern entworfenen Lösungen kann (falls das Fang-Wiederfang-Verfahren nicht bereits erwähnt oder inhaltlich beschrieben wurde) als weitere Methode das Fang-Wiederfang-Verfahren vorgestellt und mithilfe des Wassereimer-Bonbon-Modells simuliert werden. Im Anschluss daran werden den Schülerinnen und Schülern die Aufgaben 4 bis 6 des Aufgabenblattes und die Simulationsumgebung mit der Bedienungsanleitung für das weitere explorative Arbeiten zur Verfügung gestellt. Die Sequenz endet mit einer Diskussion der gewonnenen Ergebnisse. Fachkompetenz Die Schülerinnen und Schüler lernen die Bedeutung von Schätzverfahren für alltägliche Problemstellungen am Beispiel des Fang-Wiederfang-Verfahrens exemplarisch kennen. können den Modellcharakter des Fang-Wiederfang-Verfahrens erkennen und insbesondere die Grenzen dieses Modells beschreiben. erkennen, dass das Fang-Wiederfang-Verfahren mathematisch mithilfe von Verhältnisgleichungen beschrieben werden kann. erfahren, dass sich Zustände und Prozesse aus ihrem unmittelbaren Lebensumfeld, aus Natur und Technik, teilweise mit einfachen Mitteln (abstrakt) modellhaft veranschaulichen lassen. Medienkompetenz Die Schülerinnen und Schüler arbeiten sich selbstständig unter Nutzung einer Dokumentation in die Arbeit mit der vorgegebenen Simulationsumgebung ein. können die gegebene Simulation explorativ zur Beantwortung auch selbst gestellter Fragen nutzen. erkennen, dass Simulationen als Mittel zum Erkenntnisgewinn dienen können. wissen, dass Simulationen als didaktische Mittel zur Veranschaulichung von ausgewählten Modellen eingesetzt werden können. Für den schulischen Kontext ist die Modellierung zur Schätzung eines Populationsbestandes ein gutes Beispiel, um den Prozess der Modellbildung und die Qualität von Modellen zu diskutieren. Das zur Verfügung gestellte Arbeitsblatt soll den Schülerinnen und Schülern eine möglichst selbstständige Auseinandersetzung mit der Problematik ermöglichen. Das beschriebene Modellexperiment ("Bonbons aus einem Eimer fischen") erlaubt es, sich zunächst nichtvirtuell als "Fänger und Wiederfänger" im Klassenzimmer zu probieren. Für eine intensivere explorative Beschäftigung mit der Thematik wird die Simulationsumgebung "Wenn der Förster seine Hasen zählen will ... " zur Verfügung gestellt, die das Durchführen des Fang-Wiederfang-Verfahrens in Abhängigkeit der Parameter Anzahl der vorhandenen Individuen (in diesem Fall Hasen) Anzahl der aufgestellten Fallen Anzahl der Wiederfänge in kurzer Zeit erlaubt. Eine kleine Gebrauchsanwesiung für die Installation und die Nutzung der Simulationsumgebung, ausgestattet mit vielen Screenshots, ermöglicht eine selbstständige Arbeit der Schülerinnen und Schüler mit dem Programm. Eine Variante der Unterrichtsdurchführung könnte darin bestehen, die Schülerinnen und Schüler in Gruppen einzuteilen (jeweils zwei bis drei Lernende pro Gruppe) und ihnen das Arbeitsblatt mit den Fragestellungen 1-3 zur Verfügung zu stellen. Den Lernenden wird ausreichend Zeit eingeräumt (etwa 15-20 Minuten), um sich mit der Problematik auseinander zu setzen. Nach der Diskussion der Vor- und Nachteile der von den Schülerinnen und Schülern entworfenen Lösungen kann (falls das Fang-Wiederfang-Verfahren nicht bereits erwähnt oder inhaltlich beschrieben wurde) als weitere Methode das Fang-Wiederfang-Verfahren vorgestellt und mithilfe des Wassereimer-Bonbon-Modells simuliert werden. Im Anschluss daran werden den Schülerinnen und Schülern die Aufgaben 4 bis 6 des Aufgabenblattes und die Simulationsumgebung mit der Bedienungsanleitung für das weitere explorative Arbeiten zur Verfügung gestellt. Die Sequenz endet mit einer Diskussion der gewonnenen Ergebnisse.

