• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Fritz Haber: Genie oder Völkermörder?

Unterrichtseinheit

Dieser WebQuest thematisiert die historische Persönlichkeit Fritz Haber (1868-1943) und bettet die Ammoniaksynthese sowie ihren Mitentwickler in einen historischen Kontext ein. Neben Habers Beteiligung an der Giftgasforschung werden auch dessen unbekannte und teils spektakuläre Forschungen sowie die Rolle seiner Frau Clara Immerwahr betrachtet.Der WebQuest ist als Teil einer Semesterarbeit Studierender des Lehramtes Chemie für Gymnasien im Rahmen eines Seminars an der Universität Frankfurt entstanden und wurde bisher aber noch nicht im Unterricht eingesetzt. Wenn Sie die Materialien im Unterricht einsetzen, wären die Autoren für Ihre Erfahrungen und Rückmeldungen dankbar (Informationen und Kontakt zu den Autoren). Damit erhalten die Studenten (David Fischer, Sándor Bekö) auch eine Rückmeldung zu ihrer Arbeit.Die Schülerinnen und Schüler schlüpfen in die Rolle von Studierenden (wahlweise aus einem Institut für Physikalische Chemie, Geschichte, Soziologie oder Chemie), die sich innerhalb von Arbeitsgruppen über Leben und Werk Fritz Habers aus verschiedenen Blickwinkeln informieren. Die Ergebnisse der Arbeitsgruppen werden durch Plakate gesichert, die den Mitschülerinnen und Mitschülern vorgestellt werden. Die vier Poster werden aufgehängt und im Rahmen einer "Poster-Session" gemeinsam betrachtet. Eine Podiumsdiskussion ("Kongress"), in der das Wirken von Fritz Haber kritisch reflektiert und auch der historische Versuch der Ammoniaksynthese demonstriert wird, schließt die Unterrichtseinheit ab. Zielgruppe, Themen, Anbindung an den Lehrplan Hier finden Sie Informationen zu den Voraussetzungen der Unterrichtseinheit, den Themen und ihrer Anbindung an den Lehrplan sowie einen Überblick zum Unterrichtsverlauf. Durchführung des WebQuest In arbeitsteiliger Gruppenarbeit recherchieren die Schülerinnen und Schüler eigenständig und selbst gesteuert Informationen zu Leben und Werk von Fritz Haber. Präsentation der Arbeitsergebnisse Nach einer Poster-Session werden in einem Rollenspiel die Person und die wissenschaftlichen Leistungen Fritz Habers aus verschiedenen Perspektiven betrachtet. Fachkompetenz Die Schülerinnen und Schüler sollen die Forschungsschwerpunkte Fritz Habers benennen können. die Reaktionsgleichung der Ammoniaksynthese nach Haber und Bosch formulieren können. unterschiedliche (historische) Methoden der Ammoniaksynthese benennen können. mindestens drei Giftgase nennen und die Beteiligung Fritz Habers am Gaskrieg beschreiben können. die Gründe für den Suizid von Clara Immerwahr (Fritz Habers Ehefrau) kennen lernen. Medienkompetenz Die Schülerinnen und Schüler sollen relevante Inhalte aus Online-Dokumenten exzerpieren, ordnen und aufarbeiten. den Rechner zur Informationssuche verwenden können. ein Plakat erstellen, das die Ergebnisse der Gruppenarbeit strukturiert zusammenfasst. Sozialkompetenz Die Schülerinnen und Schüler sollen in der Gruppenarbeitsphase konstruktiv mit den Vorschlägen anderer Schülerinnen und Schüler umgehen. auf der Basis des angeeigneten Wissens einen Sachverhalt gemeinsam diskutieren, argumentieren und überprüfen. in der Gruppenarbeit eigenverantwortlich Inhalte erarbeiten, auswählen und gemeinsam präsentieren. sich bei der Podiumsdiskussion frei und selbstsicher äußern. Thema Fritz Haber: Genie oder Völkermörder? Autoren David Fischer, Silke Weiß Fach Chemie; fächerübergreifend Aspekte: Politikwissenschaft, Religion/Ethik, Geschichte (Krieg und Frieden, Verantwortung des Wissenschaftlers) Zielgruppe Jahrgangsstufe 13 (G9) beziehungsweise 12 (G8), bevorzugt Leistungskurs Zeitraum 5-6 Stunden Technische Voraussetzungen ein Computer pro Arbeitsgruppe Silke Weiß studierte an der Universität zu Heidelberg und Frankfurt die Fächer Biologie, Chemie, Spanisch und Deutsch auf Lehramt (Sek II) und arbeitet am Alten Kurfürstlichen Gymnasium in Bensheim (Hessen). Sie ist zur Zeit im Projekt "Lehr@mt: Medienkompetenz als Phasenübergreifender Qualitätsstandard" abgeordnet an das Institut für Didaktik der Chemie der Universität Frankfurt und betreut dort den Bereich "Kompetent Chemie unterrichten mit Neuen Medien". Vorwissen der Schülerinnen und Schüler Die Schülerinnen und Schüler sollten das chemische Gleichgewicht und Massenwirkungsgesetz bereits kennen gelernt haben. Technische Voraussetzungen Die WebQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Die Schülerinnen und Schüler sollten Zugang zu einem Drucker haben, um zum Beispiel das Anmeldeformular für den Kongress ausdrucken zu können, aus dem sich dann die Gruppeneinteilung ergibt (siehe Aufgabenseite im WebQuest; "Internetadresse" oder "Download" auf der Startseite der Unterrichtseinheit). Chemie Der WebQuest soll von Schülerinnen und Schülern der Oberstufe (vorzugsweise Leistungskurs) bearbeitet werden. Inhaltlich greift er das verbindliche Unterrichtsthema "Ammoniaksynthese" auf und leitet auch zu einem Demonstrationsversuch an. Die Thematisierung des Haber-Bosch-Verfahrens als Beispiel für das "Prinzip des kleinsten Zwangs" ist im G9-Lehrplan für die Jahrgangsstufe 13 vorgesehen. Zukünftige G8-Oberstufen behandeln dieses Prinzip entsprechend in Jahrgangsstufe 12. Politikwissenschaft, Religion/Ethik Das Haber-Bosch-Verfahren ist als technisches Verfahren über den Chemieunterricht hinaus als fakultativer Unterrichtsinhalt mit Querverweisen zu dem Themengebiet "Krieg und Frieden" (zum Beispiel Politikwissenschaft, Religion/Ethik) möglich. Die Unterrichtseinheit reiht diese Leistung Fritz Habers neben anderen Forschungen ein und erweitert das Wirken Habers um den Aspekt der Verantwortung eines Chemikers. Somit kann der im Lehrplan geforderten Entwicklung eines Wertebewusstseins und der Berücksichtigung der Würde des Menschen Rechnung getragen und die im Lehrplan vorgeschlagene Fächervernetzung hergestellt werden (Politikwissenschaft, Geschichte, Ethik oder der Religion). Einstieg Eine fiktive "Einladung" mit dem provozierenden Untertitel stellt den Einstieg in den WebQuest dar. Ein Professor lädt Studentinnen und Studenten verschiedener Universitäten - darunter auch solche der Universität zu Berlin, an der Fritz Haber selber lehrte - ein, die Fragestellung "Genie oder Völkermörder" kontrovers auf einem "Jungwissenschaftler-Kongress" zu diskutieren. Die Schülerinnen und Schüler erarbeiten zunächst in Expertengruppen ("Arbeitsgruppen") individuelle Antworten auf die zentrale Fragestellung, ob Haber ein Genie oder "Völkermörder" sei. Dabei informieren sie sich anhand vorgegebener Links gemäß der Rollen, in die sie schlüpfen. Dies sind Studierende folgender Fächer oder Fachbereiche: Chemie Physikalische Chemie Geschichte Soziologie "Postersession" und "Kongress" Die Gruppen präsentieren ihre Ergebnisse in Form von Plakaten - ähnlich, wie es auch auf echten wissenschaftlichen Versammlungen der Fall ist ("Poster-Session"). Daraus ergibt sich eine abschließende Podiumsdiskussion, die von den nicht direkt teilnehmenden Schülerinnen und Schülern schriftlich zusammengefasst wird. Demonstrationsexperiment Im Rahmen des WebQuest ist ein Versuch zur Darstellung von Ammoniak nach dem Haber-Bosch-Verfahren vorgesehen. (Nur die Gruppe der Chemikerinnen und Chemiker wird das Experiment vorführen.) Ausgehend von einem zentralen WebQuest-Dokument erarbeiten Schülerinnen und Schüler mithilfe des Internets ein Wissensgebiet und präsentieren anschließend ihre Ergebnisse. Die Arbeit mit dem WebQuest erfolgt in den Schülergruppen eigenständig und selbst gesteuert. Der Lehrkraft kommt die Rolle eines Lernbeobachters zu. Allgemeine Informationen zum Thema WebQuest im naturwissenschaftlichen Unterricht finden Sie hier: WebQuests in den Naturwissenschaften Informationen zu den internetbasierten "Lernabenteuern" Expertengruppen In der ersten Phase der Bearbeitung des WebQuest werden vier Arbeits- oder "Expertengruppen" gebildet, die sich mit den folgenden Schwerpunkten beschäftigen. Die Zuordnung der Schülerinnen und Schüler zu den Arbeitsgruppen kann eigenständig erfolgen. Zu beachten ist hierbei, dass nur die Gruppe der Chemikerinnen und Chemiker den Versuch zur Darstellung von Ammoniak durchführt. Studierende der Physikalischen Chemie (Universität zu Berlin) Aufgabe dieser Arbeitsgruppe ist es, den anderen Gruppen die Leistungen und vielseitigen Forschungen Fritz Habers vorzustellen. (Haber studierte und lehrte unter anderem auch an der Universität zu Berlin.) So versuchte Haber zum Beispiel im Jahr 1921 aus Meerwasser Gold zu gewinnen, um so Deutschlands Reparationszahlungen an die Alliierten zu unterstützen. Die Forschungen zur Schädlingsbekämpfung und den Flammenreaktionen gehören ebenfalls zu den weniger bekannten Aktivitäten Habers, die in der Arbeitsgruppe "Physikalische Chemie" gelesen und den anderen Gruppen vorgestellt werden sollen. Studierende der Geschichte (Universität zu Tübingen) Diese Arbeitsgruppe untersucht die Verwicklungen Habers in den ersten Weltkrieg und deckt historische Zusammenhänge auf. Am 22. April 1915 in Belgien (Ypern) wurden zum Beispiel auf Anraten Habers erstmals 150 Tonnen Chlorgas als "moderne Massenvernichtungswaffe" eingesetzt. Studierende der Soziologie (Universität zu Darmstadt) Die Arbeitsgruppe der Soziologen untersucht die Rolle der Frau in der Wissenschaft zur damaligen Zeit und erweitert so das Hauptthema um einen wichtigen Aspekt. Im Mittelpunkt dieser Gruppenrecherche steht Habers Ehefrau Clara Immerwahr, ihr Standpunkt zu den umstrittenen Aktivitäten Habers und ihr tragisches Schicksal. Studierende der Chemie (Universität zu Frankfurt) Die Arbeitsgruppe der Chemikerinnen und Chemiker konzentriert sich auf die Forschungen Habers rund um die Ammoniak-Hochdrucksynthese. Zu den Aufgaben dieser Arbeitsgruppe gehört neben einer vergleichenden Literaturrecherche auch die Durchführung eines Modellversuches zur Haber-Bosch-Ammoniaksynthese im kleinen Maßstab. Zeitaufwand Für die Arbeitsphase mit dem WebQuest sind in dieser Unterrichtseinheit etwa zwei bis drei Stunden zu veranschlagen. Für ihre jeweiligen Forschungsgebiete steht den Schülerinnen und Schülern im Quellenbereich der WebQuest-Seite eine Liste mit mehr aus dreißig ausgewählten Links zur Verfügung. Ein Teil der Literatur liegt auch als PDF-Dokument vor, von dem bei Bedarf je ein Exemplar pro Gruppe ausgedruckt werden kann. Darüber hinaus ist es hilfreich, wenn sich die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen. Poster-Session Mithilfe der verschiedenen Quellen wird von jeder der vier Arbeitsgruppen ein Plakat erstellt, das die wichtigsten Informationen und Erkenntnisse zu den jeweiligen Schwerpunktthemen der Gruppe enthält. Diese Plakate - die im Ansatz den Kriterien eines wissenschaftlichen Plakates genügen sollen - werden zum "Kongress" mitgebracht und dort im Rahmen einer "Poster-Session" ausgestellt. Auf diese Weise werden die sich gegenseitig ergänzenden Informationen und Facetten zu Fritz Habers Leben und Werk allen Schülerinnen und Schülern schon transparent, bevor die Diskussion beginnt. Es ist daher darauf zu achten, dass der Inhalt der Plakate von einem unwissenden Betrachter in fünf bis zehn Minuten erfasst werden kann! Fritz Habers Forschungen werden in der Diskussion nicht allein auf die Ammoniak-Hochdrucksynthese reduziert, sondern in den historischen Kontext eingebettet und kritisch beleuchtet. Zeitaufwand Für die Erstellung der Plakate wird eine Schulstunde benötigt. Die Ausstellung der Plakate dauert etwa eine halbe Stunde. Dies sollte optimalerweise zu Beginn einer Doppelstunde geschehen, da die restliche Zeit dann für den Kongress verwendet werden kann. Podiumsdiskussion Nach der Recherche und Sicherungsphase (Erstellung der Plakate) werden in einer Podiumsdiskussion ("Jungwissenschaftler-Kongress") Vertreterinnen und Vertreter jeder Arbeitsgruppe zu Wort kommen (insgesamt acht Personen) und Habers Aktivitäten kritisch kommentieren. Zentral ist hierbei die Ausgangsfrage, ob Haber ein Genie oder ein Völkermörder sei. Planung Für den Jungwissenschaftler-Kongress ist in dieser Unterrichtseinheit eine Unterrichtsstunde zu veranschlagen. Darin ist die Nachbesprechung nicht enthalten. Schülerinnen und Schüler, die nicht aktiv am Kongress beteiligt sind, erstellen eine stichpunktartige Zusammenfassung des Disputes, in der die unterschiedlichen Sichtweisen der Arbeitsgruppen und ihr Bezug zu der Ausgangsfrage dargestellt werden. Die Zusammenfassungen sollen mit einer persönlichen Stellungnahme enden. Silke Weiß studierte an der Universität zu Heidelberg und Frankfurt die Fächer Biologie, Chemie, Spanisch und Deutsch auf Lehramt (Sek II) und arbeitet am Alten Kurfürstlichen Gymnasium in Bensheim (Hessen). Sie ist zur Zeit abgeordnet im Projekt "Lehr@mt: Medienkompetenz als Phasenübergreifender Qualitätsstandard" an das Institut für Didaktik der Chemie der Universität Frankfurt und betreut dort den Bereich "Kompetent Chemie unterrichten mit Neuen Medien".

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

WebQuest im Chemie-Unterricht: Im Zweifelsfall für den Zimtstern?

Unterrichtseinheit

In diesem WebQuest setzen sich die Schülerinnen und Schüler mit Zimt und dessen Inhaltsstoff Cumarin auseinander. In der Unterrichtseinheit ist auch ein Versuch zum Nachweis von Cumarin in Zimt mittels Dünnschichtchromatografie vorgesehen.Im Dezember 2006 wurde vor dem Verzehr zu vieler Zimtsterne gewarnt, da dies eventuell zu gesundheitlichen Schädigungen führen könnte. Dies bildet den Aufhänger für die Rahmenhandlung des Zimtsterne-WebQuests. Die Firma "Schmecktgut & Co.", die Zimststerne produziert, beruft in der Vorweihnachtszeit ein Meeting ein, bei dem vier Expertengruppen (Aroma-Expertinnen und -Experten, Medizinerinnen und Mediziner, Chemikerinnen und Chemiker sowie Verbraucherschützerinnen und -schützer) ein umfassendes Bild der Situation erstellen sollen. Das WebQuest ist als Teil einer Semesterarbeit Lehramtstudierender im Rahmen eines "Neue Medien"-Seminars an der Universität Frankfurt entstanden. Die Autorinnen sind für Rückmeldungen aus der Unterrichtspraxis dankbar. Zusatzmaterialien und -informationen zu diesem und weiteren WebQuests sendet Ihnen auf Anfrage gerne Frau Silke Weiß per E-Mail zu.Das WebQuest kann von Schülerinnen und Schülern der Oberstufe (bevorzugt Leistungskurs) bearbeitet werden. Inhaltlich knüpft es an das Thema "Aldehyde" an. Die Lernenden arbeiten zunächst in Expertengruppen und informieren sich gemäß der von ihnen übernommenen Rolle (Aroma-Expertinnen und -Experten, Medizinerinnen und Mediziner, Chemikerinnen und Chemiker sowie Verbraucherschützerinnen und -schützer). Die Ergebnisse ihrer Recherchen tragen sie den Mitschülerinnen und Mitschülern vor. Daraus ergibt sich eine anschließende Diskussion, deren Ergebnis in neuer Gruppenzusammensetzung (Gruppenpuzzle) als "Verbraucherinfo" in einem Dokument zusammengefasst wird. Das Heft "Unterricht Chemie" Nr. 108 des Friedrich Verlages (November 2008) enthält einen Artikel der Autorin, in dem die fachlichen und historischen Hintergründe zu dem Zimtsterne-WebQuest ausführlich dargestellt werden. Hinweise zum Unterrichtsverlauf Technische Voraussetzungen und Hinweise zum Einsatz des WebQuests sowie zur Präsentation der Ergebnisse Fachkompetenz Die Schülerinnen und Schüler zeichnen und erläutern die Struktur des Zimtinhaltsstoffs Cumarin. legen dar, wie Cumarin auf den menschlichen Organismus wirkt. zeichnen und erläutern die Struktur des Zimtaldehyds. nennen und erklären eine Synthese-Möglichkeit von Cumarin. benennen Verwendungsmöglichkeiten für Cumarin-Derivate. Medienkompetenz Die Schülerinnen und Schüler exzerpieren und ordnen Inhalte aus Online-Dokumenten. verwenden den Computer zur Informationssuche. konzipieren ein Thesenpapier. stellen einen Vortrag, gestützt auf ein geeignetes Medium, zusammen und präsentieren ihre Ergebnisse. Sozialkompetenz Die Schülerinnen und Schüler diskutieren auf der Basis des angeeigneten Wissens einen Sachverhalt gemeinsam. bringen Argumente vor, begründen und überprüfen diese. erarbeiten in Gruppenarbeit eigenverantwortlich Inhalte, wählen diese aus und präsentieren sie gemeinsam. Technische Voraussetzungen Die WebQuest-Materialien dieser Unterrichtseinheit sind HTML-Seiten, die mit jedem gängigen Browser betrachtet werden können. Für die Darstellung einer im Rahmen des WebQuests besuchten Webseite mit einer Videosequenz wird der Windows Media Player benötigt. Fachliche Voraussetzungen Der Themenbereich Aldehyde ist obligatorischer Bestandteil der Oberstufenchemie. Die Schülerinnen und Schüler sollten diese Substanzklasse schon kennen gelernt haben, bevor sie das WebQuest durchführen. Allgemeine Hinweise zur WebQuest-Methode Ausgehend von einem zentralen WebQuest-Dokument erarbeiten Schülerinnen und Schüler im Rahmen eines WebQuests mithilfe des Internets ein Wissensgebiet und präsentieren anschließend ihre Ergebnisse. Allgemeine Informationen zu dieser Methode und ihrem Einsatz im naturwissenschaftlichen Unterricht finden Sie bei Lehrer-Online. Jede Expertengruppe soll auch eine Dünnschichtchromatographie verschiedener Zimtsorten durchführen. Die detaillierte Versuchsvorschrift (siehe Download auf der Startseite der Unterrichtseinheit) können die Lernenden auch im WebQuest-Dokument abrufen. Abb. 1 zeigt ein Ergebnis. Als Proben wurden Ceylonzimt (1), Cassiazimt (2) und Cumarin (3) aufgetragen. Die linke Teilabbildung zeigt das Chromatogramm im UV-Licht (256 nm). Die rechte Teilabbildung zeigt das Ergebnis nach vorheriger Behandlung des Chromatogramms mit ethanolischer Kaliumhydroxid-Lösung im UV-Licht (366 nm). Informationen und Materialien zum Thema Dünnschichtchromatographie finden Sie auch in dem folgenden Beitrag: Vortrag und Handout Mithilfe der Quellen soll ein Vortrag erarbeitet werden, der die wichtigsten Informationen zu den jeweiligen Schwerpunktthemen der Expertengruppen enthält. Welche Medien zur Unterstützung des Vortrags verwendet werden, soll gruppenintern abgesprochen werden. Der Vortrag soll die Dauer von zehn Minuten nicht überschreiten! Vortragsbegleitend soll von jeder Gruppe ein Handout vorbereitet und verteilt werden, das die wichtigsten Informationen zusammenfasst. Diskussion Nachdem alle Vorträge gehalten wurden, soll in einer Diskussionsrunde unter Berücksichtigung der Ergebnisse der Gruppenarbeit eine Entscheidung für oder gegen die Produktion von Zimtgebäck in der Firma "SchmecktGut & Co." getroffen werden. Verbraucherinformation Abschließend soll das Ergebnis der Diskussion in einer Verbraucherinformation zusammengefasst werden. Der ein bis zwei Seiten lange Text wird in fünf Gruppen verfasst (etwa vier Personen je Gruppe). Die Gruppen werden so zusammengesetzt, dass in jeder Gruppe eine Vertreterin oder ein Vertreter aus jeder der vier Expertengruppen arbeitet. Arbeitsteilige Gruppenarbeit In der ersten Unterrichtsphase werden die vier Expertengruppen gebildet, die sich mit den jeweiligen Schwerpunkten beschäftigen. Die Zuordnung der Schülerinnen und Schüler zu den Gruppen erfolgt per Los. Aroma-Expertinnen und Experten Die Lernenden dieser Gruppe sollen ihre Mitschülerinnen und Mitschüler über Definition und Eigenschaften von Aromastoffen und Gewürzen informieren. Was verleiht Aromastoffen ihren Duft und Gewürzen ihren Geschmack? Aus welchen Verbindungsklassen kommen diese Stoffe hauptsächlich? Chemikerinnen und Chemiker Diese Gruppe soll die Struktur und die chemischen Eigenschaften des Cumarins erläutern. Wie wird natürliches Cumarin in Pflanzen gebildet? Von welcher Verbindungsklasse leiten sich die Cumarine ab? Viele weitere Fragen sind in diesem Kontext möglich. Medizinerinnen und Mediziner Die Medizinergruppe soll darüber informieren, wie und wo Cumarin im menschlichen Körper wirkt. Welche potentiellen Gefahren bestehen für den Organismus? Mit welchen Stoffen steht Cumarin im Körper in Wechselwirkung? Wozu werden Cumarin-Derivate in der Medizin verwendet? Verbraucherschützerinnen und -schützer Die Verbraucherschützenden interessiert vor allem die Frage, wie Politik und Wirtschaft mit dem Problem "Cumarin in Zimt" zum Schutz der Konsumentinnen und Konsumenten umgehen sollten. Selbstgesteuertes Arbeiten Die Arbeit mit dem WebQuest erfolgt in den Schülergruppen eigenständig und selbstgesteuert. Der Lehrkraft kommt die Rolle eines Lernbeobachters zu. Ergänzende Materialien Für ihre jeweiligen Forschungsgebiete stehen den Schülerinnen und Schülern im Quellenbereich des WebQuests ausgewählte Links zur Verfügung. Darüber hinaus ist es wünschenswert, wenn die Lernenden selbstständig in der Schul- oder Stadtbibliothek weitere Materialien beschaffen.

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

So kommen WebQuests in den Unterricht

Fachartikel

Dieser Artikel gibt Anregungen und Anleitungen zur Erstellung eigener WebQuests für den Unterricht. Neben Informationen zu methodisch-didaktischen Aspekten und einem Medienkompetenztraining im Rahmen der Blended-Learning-Veranstaltung unterstützt ein Template die WebQuests-Erstellung.WebQuests sind ein geeignetes Mittel, um Lernende selbstständig und eigenverantwortlich arbeiten zu lassen. Die Zahl verfügbarer WebQuests ist aber - insbesondere in den Naturwissenschaften - recht überschaubar. Die Methode wird hier noch wenig eingesetzt. Woran liegt das? Man findet selten WebQuests, die genau in den eigenen Unterricht passen. Will man sie trotzdem einsetzen, muss man die Fundstücke den eigenen Bedürfnissen anpassen oder gar eigene WebQuests gestalten. Und dies fordert die Medienkompetenz der Lehrerinnen und Lehrer heraus. Medienkompetenz meint dabei nicht nur das didaktische Verständnis, sondern schließt auch technische Fertigkeiten ein. Und daran können Einsatz und Verbreitung dieser Methode im Alltag scheitern. Medienkompetenz als Mangelfaktor Technische Grundlagenkenntnisse sind nötig, um die WebQuest-Seiten zu gestalten. Dazu muss man sich zumindest ansatzweise mit HTML auskennen. Zum Veröffentlichen der WebQuests auf einer Homepage muss man mit einem Server kommunizieren. Auch das erfordert Kompetenzen im Umgang mit der entsprechenden Technik. Für medienaffine Lehrkräfte ist dies kein Problem. Aber für viele Kolleginnen und Kollegen sind das Barrieren für den WebQuest-Einsatz im Unterricht - auch wenn sie der Methode grundsätzlich positiv gegenüberstehen.

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Informationstechnik / Pädagogik
  • Primarstufe, Sekundarstufe I, Sekundarstufe II, Spezieller Förderbedarf, Berufliche Bildung

Brennstoffzellen - "saubere" Energie für Auto, Handy & Co?