  • Mathematik / Rechnen & Logik / Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Biologie / Ernährung und Gesundheit / Natur und
  • Sekundarstufe I, Sekundarstufe II

Geocaching im Park: ein literarischer Spaziergang mit dem Smartphone

Unterrichtseinheit

In dieser Unterrichtseinheit zur Leseförderung lernen die Schülerinnen und Schüler auf einem literarischen Spaziergang durch den Park mit dem Smartphone bedeutende Naturgedichte der deutschen Literatur vom Barock bis zur Gegenwart kennen.Diese Unterrichtseinheit vermittelt Lesekompetenz an außerschulischen Lernorten: Durch den Einsatz des Smartphones werden die Lernenden in einer Exkursion dazu angeregt, einen Park zu erforschen und gleichermaßen Literatur zu entdecken. Zu Blumen und Bäumen, Brunnen und Teichen, Tieren und vielem anderen suchen sie mithilfe vorgegebener Links Gedichte und Lieder im Internet, lesen, hören, sprechen diese und fotografieren dazu passende Motive. Der Park wird dabei mit allen Sinnen genau wahrgenommen, sodass literarische und ästhetische Bildung gleichermaßen entstehen kann. Weiterführende Hintergrundinformationen zu dieser Form der Begegnung mit Literatur finden Sie im begleitenden Fachartikel Geocaching im Park: ein literarischer Spaziergang mit dem Smartphone . Das Thema "Geocaching im Park: ein literarischer Spaziergang mit dem Smartphone" im Unterricht Ein Springbrunnen inmitten eines Rondells, ein Rosengarten mit Wasserbecken, ein Tiergehege, mächtige Bäume – und hier und da ein Löwenzahn im sorgsam gepflegten Rasen: Zu all diesen und vielen anderen Elementen des Parks gibt es Gedichte, die auch Schülerinnen und Schüler ansprechen. Im Internet lassen sich die Texte in Sekundenschnelle finden, oft ergänzt durch eine Audiodatei oder ein Video. Beim literarischen Spaziergang durch einen nahe gelegenen Park oder Stadtgarten lernen die Schülerinnen und Schüler in dieser Unterrichtseinheit berühmte Gedichte kennen und gewinnen neue, verschiedene Sinne ansprechende Zugänge zu Lyrik. Vorkenntnisse Im Umgang mit dem Smartphone sind die Schülerinnen und Schüler meist fitter als die Lehrkraft. Eine Google-Suche durchführen, ein Foto oder Video aufnehmen, SMS schreiben, Notizen digital festhalten sowie das übliche Grundwissen zu Lyrik – das sind die wesentlichen Voraussetzungen, auf denen diese Unterrichtseinheit beruht. Darüber hinaus müssen die Schülerinnen und Schüler auch über Datenschutzbestimmungen Bescheid wissen, insbesondere über das Recht am eigenen Bild. Genauere Informationen dazu findet man zum Beispiel unter www.klicksafe.de . Vorschläge für Regeln und eine Nutzungsordnung für mobile Endgeräte in der Schule werden bei Lehrer-online gemacht. In dieser Unterrichtseinheit arbeiten die Schülerinnen und Schüler nach dem BYOD-Prinzip (Bring Your Own Device) mit ihren eigenen Geräten. Wichtige Voraussetzungen dafür gilt es vorab verbindlich zu klären: Die mitgebrachten Geräte müssen einen geladenem Akku haben; Fotos, Videos und Tonaufnahmen dürfen nur mit Erlaubnis bzw. gemäß der Aufgabenstellung durch die Lehrperson angefertigt werden; Die Verfügbarkeit von freiem Speicherplatz für die schulische Arbeit muss gewährleistet sein. Didaktische