Unterrichtseinheit

Mit Unterrichtsmaterialien der Max-Planck-Gesellschaft erarbeiten Schülerinnen und Schüler, wie Brennstoffzellen funktionieren und welche technischen Herausforderungen sie an die Forschung stellen. Auch die Frage, ob Brennstoffzellen-Autos automatisch umweltfreundlich sind, wird untersucht. An Bord eines Raumschiffs ist Platz Mangelware - und so stattete die NASA schon in der Mitte des vergangenen Jahrhunderts ihre Raumfahrzeuge mit kompakt gebauten und energieeffizienten Brennstoffzellen aus. Die "leise Knallgasreaktion" von Wasserstoff und Sauerstoff liefert Astronauten nicht nur Energie, sondern als einziges "Abfallprodukt" auch noch das lebenswichtige Wasser. Aber auch im Alltag wären Brennstoffzellen nützlich, da sie eine deutlich längere Lebensdauer als Batterien oder Akkus haben. In Laptops, Handys und MP3-Playern könnten sie Batterien und Akkus ersetzen. Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) testet derzeit wasserstoffbetriebene Membran-Brennstoffzellen zur Notstromversorgung in Flugzeugen. Eine positive Umweltbilanz haben Brennstoffzellen aber nur, wenn der Wasserstoff umweltfreundlich erzeugt wird, zum Beispiel durch die Elektrolyse von Wasser mit Sonnenergie. Wenn Sie Theorie und Praxis miteinander verbinden möchten: Einige Schülerlabore bieten Experimente mit Brennstoffzellen an (siehe Links zum Thema ). Die Thematik bietet viele Anknüpfungspunkte an Lehrpläne (Redox- und Elektrochemie, Fähigkeit zur Beteiligung an gesellschaftlichen Diskursen über Naturwissenschaft und Technik) und eignet sich für einen fächerübergreifenden Unterricht. Die Materialien der Unterrichtseinheit werden durch Beiträge aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt. Diese bieten weitere Details zur technischen Entwicklung und der möglichen zukünftigen Bedeutung von Brennstoffzellen. Themen der Unterrichtseinheit Laptops oder Handys, die von winzigen Brennstoffzellen gespeist werden, Kleinkraftwerke auf Wasserstoffbasis, die Wohnhäuser mit Energie und Wärme versorgen und umweltfreundliche "Wasserstoffautos" - Forscherinnen und Forscher entwickeln zurzeit immer neue Ideen, wie Brennstoffzellen im Alltag genutzt werden können. Allerdings sind die meisten Brennstoffzellen-Typen von der Serienreife noch weit entfernt. Zum einen fehlt es an den technischen Möglichkeiten zur umweltfreundlichen Herstellung von Wasserstoff. Das Ausweichen auf Methanol als Brennstoff könnte dabei helfen, die Technologie zu einer Alternative zu fossilen Brennstoffen werden zu lassen. Auf der Suche nach den perfekten Werkstoffen für die Brennstoffzelle von Morgen ist man zwar auf einem guten Weg - auch mithilfe der Nanochemie - aber eben noch nicht am Ziel. Bezug zur Nanotechnologie Damit die "kalte Verbrennung" von Wasserstoff funktioniert, müssen beide Elektroden der Brennstoffzelle mit einem Katalysator beschichtet sein. Am Max-Planck-Institut für Kohlenstoffforschung in Mühlheim an der Ruhr werden dafür Metall-Nanopartikel entwickelt, die für eine große katalytisch aktive Oberfläche sorgen. Die Metalloxid-Nanoteilchen werden zunächst auf einem Trägermaterial - das können feine Rußkörnchen sein - fixiert, danach zu einer porösen Elektrode zusammengepresst und anschließend zum Metall reduziert. Materialien der Max-Planck-Gesellschaft Die Materialien der Unterrichtseinheit sind ein Angebot der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. Auf der Webseite max-wissen.de finden Sie weitere Materialien für den Unterricht und Hintergrundinformationen zu aktuellen Forschungsthemen aus Physik, Chemie, Biologie und Erdkunde. An allen max-wissen-Beiträgen sind Fachwissenschaftlerinnen und -wissenschaftler der Max-Planck-Gesellschaft beteiligt: Aktualität und fachliche Richtigkeit sind somit gewährleistet. Unterrichtsverlauf und Materialien Der Verlauf der Doppelstunde und die Anbindung des Themas an die Lehrpläne werden kurz skizziert. Hier finden Sie auch eine Übersicht der Materialien. GDCh-Wochenschau-Artikel zum Thema Die hier zusammengestellten Artikel (PDF-Download) bieten weitere Details zur technischen Entwicklung und der möglichen zukünftigen Bedeutung von Brennstoffzellen. Die Schülerinnen und Schüler sollen: Brennstoffzellen als alternative Energiequellen für Fahrzeuge oder Mobilfunkgeräte kennen lernen. die Umweltfreundlichkeit von Brennstoffzellen realistisch einschätzen können. das Funktionsprinzip einer Brennstoffzelle erarbeiten und erklären können. erkennen, welche Probleme Forscherinnen und Forscher auf dem Weg zum serienreifen Produkt noch überwinden müssen. Fast alle Schülerinnen und Schüler besitzen einen tragbaren Computer, ein Handy oder eine Digitalkamera. Mit der Meldung "Akku fast leer - bitte laden" sind sie daher vertraut. Das unerwünschte Phänomen wird als Einstieg in die Thematik genutzt: "Damit diese ärgerliche Meldung bald seltener wird, arbeiten Forscherinnen und Forscher intensiv an der Entwicklung von Brennstoffzellen." Der Unterrichtseinstieg schafft einen konkreten Bezug zur Lebenswelt der Schülerinnen und Schüler und sorgt so für (hoffentlich) großes Interesse. Er zeigt zudem, dass Forschung kein Selbstzweck ist, sondern auch einen konkreten Anwendungsbezug hat und das Leben der Menschen erleichtern kann. Selbsttätige Aneignung von Wissen Im Rahmen der ersten Erarbeitungsphase steht die selbstständige Informationsaneignung im Mittelpunkt des Unterrichts. Die Schülerinnen und Schüler sollen dabei nicht nur Text- und Bildmaterialien auswerten und Inhalte zusammenfassen, sie müssen die erarbeiteten Ergebnisse auch auf ein komplexes grafisches Schema übertragen. Um die selbsttätige Aneignung von Wissen zu forcieren, erledigen die Lernenden die Aufgaben in Kleingruppen (drei bis vier Personen). In der Diskussion mit den anderen Teammitgliedern sollen dabei mögliche Unklarheiten und Verständnisschwierigkeiten besprochen und beseitigt werden. Blick hinter die "Kulissen" der Forschung Da die Möglichkeiten des unmittelbaren Lernens beim Thema Brennstoffzellen eingeschränkt sind, sollen die Schülerinnen und Schüler im zweiten Teil der Unterrichtseinheit zumindest anhand eines Arbeitsblatts einen Blick in die spannende Welt der Brennstoffzellenforschung werfen. Anhand des Themas "Neue Membranen für bessere Brennstoffzellen" lernen sie, wie die noch vorhandenen Mängel der Brennstoffzellen beseitigt werden könnten, um zu einem besseren Produkt zu gelangen. Sie werden aber auch dafür sensibilisiert, dass noch viel Grundlagenforschung zu leisten ist, bis Brennstoffzellen zu einer wirklichen technischen Lösung im Alltag werden können. Die Lehrpläne der Bundesländer für das Fach Chemie bieten vielfältige Anknüpfungspunkte für den Einsatz der Materialien in der Sekundarstufe II. Hier einige Beispiele: Bedeutung der Chemie für die Gesellschaft und für die Bewältigung der aktuellen und zukünftigen Herausforderungen (Nordrhein-Westfalen) Von der Wasserelektrolyse über die Knallgasreaktion zur Brennstoffzelle (Nordrhein-Westfalen) Entwicklung der Fähigkeit, am gesellschaftlichen Diskurs über Naturwissenschaft und Technik teilzunehmen (Sachsen) Redoxreaktionen und deren Bedeutung für die Herstellung ortsunabhängiger Spannungsquellen (Bayern) Unter dem Leitgedanken "Erneuerbare Energien - Klimaretter oder teure Prestigeobjekte?" könnte ein fächerübergreifendes Unterrichtskonzept stehen, zu dem die hier vorgestellte Brennstoffzelleneinheit gut passen würde: Chemie Grundlegende Aspekte zu Brennstoffzellen und anderen erneuerbaren Energien, wie zum Beispiel Biokraftstoffe oder Biomasse, werden vorgestellt. Physik Hier steht neben Solarenergie und Strom aus Wasserkraft oder Windkraftanlagen vor allem die Kernfusion im Focus: Grundlagen und Schwierigkeiten der Umsetzung werden thematisiert. Biologie Hier werden ökologische Probleme untersucht, die sich aus der Nutzung erneuerbarer Energien ergeben, zum Beispiel die Auswirkungen von Windanlagen auf den Vogelzug oder die Folgen von Staudämmen für Flussökosysteme. Geographie, Wirtschaft Im Erdkundeunterricht nimmt das Thema Klima einen breiten Raum ein: anthropogene Ursachen für den Treibhauseffekt und die globale Erwärmung werden diskutiert. Auch die Abhängigkeit der Weltwirtschaft von fossilen Brennstoffen sollte thematisiert werden. Politik Die Lernenden beschäftigen sich mit dem Streit um die Ökosteuer und den Problemen bei der Durchsetzung einer nationalen oder weltweiten Energiewende. Auch das Erneuerbare-Energien-Gesetz in Deutschland und die Möglichkeiten und Grenzen internationaler Abkommen zum Schutz der Atmosphäre werden beleuchtet. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einige für diese Unterrichtseinheit relevante Artikel stellen wir hier kurz vor. Die vollständigen Beiträge stehen als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Der Übersichtsartikel fasst die Argumente von Befürwortern und Kritikern einer Wasserstoff-Wirtschaft zusammen: Zwar ermöglicht die Wasserelektrolyse eine energieeffiziente Erzeugung von Wasserstoff aus dem reichlich vorhandenen Rohstoff. Einer realisierbaren Wasserstoff-Wirtschaft stehen jedoch noch ungelöste Probleme beim Transport und bei der Lagerung des Brennstoffs im Weg. Zu den Sicherheits- und Verteilungsproblemen kommt im Vergleich zu herkömmlichen Energieträgern noch die niedrige Energiedichte pro Volumeneinheit als Nachteil hinzu. Wie der Disput bis zum Anbruch eines regenerativen Energiezeitalters verlaufen wird, ist offen. Energie aus der Brennstoff-Oxidation ohne thermisch-mechanische Umwege Was als Vorteil der Brennstoffzelle erscheint - die Erzeugung elektrischer Energie direkt aus der Oxidation eines Brenngases ohne Umweg über eine Flamme, eine Gas- oder Dampfturbine und einen Generator - entpuppt sich bei der Realisierung als große Hürde. Die aggressiven chemischen Bedingungen um den Verbrennungsvorgang herrschen nämlich in der Brennstoffzelle auch dort, wo elektrischer Strom über korrosionsanfällige Kontakte zwischen verschiedenen Materialien fließen muss. Ohne High-Tech keine Brennstoffzelle Nur High-Tech-Werkstoffe, die dementsprechend teuer sind, halten den Anforderungen des Brennstoffzellen-Betriebs stand. Die damit verbundenen Kosten sind zur Zeit mit einem wirtschaftlich konkurrenzfähigen Produkt noch nicht vereinbar. Die Hochtemperatur-Brennstoffzelle Neben dem allgemeinen Aufbau und der Funktionsweise von Brennstoffzellen werden die Vorteile einer Hochtemperatur-Brennstoffzelle dargestellt. Sie kann ihre eigene Abwärme dazu nutzen, den Wasserstoff, den sie "verzehrt", aus Erdgas ohne zusätzlichen Energieaufwand freizusetzen und erzeugt weniger Kohlenstoffdioxid als vergleichbare konventionelle Blockheizkraftwerke. Ihre prinzipielle Funktionsfähigkeit wurde bereits gezeigt. Bis zur Entwicklung marktgerechter Lösungen müssen aber noch viele Herausforderungen bewältigt werden. Kryospeicherung und Drucktanks erscheinen nicht praktikabel Transport und Speicherung von Wasserstoff bringen bei der Nutzung von Brennstoffzellen Probleme mit sich, die bis heute nicht gelöst werden konnten. Die Verflüssigung von Wasserstoff in Vorratstanks an Tankstellen und in Tanklastwagen ist mit einem erheblichen Verlust an nutzbarer Energie verbunden. Eine kryogene Speicherung in den kleinen Tanks der Endverbraucher ist nicht praktikabel: Trotz extrem aufwendiger Isolierungen käme es bereits nach einigen Tagen zu Abdampfverlusten. Eine physikalische Speicheralternative sind Drucktanks. Aber auch hier geht Energie verloren. Zudem steigen mit dem Druck in den Tanks auch die Sicherheitsanforderungen. Chemische Alternativen Eine kurze Übersicht zeigt, dass es einerseits eine Vielzahl von Ansätzen zur Entwicklung von Wasserstoff-Speichermaterialien gibt, dass andererseits aber noch kein System gefunden werden konnte, bei dem sich ein realistisches Potential für den Einsatz in Autos abzeichnet. Auf diesem Gebiet werden noch enorme Anstrengungen erforderlich sein, wenn man in der Zukunft nicht von Kryo- oder Hochdruckspeichersystemen abhängig sein will. Der Beitrag skizziert folgende Speichermöglichkeiten: Benzin und Diesel Die Wasserstoffspeicherung mit Kohlenwasserstoffen wie Benzin und Diesel hätte den großen Vorteil, dass es keinerlei Infrastrukturprobleme gäbe, ist jedoch für den Antrieb von Autos aus technischen Gründen nicht praktikabel (hohe Temperaturen, aufwendige Gasreinigung). Methanol Trotz ähnlicher Probleme (Gasreinigung) wurden mit Methanol betankte Prototypen erfolgreich getestet. Allerdings ist die Einrichtung einer Methanol-Infrastruktur parallel zur existierenden Infrastruktur für Diesel und Benzin wirtschaftlich unattraktiv. Hydride und Imide Wesentlich attraktiver erscheinen Hydride, die reversibel Wasserstoff aufnehmen oder abgeben können. Trotz vielversprechender Ansätze ist ein großer Teil der komplexen Hydride bisher wenig oder kaum untersucht. Es besteht daher durchaus Hoffnung, dass auf diesem Gebiet noch technisch relevante Systeme entdeckt werden könnten. Metal-Organic-Frameworks (MOFs) Die hochporösen metallorganischen Gerüstverbindungen zeigen in einigen Versuchen sehr hohe Speicherkapazitäten. Inwieweit diese Systeme die geweckten Erwartungen einlösen können, wird die Zukunft zeigen. Dreidimensionale Netzwerke lagern kleine Moleküle ein In den letzten Jahren fanden bemerkenswerte Entwicklungen im Bereich der porösen Materialien statt. Durch den modularen Aufbau metallorganischer Gerüstverbindungen lässt sich die Porengröße sogar maßgeschneidert an die Größe kleiner Moleküle wie Wasserstoff oder Methan anpassen. Damit gelten MOFs als aussichtsreiche Kandidaten für die Speicherung von gasförmigen Energieträgern. Hohe Methandichten bei Raumtemperatur Während Wasserstoff in MOFs nur bei niedrigen Temperaturen gespeichert werden kann, ist die Lage im Fall von Erdgas wesentlich günstiger. Methan (Hauptbestandteil von Erdgas) wird von MOFs bereits bei Raumtemperatur aufgenommen und auch wieder reversibel abgegeben. Es erreicht in den MOF-Poren nahezu die Dichte einer Flüssigkeit. Durch diese Technologie kann man den zur Speicherung einer bestimmten Methanmenge notwendigen Druck deutlich senken, was die Sicherheit erhöht. Die Verwendung von porösen Materialien als Speichermedien befindet sich jedoch noch in der Erprobungsphase. Der Beitrag skizziert verschiedene Wege zur Herstellung von Wasserstoff. Elektrolysetechnologien und deren Betriebsbedingungen werden vorgestellt. Am Beispiel der Niedertemperatur-Elektrolyse bei Standardbedingungen werden Wirkungsgrade und Zellspannungen betrachtet. Zudem wird über eine Versuchsanlage in Saudi Arabien zur Erzeugung "Solaren Wasserstoffs" mit Strom aus einem Solarfeld berichtet, an dessen Bau das Deutsche Zentrum für Luft- und Raumfahrt beteiligt war. Mit der Anlage konnte gezeigt werden, dass Wasserstoff per Elektrolyse mit einem Wirkungsgrad von etwa 70 Prozent regenerativ hergestellt werden kann. Als Brennstoffzelle für den kleinen Leistungsbereich wird in der Regel die Membranbrennstoffzelle verwendet, da ein Systemstart bei Raumtemperatur möglich ist. In Kombination mit einem Speicher für die Energieträger Wasserstoff oder Methanol sind kleine Brennstoffzellen eine Konkurrenz für Batterien und Notstromaggregate. Während Batterien - insbesondere die Lithium-Batterie - aber richtige "Kraftpakete" sind, sind Brennstoffzellensysteme eher "Energiepakete". Der Artikel stellt ihre Funktionsweise sowie Vor- und Nachteile der Brennstoffe Wasserstoff und Methanol vor. So lange die regenerative Wasserstoffgewinnung, zum Beispiel über riesige Solaranlagen, noch nicht serienreif realisiert ist, schlägt Erdgas die Brücke zur Wasserstoffwirtschaft. Ein Vorteil von Erdgas ist seine heute schon nahezu flächendeckende Verfügbarkeit in den Haushalten. Somit können Brennstoffzellen-Heizgeräte nahtlos in bestehende Heizsysteme integriert werden. Feldtests sollen den Markt für die neue Technologie sondieren und vorbereiten. Dieter Lohmann ist ausgebildet für das Lehramt an Gymnasien und arbeit als Redakteur beim Online-Magazin Scinexx .

  • Chemie / Natur & Umwelt
  • Sekundarstufe II

Selbstbau einer Farbstoffsolarzelle

Unterrichtseinheit

Schülerinnen und Schüler stellen mit einfachen Mitteln eine Farbstoffsolarzelle her und prüfen ihre Qualität. Mit PowerPoint erstellte Animationen veranschaulichen die Funktionsweise der nach ihrem Erfinder benannten Grätzel-Zelle. Wenn im Unterricht aktuelle Beiträge der Chemie zur Lösung des Energieproblems thematisiert werden sollen, kommt man an der Solarzelle nach Grätzel (Grätzel-Zelle) nicht vorbei. Sie markiert den Beginn der Entwicklung einer ganzen Klasse von Farbstoffsolarzellen. In der hier vorgestellten Unterrichtseinheit werden ihre Funktionsweise und ihr Aufbau erarbeitet. Da das in der Grätzel-Zelle verwendete Titan(IV)-oxid eine Korngröße von etwa 100 Nanometern hat, ergibt sich dabei auch ein Bezug zur Nanotechnologie. Die Materialien der Unterrichtseinheit werden durch Beiträge aus der GDCh-Wochenschau-Artikel zum Thema (Gesellschaft Deutscher Chemiker e.V.) ergänzt. Diese stellen die technische Entwicklung der Farbstoffsolarzelle sowie ihre aktuelle und zukünftige Bedeutung im Alltag dar. Die Produktion herkömmlicher Solarzellen verursacht hohe energetische Kosten. Anfang der 1990er Jahre entwickelte Michael Grätzel an der technisch-naturwissenschaftlichen Universität in Lausanne (Schweiz) als Alternative die elektrochemische Farbstoffsolarzelle (Grätzel-Zelle). Diese verwendet zur Absorption von Licht kein Halbleitermaterial, sondern Titan(IV)-oxid und organische Pflanzenfarbstoffe. Bei dem Selbstbau einer solchen Zelle können die Schülerinnen und Schüler Ersatzmöglichkeiten für fast alle Komponenten der Grätzel-Zelle forschend untersuchen: Geeignetes Titan(IV)-oxid ist zum Beispiel in weißer Wandfarbe, Sonnenmilch und Zahnpasta zu finden. Bei der Wahl des Farbstoffs können die Lernenden mit Malventee und verschiedenen Beerensäften experimentieren. Dabei bietet sich ein Wettbewerb unter den Schülerinnen und Schülern an: Welche Gruppe entwickelt die stärkste Solarzelle? Bau und Funktion von Farbstoffsolarzellen Aufbau und Funktionsprinzip einer Farbstoffsolarzelle werden auf der Stoff- und der Teilchenebene dargestellt. Visualisierungen und Fazit zur Grätzel-Zelle Mit PowerPoint erstellte Animationen veranschaulichen das Funktionsprinzip der Grätzel-Zelle. Vor- und Nachteile der Farbstoffsolarzelle werden besprochen. Selbstbau einer Grätzel-Zelle Ein Wettbewerb bringt "Spannung" in die Versuche: Auf der Suche nach der besten selbst gebauten Zelle kann mit verschiedenen Materialien experimentiert werden. GDCh-Wochenschau-Artikel zum Thema Der GDCh-Artikel verknüpft die Inhalte der Unterrichtseinheit mit der technischen Entwicklung, der aktuellen und zukünftigen Rolle der Farbstoffsolarzelle im Alltag. Die Schülerinnen und Schüler sollen Aufbau und Funktionsweise einer Farbstoffsolarzelle verstehen. einzelne Schritte der Energiegewinnung in Farbstoffsolarzellen mit denen der Fotosynthese vergleichen. eine Farbstoffsolarzelle selber bauen und dabei mit verschiedenen Materialien experimentieren. Thema Selbstbau einer Farbstoffsolarzelle Autor Walter M. Wagner Fach Chemie Zielgruppe Klasse 5 bis Jahrgangsstufe 13 (je nach fachlicher Vertiefung) Zeitraum 2-3 Stunden, je nach Aufwand bei den Messungen Technische Voraussetzungen Neben der schulüblichen Chemielabor-Ausstattung werden benötigt: Multimeter, Kabel mit kleinen Krokodilklemmen, Lampe (100-150 Watt) Software Microsoft PowerPoint (für die Präsentation von Animationen zur Funktion der Grätzel-Zelle) Eine Solarzelle wandelt Lichtenergie in elektrische Energie um. Bis zum Jahr 1990 standen dafür nur Halbleitermaterialien, zum Beispiel Silizium, zur Verfügung. Diese Materialien haben jedoch eine Reihe von Nachteilen: Man benötigt sie elementar, das heißt, man muss sie aufwendig aus Verbindungen herstellen. Da sie extrem rein sein müssen, sind sie über mehrere Schritte aufzureinigen. Sie funktionieren nur mit bestimmten, genau dosierten Verunreinigungen (Dotierungen). Die Materialien sind spröde. Energierücklaufzeit und Lebensdauer Die ersten drei der oben genannten Punkte verursachen hohe energetische Kosten, die die Energiebilanz belasten: Solarzellen müssen in Süddeutschland im Schnitt etwa vier Jahre betrieben werden, um die Energie zu liefern, die zuvor in ihre Produktion investiert wurde (Energierücklaufzeit). Der spröde Charakter der Halbleitermaterialien bereitet beim technischen Einsatz Schwierigkeiten: Die Module benötigen einen stabilen Träger, der sie vor dem Verbiegen schützt. Sehr schwierig gestaltet sich der Schutz vor Vibrationen, wie sie zum Beispiel an einem Fahrzeug auftreten. Beides belastet die Haltbarkeit der Solarzellen. Angestrebt werden mindestens 15 bis 30 Jahre, damit sie der Lebensdauer der zugehörigen Geräte (Beispiel Kraftfahrzeug) und Einrichtungen (Beispiel Hausdach) entspricht. Lösung in Sicht? Diese Nachteile sollten Farbstoffsolarzellen nicht haben - so stellte man es sich bei ihrer Erfindung im Jahr 1991 vor (B. O'Regan, M. Grätzel, Nature 353, Seite 737-739, 1991). Eine schöne historische Übersicht der technischen Entwicklung bis zum Jahr 2009 finden Sie auf der Webseite "Buch der Synergie". Buch der Synergie: Solarzellentypen Auf der Webseite von Achmed A. W. Khammas finden Sie unter anderem eine Datenbank der Neuen Energien. Man kann sich den Bau einer Grätzel-Farbstoffsolarzelle ungefähr wie den eines Hamburgers vorstellen (Abb. 1 und Abb. 2), der den meisten Schülerinnen und Schülern vertraut sein dürfte: Titandioxid und pflanzlich Farbstoffe - das Fleisch im Burger Am wichtigsten ist ein Material, das Lichtteilchen (Photonen) aufnehmen und dafür Elektronen abgeben kann (beim Hamburger ist es natürlich das Fleisch). Michael Grätzel verwendete dafür Titandioxid, ein weißes Pulver, das auch in Wandfarbe enthalten ist. Die Lichtaufnahme kann sehr stark verbessert werden, wenn die Titandioxid-Körnchen von Farbstoffen umgeben sind (Hackfleisch schmeckt mit Gewürzen auch besser). In unserer Selbstbau-Zelle ist dies der Farbstoff aus Malven- oder Hibiskusblüten. Iod-Lösung - der Saft im Fleisch Damit die abgegebenen Elektronen alle eingefangen werden können, sollte möglichst jedes Titandioxid-Körnchen von leitendem Material umgeben sein. In der Grätzel-Zelle ist dies eine Iod-Lösung, die als Flüssigkeit sehr gut in die Poren zwischen die Titandioxid-Körnchen eindringen kann (im Hamburger-Fleisch der Saft). Kunststofffolie als Träger - die Brötchenhälften Leider ist auch Titandioxid spröde und benötigt einen geeigneten Träger. Zunächst wurden, wie auch beim Selbstbau-Modell, dünne Glasplatten verwendet. Heute setzt man dafür flexible Kunststofffolien ein, sowohl als Basisträger, als auch zum Abdecken (im Hamburger: die beiden Brötchenhälften). Leitende Materialien - Soße und Salat Die Trägermaterialien Glas und Kunststoff leiten den elektrischen Strom nicht. Damit die Elektronen aus der Zelle heraus können und als elektrischer Strom zur Verfügung stehen, sind die Träger mit leitenden Materialien beschichtet (Abb. 1). In der Grätzel-Zelle ist es eine dünne, durchsichtige Schicht aus dem Material TCO (transparent conducting oxide), das am Plus-Pol des Selbstbau-Modells mit Grafit aus einem Bleistift verbessert werden kann (im Hamburger: die Soßen, auf einer Seite mit Salat). Der Einfachheit halber gehen wir von der Teilchennatur des Lichts und der Elektronen aus: Die Sonne schickt uns Photonen-Teilchen, deren Energie wir auf Elektronen-Teilchen übertragen wollen. Das Trägermaterial ist an den im Folgenden beschriebenen chemischen Reaktionen nicht beteiligt: Photonen regen Elektronen an Titan(IV)-oxid (Titandioxid) besitzt den richtigen energetischen Abstand zwischen mit Elektronen besetzten Energieniveaus und vielen unbesetzten Energieniveaus (etwa drei Elektronenvolt). Dieser Abstand kann von Elektronen überwunden werden, wenn sie von einem UV-Photon getroffen werden. Zusätzliche Farbstoffe nehmen Photonen aus einem breiteren Energiebereich des sichtbaren Spektrums auf, geben sie an das Titan(IV)-oxid weiter und erhöhen so die Ausbeute an energiereichen Elektronen. Ein Elektrolyt liefert Elektronen nach Ein Elektronenfluss kommt nur zustande, wenn die durch Photonen bewegten Elektronen sofort ersetzt werden können. Dafür sorgt der Elektrolyt. Es handelt sich um ein Redox-System aus Triiodid-Anionen, die Elektronen abgeben, und Iod-Molekülen, die Elektronen aufnehmen können. Triiodid-Anionen liefern Elektronen gemäß der Gleichung: 2 I 3 - → 3 I 2 + 2e - Rückfluss der Elektronen in den Elektrolyten Die leitfähige TCO-Schicht (transparent conducting oxide) besteht in vielen Fällen aus ITO (Indium Tin Oxide), einem halbleitenden Indium(III)-oxid, das mit 10 Prozent Zinn(IV)-oxid gezielt verunreinigt (dotiert) wurde. Nun leitet das ITO sehr gut, nimmt die Elektronen vom Titan(IV)-oxid (Anode) auf und gibt sie an den metallischen Leiter des Stromkreises, meistens einen Kupferdraht, weiter. Der Stromkreis ist erst geschlossen, wenn die Elektronen wieder in den Elektrolyten fließen können. Das geschieht am anderen Ende der Zelle wieder über eine ITO-Schicht, die mit leitendem Grafit (Kathode) belegt ist und die an den Elektrolyten grenzt. Die Materialien sind so gewählt, dass der Strom nur in eine Richtung fließt. Der Stromkreis wird durch die folgende Reaktion geschlossen: 3 I 2 + 2e - → 2 I 3 - Animierte PowerPoint-Präsentationen, die die beschriebenen Vorgänge auf der Teilchenebene visualisieren, finden Sie auf der Webseite der Didaktik der Chemie der Universität Bayreuth. Abb. 3 (zur Vergrößerung bitte anklicken) zeigt einen Screenshot. Die Präsentationen können zur Unterstützung des Unterrichtsgesprächs verwendet und von den Schülerinnen und Schülern auch am heimischen Rechner genutzt werden. Beachten Sie beim Einsatz der Folien folgenden Hinweis zu den Elektroden: Die Bezeichnungen Anode und Kathode gelten für die Sicht aus dem Inneren der Zelle. Die Anode nimmt vom Elektrolyten Elektronen auf, die Kathode liefert ihm Elektronen. Von außen gesehen ist die Elektrode, die innen die Anode war, der Minus-Pol, jene, die die Kathode war, der Plus-Pol. Die Animationen und Erklärungen dazu können Sie unter "Download" auf der Startseite der Unterrichtseinheit auch herunterladen (graetzel_zelle.zip): Gegenüber den oben bereits beschriebenen Nachteilen herkömmlicher Solarzellen bietet das Konzept der Farbstoffsolarzellen folgende Vorteile: Man benötigt kein Element mehr (zum Beispiel Silizium). Man kann sich also den energieaufwendigen Schritt seiner Reduktion aus Verbindungen sparen. Titan(IV)-oxid muss zwar rein, aber nicht hochrein sein. Damit hält sich der Aufwand bei der Herstellung in Grenzen. Titan(IV)-oxid muss nicht dotiert werden. Titan(IV)-oxid ist zwar - wie die Halbleitermaterialien - spröde. Das macht in seinem Fall aber nichts, weil es als Pulver aufgetragen und die leitende Funktion vom Elektrolyten (flüssig!) übernommen wird. Neue Probleme Man hat sich mit dem Konzept der Farbstoffsolarzelle allerdings einige neue Probleme eingehandelt, die zum Teil immer noch nicht gelöst werden konnten: Lebensdauer der Farbstoffe Die Farbstoffe werden durch Licht mit der Zeit zerstört. Man hat jedoch schon künstliche Farbstoffe entwickelt, die die Lebensdauer der natürlichen weit übertreffen. Verschluss der Zelle Der Elektrolyt sollte kein Wasser enthalten. Aber alle Lösemittel verdampfen recht leicht. Zudem ist Iod als Halogen ein sehr reaktives Element, dem die Materialien in der Zelle über viele Jahre standhalten müssen, besonders auch der Farbstoff. Aus beiden Gründen muss eine Grätzel-Zelle sehr effektiv verschlossen werden können. Dieses Problem ist bis heute (Februar 2010) nicht gelöst. Trägermaterial Ein Trägermaterial, das alle Anforderungen erfüllt (gasdicht, flexibel und UV-beständig über einen Zeitraum von 15 bis 30 Jahren), konnte bisher nicht entwickelt werden. Energieausbeute Was die Energieausbeute betrifft, nähern sich Farbstoffsolarzellen (Stand 2009: etwa 12 Prozent) den Silizium-Solarzellen (Stand 2008: etwa 20 Prozent) allmählich an; preislich gesehen sind sie deutlich günstiger. Seit wenigen Jahren werden Grätzel-Zellen und davon abgeleitete Varianten industriell hergestellt und finden Prototyp-Anwendungen als Ladegeräte für Akkus geringer und mittlerer Kapazität, wobei die Wirkungsgrade der Module mit zwei bis fünf Prozent aber deutlich hinter den Laborwerten zurückbleiben. Konarka Power Plastic 20 Series Die Firma Konarka bietet verschiedene Prototyp-Anwendungen von Farbstoffsolarzellen an. Auch "Solartaschen" können bestellt werden. Anleitungen im Internet Wie bereits erwähnt ergeben sich bei der praktischen Umsetzung des Konzepts noch eine Reihe von (lösbaren) Schwierigkeiten. Ausführliche Anleitungen für den Selbstbau für Lehrkräfte, für Schülerinnen und Schüler der Sekundarstufe I und eine Erweiterung für ältere Lernende finden Sie auf der Webseite der Didaktik der Chemie der Universität Bayreuth. Unter "Download" auf der Startseite der Unterrichtseinheit können Sie diese Anleitungen auch in PDF-Form herunterladen (graetzel_zelle.zip): Strom aus Licht Informationen für Lehrkräfte Strom aus Licht Anleitung für Schülerinnen und Schüler Erweiterung für die Leistungsbestimmung Anleitung zur Feststellung der Leistung der selbst hergestellten Farbstoffsolarzelle Titan(IV)-oxid Das Material muss eine definierte, ziemlich kleine Korngröße haben (um 100 Nanometer). Zudem muss eine dünne, gleichzeitig poröse Schicht hergestellt werden. Dazu fertigt man eine Paste aus geeignetem Titan(IV)-oxid-Pulver und Isopropanol an, trägt sie gemäß der Anleitung dünn auf und brennt sie anschließend auf einer heißen Platte. Die Lösemittel verbrennen dabei und hinterlassen eine poröse, verbackene Titan(IV)-oxid-Schicht. Iod-Kaliumiodid-Lösung Wasserfreie Iod-Kaliumiodid-Lösung sollte man nicht selbst herstellen, sondern gebrauchsfertig kaufen. Trägermaterial Als Trägermaterial kommt bei selbst hergestellten Zellen nur Glas infrage. Leitfähig beschichtete Gläser in der richtigen Größe besorgt man sich am besten, wie das geeignete Titan(IV)-oxid-Pulver und den Elektrolyten, von einem Bausatz-Anbieter als Ergänzungs-Materialien: Im Rahmen des Unterrichts können beim Bau einer Grätzel-Zelle Ersatzstoffe für fast alle Komponenten der Farbstoffsolarzelle von den Schülerinnen und Schülern forschend untersucht werden (siehe auch Ehrl, Simon: Versuche zur Grätzel-Zelle als Modellversuch für die Photosynthese. Schriftliche Hausarbeit, Lehrstuhl für Didaktik der Biologie, Universität Bayreuth 2010): Titan(IV)-oxid und Farbstoffe Die Substanz findet sich in weißer Wandfarbe, Sonnenmilch und Zahnpasta. Diese Ersatzstoffe liefern alle ein positives Ergebnis. Als Farbstoffe kommen verschiedene Beerensäfte (Erdbeere, Johannisbeere, Himbeere) infrage. Elektrolyt Als Elektrolyt kann auch Lugolsche Lösung aus der Biologie-Sammlung genutzt werden. Trägermaterial und Aufbringen der TCO-Schicht Als Trägermaterial wird auch beim Selbstbau Glas verwendet. Gute Ergebnisse wurden mit (kaputten) Isolierglas-Fensterscheiben erreicht. Allerdings sollte ein freundlicher Glaser aus dem Verbund (Doppel- oder Dreifachverglasung) eine Scheibe lösen und Stücke in einer Größe von 2,5 mal 5 Zentimeter schneiden. Die TCO-Schicht auf Normalglas selbst aufbringen gelingt nicht, auch wenn Anleitungen dazu im Internet zu finden sind. Inertelektrode Statt Grafit ist auch Ruß als Inertelektrode verwendbar. Besonders bei Isolierglas ist die Fläche so glatt, dass nicht genügend Bleistiftabrieb zusammen kommt. Hier hilft mehrmaliges Durchziehen durch das obere Drittel einer Kerzenflamme. Starten Sie doch einen Schülerwettbewerb: Gewinnerin oder Gewinner ist, wer mit seiner Grätzel-Zelle die besten Werte erzielt! Ein schnell und einfach zu messendes Kennzeichen für die Qualität ist die erzielte Spannung U 0 : Gutes Ergebnis: ab U 0 = 350 mV Sehr gutes Ergebnis: ab U 0 = 400 mV Wirklich aussagekräftig für die Qualitätsbewertung der hergestellten Zellen ist aber erst der erreichte Strom I beziehungsweise die Leistung P = U*I. Zur Strommessung müsste man die Zelle über ein Potenziometer mit 1 k? linear belasten, bis U auf 80 Prozent von U 0 absinkt. Das Besondere an der Grätzel-Zelle ist, dass die beiden Prozesse Photoneneinfang und Ladungstransport getrennt voneinander ablaufen. Deshalb kann ihre Funktionsweise von Lernenden besser nachvollzogen werden. Gleichzeitig kann ihr Funktionsprinzip modellhaft mit dem der Photosynthese verglichen werden: Pigmente Den Chlorophyllen entspricht in der Grätzel-Zelle der Malven- oder Hibiskusblüten-Farbstoff. Er absorbiert Photonen, wobei bestimmte Elektronen im Molekül in einen höheren energetischen Zustand übergehen. Elektronentransportkette Der Redox-Transportkette der Photosynthese entspricht in der Solarzelle das System aus Titan(IV)-oxid, Grafit und der Stromkreis aus leitenden Oxiden und Kupferdraht: Hier werden Elektronen transportiert. Elektronenquelle Die eigentliche Quelle für Elektronen ist in der Photosynthese die Oxidation des im Wasser gebundenen Sauerstoffs. In der Grätzel-Zelle entspricht dies der Oxidation des Triiodid-Anions zu Iod. Die Übertragung der Energie der Elektronen auf einen chemischen Träger beziehungsweise der Aufbau eines Protonen-Gradienten fehlt in der Grätzel-Zelle. Die GDCh-Wochenschau informiert über aktuelle Themen aus der chemischen Forschung und Entwicklung. Zum Unterrichtsthema passende Beiträge sind für Lehrerinnen und Lehrer bei der Vorbereitung des Unterrichts eine Fundgrube für interessante und weiterführende Informationen. Schülerinnen und Schüler können die Artikel im Rahmen von WebQuests oder zur Vorbereitung von Referaten nutzen. Einige für diese Unterrichtseinheit relevante Artikel stellen wir hier kurz vor. Die vollständigen Beiträge stehen als PDF-Download zur Verfügung. Die Aktuelle Wochenschau der GDCh Jede Woche finden Sie auf der Webseite der Gesellschaft Deutscher Chemiker (GDCh) einen Beitrag zur chemischen Forschung und Entwicklung. Kunststofffolien statt Glasplatten als Träger Die in der Unterrichtseinheit hergestellten Farbstoffsolarzellen basieren auf der Nutzung von TiO2-Nanopartikeln. Beim Aufbringen auf eine Elektrode müssen diese Partikel jedoch bei recht hoher Temperatur (etwa 450 Grad Celsius) zusammenwachsen, um den elektrischen Transport zu gewährleisten. Solch hohe Temperatur schließt eine Reihe von attraktiven Trägermaterialien aus, nämlich preiswerte, einfach zu bedruckende, leichte und flexible Kunststofffolien. In seinem Beitrag für die GDCh-Wochenschau beschreibt Prof. Dr. Derck Schlettwein vom Institut für Angewandte Physik der Justus-Liebig-Universität Gießen die Verwendung von ZnO, das gegenüber TiO2 einen bedeutenden Verarbeitungsvorteil aufweist: ZnO kann man auch chemisch oder elektrochemisch getrieben aus einer wässrigen Zinksalzlösung direkt auf eine Substratelektrode abscheiden. Fotoelektrochemische Solarzellen als Nischenprodukte Neben dem Herstellungsprozess skizziert der Artikel auch die Perspektiven der Dünnschichtsolarzelle als Produkt für den Massenmarkt: Die ersten systematischen Arbeiten zur Nutzung von ZnO begannen bereits in den 1970er Jahren. Prof. Schlettwein veranschlagt etwa den gleichen Zeitraum für eine erfolgreiche Umsetzung des Konzepts. Bevor die Technologie einen bedeutenden Beitrag zur Energieversorgung leisten kann, wird sie sich in Nischenmärkten weiterentwickeln. Eigenschaften wie strukturelle und mechanische Flexibilität oder die wählbare Farbigkeit machen die Noch-Nischentechnologie dabei insbesondere für die Bereiche mobile Elektronik, Mode und ästhetische Architektur interessant. Bedeutung der Elektrochemie für die Energieversorgung der Zukunft Das erfolgreiche Prinzip der "technologischen Evolution" von Anwendungen im kleinen Maßstab bis hin zu immer größeren Bauteilen können wir bereits heute im Bereich der modernen Displays beobachten: Vor etwa 25 Jahren kamen die ersten Flüssigkristallanzeigen in kleinen Taschenrechnern auf, dann eroberten sie die Computerarbeitsplätze und heute sind bereits großflächige Fernseher auf dem Markt. Wenn die fotoelektrochemischen Dünnschichtsolarzellen in die Fußstapfen dieser Entwicklung treten, könnten sie in Zukunft einen bedeutenden Beitrag der Elektrochemie zur Sicherung einer nachhaltigen Energieversorgung leisten. Der Erfinder der Grätzel-Zelle, Prof. Dr. Michael Grätzel, betrachtet die fotoelektrochemischen Solarzellen im Rahmen eines "Wettkampfs" elektrochemischer Systeme mit der Halbleitertechnologie. Er beschreibt das Funktionsprinzip der fotoelektrochemischen Solarzellen und zeigt ihre Vorteile im Vergleich zur Standard-Solarzellen auf: Mit Silizium arbeitende Solarzellen haben erst nach etwa vier Betriebsjahren mehr Energie erzeugt, als bei ihrer Herstellung verbraucht wurde. Dünnschichtzellen mit weniger Materialaufwand haben hier einen klaren Vorteil. Die Dünnschichtzellen können im Gegensatz zu herkömmlichen Solarzellen auch diffuses Licht gut nutzen. Ihr Wirkungsgrad ist bis 65 Grad Celsius praktisch temperaturunabhängig, während Silizium zwischen 25 und 60 Grad Celsius etwa 20 Prozent verliert. Gute Aussichten für die elektrochemische Solarzelle Amerikanische und japanische Entwicklungsingenieure erforschen die spezielle Adaptierbarkeit des Systems auf flexible, polymere Substrate, auf die der sensibilisierte Halbleiter als dünner Film aufgebracht wird. Außerdem ist man in Japan und in Australien dabei, großflächige Systeme zu erstellen und zu testen. Mit der fortschreitenden Expansion des Fotovoltaik-Marktes kann erwartet werden, dass die farbstoffsensibilisierte Solarzelle in Zukunft eine signifikante Rolle spielen wird. Im Wettbewerb mit konventionellen Systemen und anderen Innovationen, bei weiter steigenden Preisen für fossile Brennstoffe und auf Basis ökologischer Betrachtungen, kann und wird die DSC zum wirtschaftlichen Erfolg und umfassenden Einsatz der Fotovoltaik beitragen. B. O'Regan, M. Grätzel A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature 353, 737-739 (1991) Ehrl, Simon Versuche zur Grätzel-Zelle als Modellversuch für die Photosynthese. Schriftliche Hausarbeit, Lehrstuhl für Didaktik der Biologie, Universität Bayreuth 2010 Schlettwein, Derck Gekonnt abgeschiedene nanostrukturierte Filme zum Umwandeln von Licht in Elektrizität. High Chem hautnah, Aktuelles aus der Elektrochemie und zum Thema Energie, Gesellschaft Deutscher Chemiker (GDCh), Frankfurt am Main 2007