Analyse Im Deutschunterricht aller Stufen spielt Lyrik gemäß den Bildungsplänen, Lehrbüchern sowie als Pflichtthema des Abiturs eine wichtige Rolle. Gedichte in der Schule – das heißt in der Sekundarstufe I meist analysieren und interpretieren mit allem, was so dazugehört: Reimschema und Metrum bestimmen, Stilmittel suchen und benennen, Metaphern und Symbole entschlüsseln, den Titel erläutern, in die literarische Epoche einordnen und so weiter. Die Freude an der Poesie bleibt dabei oft auf der Strecke. Beim literarischen Spaziergang durch den Park sollen die Ziele einer literarischen und ästhetischen Bildung auf andere Weise verfolgt werden. Wie bei einer Rallye oder einer Schnitzeljagd gehen die Schüler zu verschiedenen Stationen im Park, suchen literarische Texte im Internet, stellen thematisch passende Zeichnungen oder Fotografien her, lösen vielfältige Aufgaben allein, zu zweit oder in Kleingruppen. Ihre Medienkompetenz können sie dabei zielgerichtet einsetzen und weiterentwickeln. Methodische Umsetzung Die Lehrkraft gibt den Schülerinnen und Schülern das Arbeitsblatt "Wegweiser" an die Hand und stellt ihnen die weiteren Arbeitsblätter digital zur Verfügung, etwa durch E-Mail-Versand vorab, im virtuellen Klassenzimmer, auf einer Moodle-Plattform oder Ähnliches. Vorab informieren sich die Schülerinnen und Schüler zu Hause über das Thema "Park" und stellen ihr Wissen in Form einer Mindmap zusammen. Der Spaziergang selbst beginnt mit einer kleinen Hausaufgabenabfrage durch ein Quiz. Danach werden die Schülerinnen und Schüler aufgefordert, sich allein oder zu zweit auf den Weg zu machen und die Stationen der Park-Rallye aufzusuchen. Das Prinzip der Individualisierung und Differenzierung des Lernens wird insofern berücksichtigt, als dass die Schülerinnen und Schüler entscheiden können, welche Stationen sie besuchen, wie lange sie dort verweilen und mit wem sie die Aufgaben bearbeiten. Die Resultate der Aufgaben werden auf unterschiedliche Weise gesichert. Das im Literaturunterricht übliche Medium des Schreibens spielt aber eine untergeordnete Rolle. Dass während des Spaziergangs keine anderen Smartphone-Aktivitäten (private Telefonate, SMS, Whatsapp oder Ähnliches) stattfinden dürfen, muss vorab verbindlich vereinbart werden. Fachkompetenz Die Schülerinnen und Schüler lernen bedeutende Naturgedichte der deutschen Literatur vom Barock bis zur Gegenwart kennen und nehmen sie über verschiedene Sinneskanäle auf. setzen sich lesend, hörend, sprechend, zeichnend, fotografierend, filmend mit der Natur im Park und mit thematisch passenden Gedichten auseinander. üben verschiedene Sprechhandlungen ein (Argumentieren/Begründen, ein Interview führen). Medienkompetenz Die Schülerinnen und Schüler nutzen ihr Smartphone zielgerichtet (Recherche, Fotografien, Videos, SMS, Notizen, Audioaufnahme) vergleichen und bewerten mediale Präsentationen von Gedichten im Internet. Sozialkompetenz Die Schülerinnen und Schüler arbeiten allein, zu zweit und in Kleingruppen. tauschen sich analog und digital aus. knüpfen Kontakte mit unbekannten Personen.

  • Deutsch / Kommunikation / Lesen & Schreiben
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Zum Link