  • Chemie / Natur & Umwelt
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Ökologie und Umwelt

Unterrichtseinheit

Hier finden Sie Informationen und Anregungen für den Unterricht im Themenkomplex Ökologie und Umwelt, Klimawandel, Umweltschutz und Klimapolitik. Oft kommen Kinder mit Fragen, die in den Medien diskutiert werden, in die Schule und erwarten Erklärungen. "Umwelt im Unterricht" greift jede Woche ein aktuelles Thema mit Umweltbezug auf und bietet dazu Hintergrundinformationen, Medien und Materialien sowie Unterrichtsideen. Sie können flexibel an verschiedene Lernniveaus und Altersstufen angepasst werden. Flexible Nutzung Die Inhalte sind darauf ausgerichtet, Themen auch bei knappem Zeitbudget kurzfristig in den Unterricht aufnehmen zu können. Daher erfordern die Unterrichtsideen wenig Zeit, sind aber leicht erweiterbar. Die Informationen werden verständlich und kompakt aufbereitet und erleichtern die Vorbereitung. Die Textinhalte stehen unter einer Creative Commons-Lizenz und dürfen bei Bedarf bearbeitet werden. Medien können heruntergeladen werden, um sie in der gewünschten Form im Unterricht zu verwenden. Aktuelle Anlässe Die Materialien greifen Anlässe auf, die in den Medien präsent oder aus anderen Gründen für Schülerinnen und Schüler aktuell sind. Dazu gehören auch Themen, die erst auf den zweiten Blick Umweltthemen sind - auch Events wie Olympia oder die Fußball-WM haben mittlerweile Nachhaltigkeitskonzepte. Und es gibt die "leisen" Themen, die im Leben von Schülerinnen und Schülern immer wieder wichtig sind. Im Sommer zum Beispiel die Qualität von Badegewässern. Langfristig relevant Über welche Ereignisse wird im Fernsehen berichtet? Was ist zurzeit Gesprächsthema bei Schülerinnen und Schülern? Die Redaktion der Website beobachtet kontinuierlich Medien und atuelle Themen und wählt besonders präsente Anlässe aus. Aufbereitet werden nur Themen, die auch langfristig relevante Fragen aufwerfen. Weit gefächertes Archiv Die Hintergrundinformationen und Vorschläge für den Einstieg im Unterricht schlagen die Brücke vom aktuellen Anlass zu grundlegenden Fragestellungen. Die Materialien sind jedoch auch anlassunabhängig verwendbar. So entsteht auf der Website ein wachsendes Archiv, das nach Themen und Stichworten bequem durchsucht werden kann. Lebenswirklichkeit im Fokus Für die Aufbereitung der Materialien wurden redaktionelle Standards entwickelt, die sich an den Maßstäben der Bildung für nachhaltige Entwicklung (BNE) orientieren. Die Unterrichtsinhalte sollen an die Lebenswirklichkeit von Kindern und Jugendlichen anknüpfen. Neben ökologischen Aspekten eines Themas sollen auch ökonomische und soziale Aspekte einbezogen werden. Der Unterricht zielt darauf, Gestaltungskompetenz zu erwerben - die Fähigkeit, gemeinsam mit anderen Lösungen zu entwickeln. Darum werden partizipative Unterrichtsformen berücksichtigt. Rückmeldung erwünscht! Die Idee zum Konzept von "Umwelt im Unterricht" basiert auf der Rückmeldung von Lehrkräften. In Evaluationsworkshops zu umfangreichen Unterrichtseinheiten des Bundesumweltministeriums im Print-Format wurde das Bedürfnis an Hintergrundinformationen zu aktuellen Themen und flexibel einsetzbaren Materialien deutlich. Kontinuierliche Weiterentwicklung "Umwelt im Unterricht" soll auch weiterhin an die Bedürfnisse der Nutzerinnen und Nutzer angepasst und kontinuierlich weiterentwickelt werden. Auch die Redaktion von "Umwelt im Unterricht" möchte lernen und lädt im Blog zum Austausch ein. Darüber hinaus bietet sie dort Einblicke in die Werkstatt: Geplant ist, dort ergänzende hilfreiche Informationen zu veröffentlichen, die während der Arbeit am Projekt gesammelt werden - zum Beispiel kommentierte Informationsquellen, Links zu Foto-Archiven oder Tipps zum Umgang mit digitalen Medien. "Umwelt im Unterricht" wird im Auftrag des Bundesumweltministeriums von einem Team von Fachleuten für Online-Bildungsmedien in Zusammenarbeit mit Autorinnen und Autoren für Unterrichtsmaterialien erstellt. Koalitionswechsel per Vertrauensfrage Allerdings verweist Schröder auf historische Vorbilder. Seinen Amtsvorgänger Helmut Kohl (CDU) hatte der Bundestag 1982 zum Bundeskanzler gewählt. Zuvor hatte die FDP, die unter Bundeskanzler Helmut Schmidt eine Koalition mit der SPD eingegangen war, ihren Koalitionspartner gewechselt. CDU und FDP konnten das konstruktive Misstrauensvotum für sich entscheiden und Helmut Schmidt musste Helmut Kohl weichen. Ein Nationalpark dient dem Schutz der Natur. Sie wird dort möglichst sich selbst überlassen, der Mensch hat nur in Randbereichen Zugang. Im Gegensatz dazu schützen Biosphärenreservate gerade das Miteinander von Mensch und Natur. Es handelt sich dabei um Gebiete, in denen sich durch die nachhaltige Bewirtschaftung eine einzigartige Kulturlandschaft entwickelt und erhalten hat. Die hier beschriebene interaktive Lernumgebung vermittelt anhand des Rhönschafs Hintergründe und Zusammenhänge, warum beispielsweise die Kulturlandschaft der Rhön schützenswert ist. Eine weitere Aufgabenstellung befasst sich mit der Planung eines fiktiven Naturschutzgebietes und dem Konflikt, einerseits Besuchern Zugang zu gewähren, andererseits die Natur möglichst unbeeinflusst zu belassen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Biosphärenreservat und Nationalpark kennenlernen. die Bedeutung des Rhönschafs für die gleichnamige Kulturlandschaft erfahren. sich mit den Ansprüchen der verschiedenen Interessensgruppen auseinandersetzen. wirtschaftliche, ökologische und soziale Aspekte des Rhönschafs kennenlernen. ein fiktives Naturschutzgebiet planen und dabei eine Reihe von Vorgaben berücksichtigen. Die Schülerinnen und Schüler sollen eine interaktive Lernumgebung bedienen. Informationen zur Thematik aus einem Text entnehmen, wesentliche Aussagen verstehen und in eigenen Texten wiedergeben können. das Internet als Informationsquelle kennen- und anwenden lernen. Die Schülerinnen und Schüler sollen durch die fachübergreifende und interaktive Aneignung der Thematik mithilfe einer Lernsoftware interdisziplinär Erkenntnisse gewinnen und handeln können. Thema Biosphärenreservate und Nationalparks Autor Uwe Rotter Fächer Biologie, Geographie, Politik Zielgruppe Klasse 8 bis 10 Zeitraum circa 2 bis 4 Unterrichtsstunden, abhängig von der Verteilung der Arbeitsaufträge Technische Voraussetzungen Betriebssystem Windows ab Version 98, Internet-Explorer ab Version 6, Flash-Player, Installation der kostenlosen Software "bildungsservice-digital" (siehe "Download"), Beamer für die Einführung, Internetzugang Selbstgesteuertes Lernen Das didaktische Konzept fokussiert eine weitgehend selbstständige Erarbeitung der Inhalte. Der hohe Grad an Interaktivität und die multimediale Aufbereitung der Themen regen zum Nachforschen an. Grafische Elemente können per Drag & Drop so positioniert werden, dass dadurch inhaltliche Aussagen entstehen, zum Beispiel durch das Verschieben eines Wanderweges auf einer interaktiven Karte. Arbeitsergebnisse können in einem virtuellen Rucksack verstaut und später an geeigneter Stelle wieder ausgepackt werden. So werden Inhalte wiederholt und vertieft. Bei Bedarf können eigene Inhalte (Texte und Bilder) einfach eingefügt werden. Anpassung an individuelle Anforderungen Beim Beenden der Lerneinheit bietet das Modul die Möglichkeit, die Arbeitsergebnisse zu speichern. So kann zu einem späteren Zeitpunkt die Beschäftigung an der gleichen Stelle wieder aufgenommen werden. Dies ist nicht nur für Lernende, sondern auch für Lehrkräfte interessant: Die Option, eigene Aufgabentexte und andere digitale Materialien einzufügen, abzuspeichern und den Lernenden zur Verfügung zu stellen, ermöglicht die Erstellung individualisierter Lernmodule. Hinweise zur Nutzung Hier finden Sie Hinweise und Vorschläge, wie Sie das Lernmodul im Unterricht einsetzen können. Screenshots geben Ihnen einen Eindruck davon. Kostenlose Client-Software Um dieses Lernmodul zu nutzen, benötigen Sie eine spezielle Client-Software. Diese Software können Sie nach dem Herunterladen der Datei "bildungsservice-digital.exe" (siehe Startseite dieser Unterrichtseinheit) kostenlos installieren. Bei der Installation wird ein neues Icon auf Ihrem Desktop angelegt: Bildungsservice digital. Durch Doppelklick auf dieses Icon erscheint eine Auswahl mehrerer Lernmodule. Zum Starten des entsprechenden Lernmoduls klicken Sie bitte auf die zugehörige Grafik. Internetzugang notwendig Die installierte Client-Software bietet Ihnen den Zugang zu verschiedenen Lernmodulen. Zum Starten eines Lernmoduls benötigt diese Software allerdings Daten aus dem Internet. Das Programm "kennt" die Adresse, Sie müssen nur sicherstellen, dass Ihr Computer Internetzugang hat. Vorteil dieser Methode ist einerseits, dass Sie immer auf die aktuellste Version des Lernmoduls zugreifen und andererseits, dass Sie automatisch Zugang zu weiteren Kursen haben, sobald diese von uns freigeschaltet werden. Überblick verschaffen Zunächst sollten Sie sich selbst mit dem Lernmodul vertraut machen. Dazu bietet Ihnen das Lernmodul eine integrierte Hilfe-Funktion. Ein so genannter "Schnelleinstieg" zeigt alle zur Verfügung stehenden Funktionen. Da alle Lernmaterialien und Aufgabenstellungen in dem Lernmodul integriert sind, wird Ihr Einstieg voraussichtlich nicht viel Zeit benötigen. Mögliche Individualisierung Bitte beachten Sie, dass Sie eigene Texte und Bilder einbinden können. Damit bietet Ihnen das Lernmodul die Möglichkeit, individuelle Aufgabenstellungen zu integrieren. Wenn Sie diese Option nutzen wollen, sollten Sie sich etwas intensiver mit der Funktion "Eigenes Medienelement einfügen" beschäftigen. Wichtig ist in diesem Zusammenhang auch die Möglichkeit, die individualisierte Version der Lernumgebung abzuspeichern. Über die Funktion "Öffnen" können Ihre Schülerinnen und Schülern dann Ihre spezielle Version der Lernumgebung nutzen. Gruppenbildung Im Rahmen des Lernmoduls werden schwerpunktmäßig folgende Themenbereiche behandelt: "Wie plane ich ein Schutzgebiet?", "Das Rhönschaf" und "Möglichkeiten, selbst aktiv zu werden". Dadurch ist die Bearbeitung des Lernmoduls sehr gut für die Aufteilung in Gruppen geeignet. Jede Gruppe könnte sich mit "ihrem" Thema beschäftigen und die im Lernmodul integrierten Aufgaben bearbeiten. Schließlich können sich alle Gruppen wieder zusammenfinden und ihre Arbeitsergebnisse präsentieren und diskutieren. Präsentieren oder Entdecken Natürlich sollten Sie Ihren Schülerinnen und Schülern zunächst die Möglichkeit geben, sich mit der Bedienung der Plattform vertraut zu machen. Es bietet sich an, anhand einer Beamer-Präsentation die wichtigsten Funktionen zu erläutern. Sie können aber auch Ihren Schülerinnen und Schülern den Auftrag geben, sich mit dem "Schnelleinstieg" zu beschäftigen und ihnen etwas Zeit geben, sich mit der Umgebung vertraut zu machen. Zahlreiche Hilfestellungen Bei der Erarbeitung neuer Inhalte tauchen immer wieder Begriffe auf, die für viele Schülerinnen und Schüler erklärungsbedürftig sind. Daher sind viele Begriffe mit Zusatzinformationen hinterlegt, die beim Anklicken erscheinen. Anhand der Lernmodul-Seite "Nationalparks und Biosphärenreservate - Infoblatt" können sich die Schülerinnen und Schüler mit der Bedeutung solcher Schutzgebiete beschäftigen. Auf zwei Übersichtskarten sind alle deutschen Nationalparks und Biosphärenreservate eingetragen. Anhand von Internetlinks können weitere Informationen darüber aufgerufen werden. Hohe Interaktivität Zu jedem der angebotenen Themenbereiche ("Wie plane ich ein Schutzgebiet?", "Das Rhönschaf" und "Möglichkeiten, selbst aktiv zu werden") gibt es kleine Online-Aktivitäten und zugehörige Aufgaben. Schülerinnen und Schüler, die Unterstützung benötigen, können sich in der Regel einen Tipp in der Lernumgebung aufrufen. Um Ihnen einen Eindruck von der Lernumgebung zu geben, werden nachfolgend exemplarisch drei Seiten vorgestellt. Beim Anklicken der Grafiken öffnet sich jeweils der zugehörige Screenshot der kompletten Seite des Lernmoduls. Planung eines Schutzgebiets Auf dieser Seite steht eine Karte eines fiktiven Schutzgebietes zur Verfügung, auf der ein Wanderweg, ein Mountainbikekurs und ein asphaltierter, behindertengerechter Zugang visualisiert werden. Die zugehörigen Elemente können interaktiv verschoben werden, wobei eine Reihe von Vorgaben (zum Beispiel, dass Wildtiere nicht gestört werden dürfen, dass eine Aussichtsplattform gut zugänglich sein soll...) zu berücksichtigen sind. Das Rhönschaf Das Rhönschaf ist ein Beispiel für eine Nutztierrasse, die in ihrem Verbreitungsgebiet das Landschaftsbild prägt. Durch das Weiden der Tiere haben Bäume und Sträucher keine Chance zu wachsen, die Landschaft bleibt offen. Auf dieser Seite des Lernmoduls sollen sich die Lernenden mit den Wechselwirkungen der Schafhaltung mit ihrer Umgebung beschäftigen. Welche wirtschaftlichen, ökologischen und sozialen Aspekte gibt es? Wo kann ich mich engagieren? Es gibt zahlreiche Möglichkeiten, selbst im Natur- und Artenschutz aktiv zu werden. Hier sollen sich die Schülerinnen und Schüler über ausgewählte Organisationen informieren. Ergänzt werden soll die Auflistung um örtliche Vereine oder sonstige Organisationen, bei denen sich Jugendliche engagieren können. Abspeichern Das bearbeitete Lernmodul kann jederzeit gespeichert werden. Dabei bietet es sich an, dass die Schülerinnen und Schüler eine für sie oder ihre Gruppe individuelle Datei-Bezeichnung auswählen, zum Beispiel "michael_schmidt_schutzgebiet.nebs". Dadurch wird einerseits gewährleistet, dass nicht durch versehentliches Vertauschen von Dateien Inhalte verloren gehen. Andererseits haben Sie dadurch die Möglichkeit, detaillierte Einsicht in die Arbeitsergebnisse zu erhalten. Präsentieren Insbesondere wenn das Lernmodul in Gruppen bearbeitet wurde, bietet es sich an, dass jede Gruppe ihre Arbeitsergebnisse vorstellt. Dazu kann entweder per Beamer die relevante Seite projiziert werden; die Lernumgebung bietet aber auch die Möglichkeit, den Bildschirminhalt auszudrucken. Die Lösung (siehe Abb. 5) müssen folgende Aspekte berücksichtigen: Schwarzstörche sind Waldbrüter und sehr scheu. Um die Schwarzstörche zu schützen, muss rund um die zwei Brutplätze jeweils ein 500-Meter-Umkreis zur absoluten Ruhezone erklärt werden. Die Besucherplattform sollte durch einen Weg von Süden erreichbar sein, um die absolute Ruhezone nicht zu kreuzen und um möglichst wenig Fläche zu versiegeln. Die Parkplätze sollten möglichst weit außerhalb geplant werden, gegebenenfalls in der Nähe der Straße, dafür kann der asphaltierte Weg länger sein. Der Wanderweg kann zunächst rechtsseitig entlang des Baches geführt werden, sollte danach abknicken und am westlichen Waldrand entlangführen (Schatten!). Eine Brückenlösung zum Überqueren des Baches wäre zwar denkbar, ist aber ein verhältnismäßig großer Eingriff. Die Heidefläche wird im südlichen Teil durchkreuzt, der Weg führt dann entlang der Ostseite des Waldes zurück zum Ausgangspunkt. Die Mountainbike-Strecke kann parallel zum Besucherweg geführt werden, sollte ihn aber nicht kreuzen. Der Parcours beginnt sinnvollerweise am linken, steileren Hang. Die Schülerinnen und Schüler entdecken, dass das Rhönschaf im Mittelpunkt eines Beziehungsgeflechts steht (Auswahl): Das Schaf liefert dem Menschen Nahrung (Fleisch), die zum Beispiel der Metzger beziehungsweise der Landwirt verarbeitet und verkauft, unter anderem auch an die örtliche Gastronomie. Das Schaf frisst auch junge Baumtriebe und hält damit die Landschaft offen (Beweidung), dadurch bleibt der Erlebniswert für Wanderer erhalten. Davon wiederum lebt die örtliche Gastronomie. Das Schaf liefert Mist, der zur Düngung der Felder genutzt wird, dazu Fleisch und Wolle. Die Produkte werden entweder direkt verarbeitet und dann vermarktet oder vom Landwirt weitergegeben. Wirtschaftliche Aspekte Das Schaf liefert Fleisch und Wolle, die verarbeitet und vermarktet werden. Ökologische Aspekte Die extensive Schafbeweidung erhält die typische Offenlandschaft des Mittelgebirges Rhön, ohne durch zu hohen Fraßdruck eine Schädigung der lokalen Vegetation zu verursachen. Durch die Offenhaltung der Landschaft können sich zahlreiche Tiere und Pflanzen dort ansiedeln beziehungsweise erhalten, für die eine offene Feldflur notwendig ist. Soziale Aspekte Die Schafhaltung ermöglicht Arbeitsplätze und Wirtschaftsbetriebe, die direkt vom Haustier abhängen: Schäfer, Landwirte, Metzger, Gastwirte, Tierärzte. Indirekt ist auch der Fremdenverkehr betroffen (Gastronomie, Dienstleister im Tourismus allgemein). Was können die Schülerinnen und Schüler mit ihrem neu erworbenen Wissen anfangen? Insbesondere die Biosphärenreservate in Deutschland bieten eine Fülle von Angeboten zur Mitarbeit für Jugendliche aller Altersstufen. Sie können hier zum Beispiel bei der Gestaltung von Lehrpfaden mitwirken, am Junior-Ranger-Programm teilnehmen oder ein Praktikum ableisten. Weitere Informationen finden Sie auf den Internetseiten der einzelnen Biosphärenreservate. Schauen Sie bei der Dachorganisation EUROPARC vorbei, dort finden Sie die einzelnen Internetlinks. Biosphärenreservate und Nationalparks Über diesen Link gelangen Sie zurück zur Startseite der Unterrichtseinheit. Der Einstieg erfolgt über aktuelle Medienberichte zu Klimakonferenzen und ein Video, das das Zwei-Grad-Ziel erläutert. Ein Arbeitsblatt aktiviert das Vorwissen der Schülerinnen und Schüler zum Ökosystem Wald und beleuchtet die Bedeutung des Waldes für die Kohlenstoff-Speicherung. Der (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1097849) beinhaltet die Formulierung der Leitfrage der Unterrichtseinheit und der Arbeitsaufträge für das Gruppenpuzzle und die Sicherung, in der ein Brief formuliert werden soll. Thema Das Ökosystem Wald und seine Funktion als Kohlenstoff-Speicher Autorin Anne Thiel-Klein Fach Biologie Zielgruppe Sekundarstufe I Zeitraum 2 Schulstunden Technische Voraussetzungen Computer mit Internetzugang Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1097849) Einstieg Ein Video der ZDF-Kindersendung logo! und aktuelle Medienberichte auf tagesschau.de verdeutlichten die Wichtigkeit des Themas und sollen die Schülerinnen und Schüler für die Erarbeitung motivieren. Erarbeitung I Das Arbeitsblatt (siehe Download-Bereich) aktiviert das Vorwissen der Schülerinnen und Schüler zum Ökosystem Wald und betont die Bedeutung des Waldes als Kohlenstoff-Speicher. Die Bearbeitung erfolgt in Einzel-oder Partnerarbeit oder gemeinsam im Unterrichtsgespräch. Mitunter sind Hilfsmaterialien bereitzustellen. Erarbeitung II Als Vorentlastung erläutert die Lehrkraft das Portal Klimafolgenonline.com und den Arbeitsauftrag. Die Arbeit sollte in heterogenen Gruppen von bis zu sechs Schülerinnen und Schülern erfolgen. Die Lehrkraft steuert Zeitmanagement und Phasenwechsel. Sicherung Innerhalb der Stammgruppen werden Kleingruppen gebildet, die sich auf einen Adressaten einigen und entsprechend einen Brief formulieren. Die Ergebnisse werden entweder exemplarisch vorgelesen oder von der Lehrkraft eingesammelt. Auf Basis des Portals KlimafolgenOnline.com werden im PIKee-Projekt, dem aktuellen Umweltbildungsprojekt am Potsdam-Institut für Klimafolgenforschung, interdisziplinäre Unterrichtseinheiten und Handreichungen für Lehrkräfte entwickelt. Dadurch können Schülerinnen, Schüler und Lehrkräfte die mögliche Entwicklung des Klimas in Deutschland anhand selbst gewählter Szenarien nachvollziehen. Das Portal liefert bis auf Landkreisebene aufgelöste Daten für verschiedene Sektoren wie Klima, Landwirtschaft, Forstwirtschaft und Energie. Mehr Informationen finden Sie hier . Die Schülerinnen und Schüler nutzen den Computer zur Darstellung und Auswertung von Messreihen oder zur Simulation biologischer Abläufe. diskutieren Handlungsoptionen im Sinne der Nachhaltigkeit. bestimmen einheimische Pflanzen und erläutern ihre Umweltansprüche. Die Schülerinnen und Schüler nutzen Computer mit Internetzugang zur Bearbeitung einer konkreten Aufgabenstellung. nutzen das Internet zur individuellen Recherche. verfassen einen formalen Brief mit korrekter Formatierung und adressatengerechter Sprache. Die Schülerinnen und Schüler arbeiten in verschiedenen Gruppen mit variierender Gruppengröße von zwei bis sechs Lernenden zusammen. unterstützen sich gegenseitig beim Prozess des Erkenntnisgewinns. diskutieren unterschiedliche Ansichten und halten unvereinbare Meinungen aus. versuchen sich auf einen gemeinsamen Standpunkt zu einigen. Mit steigender Population wächst auch der Fleischkonsum, der langfristig nicht mehr gedeckt werden kann. Die Haltung großer landwirtschaftlicher Nutztiere geht zudem mit einer Belastung der Umwelt einher. Um diesem Problem entgegenzuwirken, schlagen Wissenschaftlerinnen und Wissenschaftler vor, stattdessen Insekten zu konsumieren. Die Lernenden planen ein Menü für die Schulkantine, das sowohl Insektengerichte als auch bekannte Gerichte enthalten soll. Sie wenden dabei überzeugende Kommunikationsmethoden und Wissen über natürliche Ressourcen an, um andere von der Alternative, Insekten zu essen, überzeugen zu können. Thema Esst Insekten! Anbieter ENGAGE Fach Fächerverbindend: Biologie, Chemie, Politik/SoWi, Deutsch Zielgruppe Klasse 8-10 Zeitraum 1-2 Schulstunden Technische Voraussetzungen Computer mit Beamer Tabellarischer Verlaufsplan Verlaufsplan "Esst Insekten!" Wissenschaftliches Arbeiten Wissenschaftliches Vokabular, Mengen, Einheiten, Symbole und Fachausdrücke: Anwendung wissenschaftlichen Vokabulars, wissenschaftlicher Terminologie und Definitionen. Chemie Erde und Atmosphäre: Die Erde als Quelle begrenzter Ressourcen; die Produktion von Kohlendioxid durch menschliche Aktivität. Chemie Kohlendioxid und Methan als Treibhausgase: Evaluation zusätzlicher durch den Menschen verursachte Gründe für den Klimawandel; Wasservorkommen auf der Erde. Die Schülerinnen und Schüler lernen, ihre Meinung mithilfe von Beweisen überzeugend darzustellen. wenden wissenschaftlichen Erkenntnisse über die natürlichen Ressourcen der Erde an. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Ambrosia oder Ambrosia artemisiifolia ist eine invasive Pflanze, die sich in ganz Europa ausbreitet. Aufgrund von Krankheiten durch ihre allergenen Pollen und dem Konkurrenzkampf mit Nutzpflanzen, entstehen für Europa jedes Jahr Kosten in Höhe von ungefähr 4,5 Milliarden Euro. Die Einführung nicht-heimischer Käfer könnte hierfür die Lösung sein. Bei dieser Unterrichtseinheit bewerten die Schülerinnen und Schüler Vor- und Nachteile der Anwendung biologischer Schädlingsbekämpfung, um die Invasion dieser standortfremden Pflanze einzudämmen. Thema Ambrosia-Invasion Anbieter ENGAGE Fach Biologie Zielgruppe Sekundarstufe I Zeitraum 1-2 Schulstunden Technische Voraussetzungen Computer mit Internetzugang, Beamer Planung Verlaufsplan: "Ambrosia-Invasion" Biologie Beziehungen im Ökosystem: Gegenseitige Beeinflussung von Organismen und Umwelt; Darstellung der Bedeutung von Wechselbeziehung und Wettbewerb in einer Pflanzengemeinschaft. Wissenschaftliches Arbeiten Entwicklung wissenschaftlichen Denkens: Erklärung alltäglicher und technologischer Anwendung von Wissenschaft; Evaluation von persönlichen, gesellschaftlichen, wirtschaftlichen und umweltbedingten Auswirkungen; Entscheidungen auf Grundlage der Evaluation der Beweise und Argumente treffen. Analyse und Evaluation: Interpretation von Beobachtungen und Daten, einschließlich Identifizierung von Mustern und Anwendung von Beobachtungen, um Rückschlüsse zu ziehen und Konsequenzen aufzuzeigen. Die Schülerinnen und Schüler, lernen die gegenseitige Beeinflussung von Organismen in Bezug auf das Ökosystem kennen. bewerten die Lösung für ein Problem. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Europäer lieben Schokolade - sie verschlingen mehr als die Hälfte des weltweiten Bedarfs! Die schlechte Nachricht ist, dass mehr Kakao gegessen wird, als produziert werden kann. Somit könnte Schokolade bald ein seltenes und kostbares Gut werden, da die Bauern Probleme haben, den Bedarf zu decken. Die Schülerinnen und Schüler nutzen ihr vorhandenes Wissen über Bestäubung, um über die Gründe des Rückgangs der Kakaoerträge auf einer Plantage zu diskutieren. In einem Rollenspiel, in dem ein Treffen zur Aufbringung finanzieller Mittel nachgestellt wird, lernen sie anschließend, warum wissenschaftliche Forschung so teuer ist. Thema Schokolade adé Anbieter ENGAGE Fach Biologie Zielgruppe Sekundarstufe I Zeitraum Eine Schulstunde Technische Voraussetzungen Computer mit Internetzugang Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:1079478) Biologie Beziehungen im Ökosystem: Die Bedeutung der Pflanzenreproduktion durch Insektenbestäubung für die Ernährungssicherheit der Menschen Chemie Erde und Atmosphäre: Die Erde als Quelle begrenzter Ressourcen; die Produktion von Kohlendioxid durch menschliche Aktivität Wissenschaftliches Arbeiten Gesprochene Sprache: Klare und präzise Artikulation wissenschaftlicher Konzepte Die Schülerinnen und Schüler erkennen, warum die Bestäubung durch Insekten so wichtig für unsere Lebensmittelproduktion ist. verstehen, warum wissenschaftliche Forschung so teuer ist. Über das Projekt Das Projekt ENGAGE ist Teil der EU Agenda "Wissenschaft in der Gesellschaft zur Förderung verantwortungsbewusster Forschung und Innovation" (Responsible Research and Innovation, RRI). ENGAGE Materialien werden durch das von der Europäischen Kommission durchgeführte Projekt ENGAGE als Open Educational Resources herausgegeben. Die fast 1.400 Kilometer lange ehemalige innerdeutsche Grenze steht in der didaktischen Aufarbeitung der deutschen Teilung bislang eher im Schatten der Berliner Mauer. Ihre Auswirkungen auf Tiere und Pflanzen bieten aber einen guten Anknüpfungspunkt, um bereits Lernende in der Grundschule an das Thema heranzuführen. Der fächerübergreifende Ansatz dieser Unterrichtseinheit verknüpft Geschichte mit Ökologie und verdeutlicht die Folgen politischen Handelns für Mensch und Umwelt. Diese lassen sich mit einem Besuch des Grenzlandmuseums Eichsfeld am Grünen Band auch direkt erfahrbar machen. Die Schülerinnen und Schüler sollen von der historischen Teilung Deutschlands in zwei Staaten erfahren. Wissen über die geografische Lage der deutschen Bundesländer erwerben (Grundschule) beziehungsweise wiederholen (Sekundarstufe 1). den ehemaligen Grenzverlauf und die Besonderheit der ehemaligen innerdeutschen Grenze erkennen. die Auswirkungen des Grenzstreifens auf Menschen, Tiere und Pflanzen verstehen. natürliche Lebensräume, Pflanzen und Tiere im Grünen Band kennenlernen. ihr Wissen zur ehemaligen deutschen Teilung und zum Grünen Band mit dem Besuch des außerschulischen Lernortes Grenzlandmuseum Eichsfeld vertiefen. Die Schülerinnen und Schüler sollen das Internet und Bücher als Informationsträger anwenden. vorgegebene Internetseiten online und offline aufrufen und Sachinformationen daraus entnehmen. die Bedeutung des Internets als "Erinnerungsort" erkennen. sich in der Erstellung von PowerPoint-Präsentationen üben (Sekundarstufe 1). eine historische Textquelle analysieren (Sekundarstufe 1). interaktiv einen Lückentext bearbeiten. Die Schülerinnen und Schüler sollen Regelungen für die Nutzung der Computer-Arbeitsplätze treffen und einhalten. einander bei der Arbeit helfen. gemeinsam ein Plakat gestalten. in einem Rollenspiel lernen, sich sachlich mit Gegenpositionen auseinanderzusetzen (Sekundarstufe 1). Thema Das Grüne Band: Natürliches Mahnmal der Teilung Deutschlands Autor Birgit Pieplow Fächer Fächerübergreifend: Sachunterricht, Deutsch (Grundschule); Politik/Sowi, Geschichte, Biologie, Geographie (Sekundarstufe 1) Zielgruppe Klasse 4, Sekundarstufe 1 Zeitraum 6 bis 8 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetanschluss oder offline zur Verfügung gestellte Internetseiten, Sound-Karte, RealPlayer oder Windows Media Player, Download eines Google Earth-Web-Plugins (kostenfrei), Microsoft PowerPoint oder OpenOffice, Beamer, Lautsprecherboxen, (Drucker) Erforderliche Vorkenntnisse Allgemeiner Umgang mit dem Computer; vorgegebene Internetseiten online und offline aufrufen und darin navigieren; Bedienung der Zoom-Funktion in Google Earth Technische Voraussetzungen Internetzugang (am besten für je 2 Personen), Beamer Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:933634) Modularer Aufbau Die Unterrichtseinheit ist modular aufgebaut und eignet sich für ein fächerübergreifendes Projekt. Die Materialien sind so konzipiert, dass sie zur Vorbereitung eines Besuchs des außerschulischen Lernorts Grenzlandmuseum Eichsfeld, aber auch unabhängig davon genutzt werden können. Ein Besuch des Grenzlandmuseums Eichsfeld bietet sich an, um das im Unterricht erworbene Wissen zu vertiefen und durch praktische Anschauung der Grenzanlagen sowie der im ehemaligen Grenzstreifen entstandenen Biotope erlebbar zu machen. Teamarbeit erwünscht Die Schülerinnen und Schüler arbeiten überwiegend in Teams zusammen. Eine Vielzahl multimedialer und interaktiver Angebote im Internet kann in den Unterricht eingebunden werden, vom virtuellen Rundflug auf Google Earth bis zu Zeitzeugenberichten. Die Internetseiten können den Lernenden online, teilweise auch offline, zur Verfügung gestellt werden. Arbeitsergebnisse werden auf Arbeitsblättern, aber auch Plakaten oder Stellwänden, von Schülerinnen und Schülern der Sekundarstufe 1 auch in einer kleinen PowerPoint-Präsentation vorgestellt. Ein Rollenspiel für die Sekundarstufe 1 ermöglicht eine intensive Auseinandersetzung mit Argumenten konkurrierender Interessensgruppen am Grünen Band und fördert die kommunikativen Kompetenzen sowie die Urteilsfähigkeit der Schülerinnen und Schüler. Folgende Vorbereitungen sollten Sie vor Start der Unterrichtseinheit treffen: Bereitstellen eines Lehrkraft-Computers mit Soundkarte, RealPlayer oder Windows Media Player, Microsoft Powerpoint sowie optimalerweise mehrerer Computer mit Internetanschluss für die Schülerinnen und Schüler; Beamer, Lautsprecherboxen, gegebenenfalls Drucker. Download von Google Earth sowie eines Plugins für den virtuellen Flug entlang des Grünen Bandes (kostenlos). Auswahl von Bildmaterial zur Einführung in das Thema. Bereitstellen von Atlanten (vor 1990) oder alten Karten der Bundesrepublik Deutschland (BRD) und der Deutschen Demokratischen Republik (DDR). Aufziehen einer Abbildung der DDR-Grenzsperranlagen auf ein Plakat. Beschriften von Rollenkarten (nur für die Sekundarstufe 1). Es ist zwar nicht kurz vor zwölf, dennoch müssen wir uns intensiv damit auseinandersetzen, welche Energien außer den fossilen als Alternativen für eine sichere Zukunft zur Verfügung stehen. Bei diesen Überlegungen darf natürlich auch nicht die globale Klimaproblematik außer Acht gelassen werden. Ein Lösungsvorschlag ist Bioethanol. Bereits heute ist in Deutschland gesetzlich geregelt, dass dieser aus Pflanzen hergestellte Kraftstoff dem herkömmlichen Benzin beigemischt werden muss. Doch wer ist eigentlich auf die Idee gekommen, ausgerechnet Alkohol als Kraftstoff zu verwenden? Woraus und wie erfolgt die Herstellung in Deutschland? Ist das Ganze ökonomisch sowie ökologisch tragbar? Welches Potenzial steckt in Bioethanol? In dieser Unterrichtsreihe erarbeiten die Schülerinnen und Schüler in einem Lernzirkel viel Interessantes rund um das Thema Bioethanol. Die Schülerinnen und Schüler sollen wichtige Stationen in der Geschichte des Bioethanols in einem Zeitstrahl einordnen. die Herstellung von Bioethanol erklären. Haupt- und Nebenprodukte der Bioethanolproduktion nennen. experimentelle Untersuchungen zur Fermentation durchführen. in selbst erhobenen oder recherchierten Daten Trends, Strukturen und Beziehungen erklären und geeignete Schlussfolgerungen ziehen. Die Schülerinnen und Schüler sollen unterschiedliche Textquellen für die Recherchen zum Thema Bioethanol nutzen. fachlich korrekt und folgerichtig argumentieren. Die Schülerinnen und Schüler sollen die Arbeit im Team strukturieren und planen. Thema Bioethanol - Herstellung und Anwendungen Autor Rolf Goldstein Fächer Biologie, Chemie, Geographie, Politik/SoWi Zielgruppe Klasse 9 oder 10 Schulformen Hauptschule, Realschule, Gymnasium Zeitraum 4 Schulstunden Technische Voraussetzungen ein Computer mit Internetzugang pro Kleingruppe Relevanz des Themas im Unterricht Nachhaltiges Handeln wird in Bezug auf die uns zur Verfügung stehenden Energieressourcen immer wichtiger. Fossile Lagerstätten von Energieträgern sind nicht unbegrenzt vorhanden, zudem erwächst aus der Verbrennung fossiler Brennstoffe eine zunehmende Klimaproblematik. Daher bedarf es neuer Wege, Kraftstoffe bereitzustellen, und das möglichst umweltfreundlich. Eine Möglichkeit kann hier das Bioethanol sein. Was in den USA und Brasilien begonnen hat, wird seit Beginn des 21. Jahrhunderts im großen Stil betrieben: die Herstellung des klimaneutralen Kraftstoffs aus nachwachsenden Rohstoffen wie zum Beispiel Getreide und Zuckerrüben. Bei der Herstellung von Bioethanol entstehen in großem Umfang zahlreiche Nebenprodukte (auch Kuppel- oder Koppelprodukte genannt), wie Futter- und Düngemittel. Wirtschaftlich und politisch aktuell und lebensnah Mehrere wissenschaftliche Arbeitsgruppen arbeiten zudem an Optimierungsmöglichkeiten im Herstellungsprozess sowie an der Nutzung anderer Ausgangsstoffe, wie zum Beispiel Lebensmittelabfälle. Dies zeigt, dass "Biosprit" in den Augen vieler Wissenschaftler eine Zukunft hat. Auch politisch ist das Thema Bioethanol aktuell, da zum Beispiel die obligatorische Beimischung zu fossilem Ottokraftstoff gesetzlich geregelt ist. Die wirtschaftliche und politische Aktualität wie auch die Verknüpfung zum Alltag der Schülerinnen und Schüler (die eigene Mobilität) können die Motivation steigern. Lehrplanbezug und Voraussetzungen Die Einordnung des Themas in die Lehrpläne der verschiedenen Schulformen wird dargestellt. Außerdem erhalten Sie wertvolle Tipps zur technischen Umsetzung. Hinweise zum Unterrichtsverlauf Die Unterrichtseinheit ist in Form eines Lernzirkels aufgebaut, den die Schülerinnen und Schüler in Kleingruppen durchlaufen. Die Schülerinnen und Schüler sollen gemäß der Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss in der Lage sein unterschiedliche Internetquellen für ihre Recherchen zu nutzen und themenbezogene und aussagekräftige Informationen für eine Diskussion auszuwählen. (K1/K2) die Ergebnisse ihrer Internetrecherche im Rahmen einer fiktiven Umweltkonferenz zu präsentieren. (K7) im Rahmen einer Diskussion fachlich korrekt und folgerichtig zu argumentieren. (K8) ihre Arbeit als Team zu planen, zu strukturieren, zu reflektieren und zu präsentieren. (K10) erneuerbare Energien aus unterschiedlichen Perspektiven zu diskutieren und zu bewerten. (B5) Thema Gibt es "die" erneuerbare Energie? - Diskussion im Rahmen einer fiktiven UN-Umweltkonferenz Autor Kristina Gojkovic, Thorsten Möller, überarbeitet von Rolf Goldstein Fach Biologie/Chemie, fächerübergreifend Zielgruppe Klasse 9-10, Realschule/Gymnasium Zeitraum 6 Stunden Technische Voraussetzungen Computer mit Internetzugang in ausreichender Anzahl (idealerweise für Partnerarbeit) Geht es nicht auch ohne Energie? Energie geht alle etwas an - nicht zuletzt aus dem Grund, da jede und jeder im Alltag darauf angewiesen ist. Im 21. Jahrhundert funktioniert nahezu nichts ohne den "Stoff" aus der Steckdose oder dem Tiger im Tank. Das Problem besteht lediglich darin, dass die fossilen Energieträger, wie beispielsweise Erdöl und Braunkohle mittelfristig zu Neige gehen werden. Zudem sorgen diese für nicht unerhebliche CO2-Emissionen, welche das Erdklima nachweislich beeinflussen. Sicherlich findet man hier und da technologische Optimierungen. So werden Automotoren entwickelt, die bei geringem Treibstoffverbrauch und CO2-Ausstoß sehr effizient arbeiten. Auch wurde die Glühbirne bereits verdrängt, und neueste, energiesparende LED-Technik setzt sich auf dem Markt durch. Doch irgendwann ist Schluss mit den Energieeinsparungen, spätestens dann, wenn im Kohlekraftwerk keine Kohle mehr bereitsteht! Auf der Suche nach Alternativen Erneuerbare und CO2-neutrale Energien sind in Zukunft mehr als gefragt. Doch welche Alternativen gibt es überhaupt? Wie ist der derzeitige Entwicklungsstand? Wo sind die Vor- und Nachteile? Der hier vorgestellte BlogQuest lässt sich gut in den Regelunterricht der Klasse 9 oder 10 einbauen. Es bieten sich hier viele Möglichkeiten (siehe dazu auch Einordnung in den Lehrplan). Der BlogQuest kann auch im Rahmen eines fächerübergreifenden Projekt- oder Methodentages zum Einsatz kommen. Einsatz des BlogQuest im Unterricht Die Unterrichtseinheit richtet sich an Schülerinnen und Schülern der Realschule und des Gymnasiums. Die Arbeit mit dem BlogQuest gestaltet sich für die Lernenden recht einfach, da sie sich von Seite zu Seite vorarbeiten. Lehrplanbezug und Voraussetzungen Die Einordnung des WebQuests in die Lehrpläne von Realschule und Gymnasium sowie in die Typologie des WebQuest-Erfinders Bernie Dodge wird dargestellt. Hinweise zum Unterrichtsverlauf Zeiteinteilung und Ablauf der Unterrichtseinheit werden skizziert. Selbst gesteuertes, problemlösendes und (quellen-)kritisches Arbeiten stehen dabei im Mittelpunkt. Quellen für die Recherche Die aufgelisteten Internetseiten dienen den Arbeitsgruppen als Informationsquellen für den BlogQuest. Der weltweite Wasserverbrauch steigt rasant an. Das UN-Millenniumsziel, bis 2015 eine Halbierung des Anteils der Menschen ohne dauerhaft gesicherten Zugang zu hygienisch einwandfreiem Trinkwasser zu erreichen, ist in Gefahr. Schon heute ist Trinkwasser knapp, schon heute sind eine Milliarde Menschen auf Grundwasserreserven angewiesen, Tendenz steigend. Bei weiterer Klimaerwärmung drohen die Gletscher zu schmelzen, die für viele Menschen und Regionen eine Trinkwasserreserve darstellen. Die zunehmende Wasserverschmutzung durch uns stellt eine zusätzliche Gefahr dar. Heute schon zählt der WWF in einem vor Kurzem veröffentlichten Bericht mehr als 50 bewaffnete Konflikte, ausgelöst durch den Kampf um Wasser. Expertinnen und Experten gehen davon aus, dass zunehmend Kriege um Wasser beziehungsweise Trinkwasserreserven geführt werden. Das "blaue Gold" wird immer mehr zu einem Objekt der Begierde. Die Schülerinnen und Schüler sollen erkennen, dass die Erde als Ganzes ein geschlossener Wasserkreislauf ist, die Ressource Wasser aber ungleich verteilt und ungleich genutzt/verschwendet wird. den Begriff des "virtuellen Wassers" kennen und anwenden können. die größten Wasserverschwender in Form des Wasser-Fußabdrucks begründet benennen können. lernen, dass nur "nachhaltige" Wassernutzung zur Bekämpfung des Problems der (zukünftigen) Trinkwasserknappheit führt. anhand des Beispiels der baden-württembergischen Stadt Knittlingen eine mögliche Form der Wassernutzung kennenlernen und das hier vorgestellte Konzept erklären können. die Vor- und Nachteile des Landgewinnungsprojektes nahe der Stadt Turbajal benennen und dessen Nutzen kritisch reflektieren können. die Aussage, dass das Wassersparen in Deutschland nichts bringt außer Rohrverstopfungen, erörtern können. Thema Globaler Wasserverbrauch: Der Kampf ums "blaue Gold" Autorin Sandra Schmidtpott Fächer Biologie, Chemie, Geographie Zielgruppe Klasse 9 bis 10 Zeitraum 4 bis 5 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetanschluss in ausreichender Zahl, Beamer oder interaktives Whiteboard Die Thematik "Wasser und Wasserverbrauch" auf nationaler und globaler Ebene wird in dieser Unterrichtseinheit dargestellt. Sie umfasst vier bis fünf Unterrichtsstunden und soll anhand dreier Arbeitsblätter erarbeitet werden. Die Sequenz kann an fast jeder Stelle in der Abfolge der curricular vorgesehenen Themen für die Jahrgangsstufen 9 und 10 durchgeführt werden. Besondere Vorkenntnisse sind nicht erforderlich, da die Schülerinnen und Schüler bereits mit den meisten Begriffen rund ums Wasser vertraut sind - auch aufgrund der Vorarbeiten in anderen Fächern. Die Bearbeitung der Arbeitsblätter kann in Einzel- oder Partnerarbeit erfolgen. Ablauf der Unterrichtseinheit "Globaler Wasserverbrauch" Die Lernenden setzen sich intensiv mit den Themen Wasserverbrauch, Wasserknappheit und Wasserverschwendung im nationalen und globalen Kontext auseinander. Diese Unterrichtseinheit entstand im Rahmen von MS Wissenschaft 2012 - Zukunftsprojekt ERDE. Im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) schickt Wissenschaft im Dialog (WiD) das schwimmende Science Center auf Tour durch Deutschland und Österreich. Die interaktive Ausstellung an Bord des Schiffes steht im Wissenschaftsjahr 2012 ganz im Zeichen der Nachhaltigkeitsforschung. Die Ausstellung zum Ausprobieren, Mitmachen und Mitforschen wendet sich an Besucherinnen und Besucher ab zehn Jahren. Unter www.ms-wissenschaft.de steht der Tourplan zur Verfügung und Schulklassen und größere Gruppen können Termine für einen Besuch auf dem Ausstellungsschiff buchen. Die Schülerinnen und Schüler sollen für die Bedeutung sauberen Wassers sensibilisiert werden. den Stellenwert der Filtration von Wasser für die menschliche Zivilisation einschätzen lernen. die Verschmutzung von Wasser untersuchen. verschiedene Techniken zur Filtrierung von Wasser sowie deren jeweilige Wirksamkeit kennenlernen. die Details moderner Techniken (Querstromfilterung, Wafer-Membran) verstehen lernen (ab Klasse 7). Thema Das Wasser - Filtration und Reinhaltung Autor Martin Wetz Fach Biologie, Naturwissenschaften, fächerverbindender Unterricht, Sachkunde Zielgruppe Klassen 3 bis 9 Zeitraum 2-4 Unterrichtsstunden Wasser ist, zumal bei jüngeren Schülerinnen und Schülern, ein dankbares Unterrichtsthema, das sich ohne Weiteres an alltäglichen Erfahrungen anknüpfen lässt. Diese Erfahrungen lassen sich aber auch recht leicht mit dem Stichwort "sauberes Wasser" problematisieren. Im Zentrum dieser Unterrichtseinheit steht das technische Problem, Wasser durch Filter zu reinigen. Damit lässt sie sich in den naturwissenschaftlichen Unterricht in der Sekundarstufe I - in reduzierter Form auch im Sachunterricht im Primarbereich - einbauen. Hat man Zeit und organisatorische Möglichkeiten, lassen sich insbesondere im Technik-Unterricht eigene Filtersysteme erproben. Darüber hinaus kann man sich dem Thema fächerübergreifend kulturgeschichtlich nähern und betrachten, wie die Entwicklung technischer Möglichkeiten Hand in Hand ging mit der Entwicklung der Zivilisation. Bedeutung sauberen Wassers Die Bedeutung von Wasser für die Menschheit und das Erkennen nicht sichtbarer Inhaltstoffe im Wasser führt die Schülerinnen und Schüler in die Thematik ein. Wie wird das Wasser sauber? In Übungen sammeln die Schülerinnen und Schüler erste Erfahrungen mit der Wasserfiltration. Was können Filter leisten? Der Aufbau eines starken Filters sowie der Blick auf moderne Filtertechniken und weiterführende Aspekte können die Unterrichtseinheit abschließen. Das interaktive Lernmodul zur Artenvielfalt soll es Schülerinnen und Schülern ermöglichen, mithilfe einer innovativen Lernform Zugang zum Thema Biologische Vielfalt zu finden. Anhand von naturwissenschaftlichen Frage- und Problemstellungen zeigt das Modul auf, welchen Nutzen die Natur in ihrer Vielfalt für den Menschen hat und was er von der Natur lernen kann. Das Lernmodul weckt zudem Verständnis dafür, warum diese Vielfalt geschützt werden muss und wie sie geschützt werden kann. Fachkompetenz Die Schülerinnen und Schüler sollen sogenannte "Hotspots" der Artenvielfalt auf einer Weltkarte identifizieren können. geographische und natürliche Gemeinsamkeiten dieser Länder beschreiben können. die gesellschaftlichen Problemkreise und deren Verflechtung dieser Länder erkennen und verstehen: Hohe Bevölkerungszahl, Armut, Ausbeutung der Ressourcen (Umweltzerstörung). Probleme nicht-nachhaltiger Entwicklung verstehen. wesentliche Gründe für das heutige Artensterben kennenlernen. Informationen zur Thematik aus einem Text entnehmen und wesentliche Aussagen verstehen können. Kausalkategorien zu den unterschiedlichen Texten identifizieren und zuordnen können. Argumente für die Erhaltung der Artenvielfalt kennenlernen. differente Standpunkte für die Erhaltung der Artenvielfalt und deren Hintergründe verstehen. einzelne Gründe/Argumente bewerten und gewichten und in diesem Zusammenhang Kontroversen demokratisch austragen. Thema Artenvielfalt weltweit Autorin Sabine Preußer Fächer Biologie, Geographie, Politik, Ethik, Religion Zielgruppe 8. bis 10. Schuljahr Zeitraum variabel, je nach Vertiefungsgrad Technische Voraussetzungen Betriebssystem Windows ab Version 98, Internet-Explorer ab Version 6, Flash-Player, Installation der kostenlosen Software "artenvielfalt-weltweit" (siehe "Download"), Beamer für die Einführung Selbstgesteuertes Lernen Die Aufbereitung des Lernstoffes in Form einer Lernsoftware bietet den Lernenden genau die Handlungsfreiheiten, die zur Gestaltung individueller selbstgesteuerter Lernprozesse benötigt werden. Durch die kursorientierte Aufbereitung des Lernstoffes erhalten die Lernenden die Möglichkeit, sich dem Thema kleinschrittig zu nähern. Gleichzeitig ermöglicht die Lernsoftware durch den offenen und freien Ansatz auch das selbstständige Erarbeiten der wichtigsten Themenkreise. Eine Erweiterung der Aufgabenstellungen ist dadurch jederzeit gegeben. Einstieg und individuelle Vertiefung Die Lernsoftware stellt einen motivierenden ersten Einstieg in die Thematik dar und kann an vielen Stellen beliebig vertieft und erweitert werden. Zusätzliche Lernmöglichkeiten zu dem Thema bieten die jeweiligen Verlinkungen und sind, je nach Zusammensetzung der Lerngruppe, auch durch weiterführende Arbeitsaufträge möglich. Die Lehrkraft kann hier selbst entscheiden, wie umfangreich der Lernstoff für die Schülerinnen und Schüler werden soll beziehungsweise kann den Schwierigkeitsgrad differenzieren. Unterrichtsverlauf "Artenvielfalt weltweit" Hier finden Sie Hinweise und Vorschläge, wie Sie das Lernmodul im Unterricht einsetzen können. Screenshots geben Ihnen einen Eindruck von dem Lernmodul. Biopiraterie Im Zusammenhang mit der Diskussion über den Wert der Artenvielfalt kann auch das Thema Biopiraterie behandelt werden. Waldbrände kommen in vielen Regionen der Welt als natürlicher Teil eines Kreislaufes vor, durch den die Voraussetzungen für die Nährstoffversorgung der folgenden Baumgenerationen geschaffen werden. Ihre Auswirkungen können jedoch auch verheerend sein. Anhand von Satellitenbildern können die Schülerinnen und Schüler mithilfe eines interaktiven Computer-Moduls die Folgen nachvollziehen und sichtbar machen. Materialien und Anwendungen stammen aus dem Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Unterrichtseinheit gibt es mit einem eigenen Computermodul auch für den Geographieunterricht: Feuerspuren im Satellitenbild - Eingriffe in Landschaften . Die Schülerinnen und Schüler sollen Satellitenbilder interpretieren und zur Analyse von Stabilität und Dynamik von Ökosystemen nutzen können. das elektromagnetische Spektrum und unterschiedliche Wellenlängenbereiche beschreiben können. Reflexionseigenschaften von Pflanzen vergleichen und zuordnen können. Vegetationsindizes für die Veränderungsanalyse anwenden können. Thema Feuerspuren im Satellitenbild Autor Dr. Kerstin Voß, Dr. Roland Goetzke, Henryk Hodam Fach Biologie Zielgruppe Jahrgangsstufe 12 Zeitraum 3 Stunden Technische Voraussetzungen Adobe Flash-Player oder Apple Quick Time Player (kostenloser Download) Die vorliegende Unterrichtseinheit hat zum Ziel, den Schülerinnen und Schülern den Themenkomplex "Stabilität und Dynamik von Ökosystemen" näher zu bringen. Die Lernenden sollen am Ende diese Sequenz in der Lage sein, Zusammenhänge zwischen dem elektromagnetischem Spektrum, der Aufnahme und der Entstehung von Satellitenbildern sowie der Erfassung von Veränderungen innerhalb von Ökosystemen aufzuzeigen und zu verstehen. Anhand von zu verschiedenen Zeitpunkten aufgenommenen Satellitenbildern können die Jugendlichen Veränderungen der entsprechenden Region in Griechenland feststellen. Dabei lernen sie, wie die Pflanzen das Licht für die Photosynthese verwenden und welche Wellenlängenbereiche von Pflanzen reflektiert werden. Als wissenschaftliche Grundlage dient dabei die Einführung in die Methodik der Fernerkundung. Aufbau des Computermoduls Interaktive Aufgaben führen die Lernenden durch verschiedene thematische Bereiche, Quizfragen dienen zur Sicherung der Ergebnisse. Inhalte des Computermoduls Die Lernenden analysieren anhand von Satellitenbildern die Situation einer Region vor und nach den Waldbränden. Dr. Roland Goetzke ist promovierter Geograph und arbeitet als wissenschaftlicher Mitarbeiter am Geographischen Institut der Universität Bonn im Projekt "Fernerkundung in Schulen". Seine Schwerpunkte liegen in den Bereichen GIS und Fernerkundung. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Die Schülerinnen und Schüler sollen eine Auswahl der in der Hecke lebenden Tiere angeben. die Art der Nutzung einer Hecke durch die verschiedenen Tiere nennen. den Rückgang unterschiedlicher Tierarten auf unseren Feldern begründen. eigene Beobachtungen (aus dem Spiel) formulieren können. Hypothesen (über den Spielausgang) aufstellen können. durch eine spielerische Auseinandersetzung für reale Vorgänge sensibilisiert werden. Die Schülerinnen und Schüler sollen eigene Beobachtungen beschreiben können und das Formulieren ihrer Erkenntnisse üben. die animierte Entwicklung einer Hasen- und Fuchspopulation grafisch adäquat darstellen können. die Bedeutung des biologischen Gleichgewichtes wiedergeben können. die Animation kritisch betrachten und unberücksichtigte Faktoren benennen können. Thema Das biologische Gleichgewicht Autorin Ulrike Frenzel Fach Biologie Zielgruppe Klassen 5 und 6; auch Jahrgangsstufen 12 und 13 Technische Voraussetzungen Computer in ausreichender Zahl (Partner-/Gruppenarbeit), Macromedia Shockwave Player (kostenloser Download) Unterrichtsplanung Verlaufsplan "Biologisches Gleichgewicht" (Klassen 5 und 6) für die Erarbeitung des biologischen Gleichgewichtes Je nach Rechneranzahl arbeiten die Schülerinnen und Schüler zu zweit oder in Kleingruppen zusammen. In Abhängigkeit der Anzahl der Hasen vermehrt oder verringert sich die Anzahl der Füchse. Die eingesetzte Animation zeigt einen nicht endenden Kreislauf: Je mehr Hasen, desto mehr Füchse; je mehr Füchse, desto weniger Hasen; je weniger Hasen, desto weniger Füchse; je weniger Füchse, desto mehr Hasen ... In Abhängigkeit der Altersstufe arbeiten die Schülerinnen und Schüler entweder vorwiegend gelenkt oder eher frei mit den Materialien. Hinweise zum Einsatz der Materialien Alle Animationen und Arbeitsblätter können Sie hier einzeln herunterladen. Grafische Auswertung der Ergebnisse und Diskussion Blockdiagramme und Mittelwertbildung sind bei der Interpretation der Daten sinnnvoll. Die Schülerinnen und Schüler sollen: Nachwachsende Rohstoffe als alternative Energiequellen kennen lernen. einen typischen Pflanzenvertreter der Gruppe Nachwachsender Rohstoffe kennen lernen. die Charakteristika von C4-Pflanzen kennen lernen. Thema Anbau Nachwachsender Rohstoffe in Deutschland Autorin Jana Haberstroh Fächer Biologie; fächerübergreifend Geographie und Politik Zielgruppe Sekundarstufe II Zeitraum 3-4 Stunden Technische Voraussetzungen Computer mit Internetzugang (Recherche, Präsentation von Animationen per Beamer) Ziel der Unterrichtseinheit ist es, eine allgemeine Übersicht über Nachwachsende Rohstoffe zu geben und anhand des ausgewählten Beispiels von Miscanthus auf einen speziellen Vertreter dieser Pflanzenklasse einzugehen. Forscherinnen und Forscher entwickeln zurzeit immer neue Ideen, wie nachwachsende Rohstoffe im Alltag genutzt werden können. Dank der raschen Entwicklung und der zukünftigen Bedeutung Nachwachsender Rohstoffe kann die Unterrichtseinheit beispielsweise im Fach Biologe im Kontext C3-und C4-Pflanzen eingebettet werden. Zu den Kernaufgaben der Landwirtschaft gehört neben der Nahrungsmittelproduktion der Anbau nachwachsender Rohstoffe. Bevor die Menschenheit beispielsweise Kohle, Erdöl oder Erdgas als Energielieferanten entdeckt hatten, wurden Pflanzen zur Energiegewinnung und Materialherstellung genutzt. Brennholz, Bauholz, Wolle, Faser-und Färberpflanzen für Textilien, Futtermittel für Zugtiere oder Arzneipflanzen sind nur einige Anwendungsbeispiele. Falls die gesamte globale Bevölkerung auf diese Methoden und Pflanzen wieder ausweichen müsste, stehen uns jedoch heutzutage innovative technische Verfahren zur Verfügung, die viele neue Produkte und Anwendungen bei wesentlich effizienterer Umwandlung ermöglichen. Miscanthus dient als Häckselgut oder in gepresster Form der Strom- und Hochtemperaturwärmerzeugung, der Kraftstofferzeugung, der Biogaserzeugung und der Niedertemperaturwärmeerzeugung. Hierunter wird die Erzeugung von Warmwasser bis 100 Grad Celsius verstanden. Eine C4-Pflanze erobert den Energiemarkt Das Chinagras, dessen botanischer Name Miscanthus lautet, ist eine C4-Pflanze mit hoher Biomasseleistung. Miscanthus ist spätestens seit der Veröffentlichung des Buches "Schilfgras statt Atom" von Franz Alt als Biomasse-Lieferant in aller Munde. Viele kennen das Gras als Zierpflanze im Garten. Miscanthus ist mehrjährig und zeichnet sich durch eine sehr effektive Photosyntheserate und hohe Biomasseproduktion aus. Das Gras kann an einem einzigen Tag bis zu fünf Zentimeter wachsen. Die Pflanze ist ein ausgesprochenes Multitalent, welches einerseits hohe Erträge liefert und gleichzeitig das Treibhausgas Kohlenstoffdioxid bindet. Systematik und Verbreitung Miscanthus gehört zur großen Familie der Süßgräser (Poaceae). Die Gattung umfasst rund 20 Arten, die vorrangig in China, Japan, Nepal und Tibet beheimatet sind. Der anthropogen erzeugte Klimawandel ist ein viel diskutiertes Thema. In dieser Unterrichtseinheit sollen sich die Lernenden jedoch nicht mit seinen Folgen auseinandersetzen, sondern mit der Kohlenstoffdioxid bindenden Funktion des Waldes und dem damit verbundenen positiven Einfluss auf die Folgen des Klimawandels. Mithilfe von Satellitenbildern messen sie Flächen in Deutschland aus und erhalten erste Einblicke in die Methodik der Fernerkundung (Kartenerstellung, Klassifikation). So können sie die Größe der Waldflächen und damit deren Bedeutung vor dem Hintergrund des Klimawandels ermitteln. Die Unterrichtseinheit ist im Rahmen des Projekts "Fernerkundung in Schulen" (FIS) am Geographischen Institut der Universität Bonn entstanden. FIS beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Die Schülerinnen und Schüler sollen erklären können, wie und wofür Waldflächen mit Satellitenbildern erfasst werden können. die Bedeutung des Waldes als Kohlenstoffdioxid-Speicher bewerten können. Thema Der Wald als Klimaretter!? Autoren Dr. Hannes Feilhauer, Dr. Roland Goetzke, Henryk Hodam, Dr. Kerstin Voß Fach Biologie Zielgruppe Klasse 7-8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) In der Unterrichtseinheit zum Themenfeld Klimawandel soll das Verständnis grundlegender Funktionen des Waldes sowie deren Bedeutung in Bezug auf den Klimawandel und seine Folgen vermittelt werden. In diesem Zusammenhang soll geklärt werden, ob der Wald in Deutschland als Kohlenstoffsenke ausreicht, um den landesweiten Ausstoß an Kohlenstoffdioxid zu kompensieren. Als wissenschaftliche Grundlage dient eine Einführung in die Methodik der Fernerkundung, mit deren Hilfe die Schülerinnen und Schüler das Ausmaß der Waldflächen in Deutschland ermitteln und dabei einen ersten Einblick in die Erstellung von Karten gewinnen. Inhalte und Einsatz der Lernumgebung im Unterricht Hinweise zum Aufbau der Lernumgebung. Screenshots veranschaulichen die Funktionen und die interaktiven Übungen zu dem Themenfeld "Wald, Klimawandel und Fernerkundung". (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:702938) ist Akademische Rätin am Geographischen Institut der Universität Bonn und leitet das Projekt "Fernerkundung in Schulen". Sie studierte Geographie an der Universität Bonn und schloss ihre Dissertation 2005 im Bereich Fernerkundung ab. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:707451) ist promovierter Geograph und arbeitet als wissenschaftlicher Mitarbeiter am Geographischen Institut der Universität Bonn im Projekt "Fernerkundung in Schulen". Seine Schwerpunkte liegen in den Bereichen GIS und Fernerkundung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:702944) studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der didaktischen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Die Schülerinnen und Schüler erwerben Wissen über das Ökosystem Regenwald, seine Bedrohung und über den Schutz des Regenwaldes und können dieses Wissen anwenden. stellen eine Verbindung zwischen dem Regenwald und unserem Alltag in Deutschland her und hinterfragen diese kritisch. sind in der Lage, Verständnis für globale Vernetzungen und Abhängigkeiten zu entwickeln. erlangen Entscheidungs- und Bewertungsfähigkeit und entwickeln selbst Maßnahmen, die zum Schutz des Regenwaldes beitragen. Die Schülerinnen und Schüler sind in der Lage, individuelle und kulturelle Leitbilder zu reflektieren. können das eigene Handeln als kulturell bedingt und veränderbar wahrnehmen. entwickeln eigenständige Handlungsalternativen. können die eigene Meinung äußern, akzeptieren andere Standpunkte und arbeiten kooperativ im Team. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen und Grafiken hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben und zusammenzufassen. Thema Weil wir es wert sind Autorinnen Birthe Hesebeck, Vera Pfister, Elisa Rödl Fächer Biologie, Geographie, Politik, Soziales, Wirtschaft Zielgruppe Schülerinnen und Schüler an Haupt- und Förderschulen Zeitraum variabel Medien optional: Computer, Internetzugang, Beamer Der Regenwald ist sehr fern und viele Jugendliche schalten beim Thema Umwelt aus unterschiedlichen Gründen ab. Deshalb ist es wichtig, einen Einstieg zu finden, der die Emotionen der Schülerinnen und Schüler berührt und zeigt, warum das Thema auch sie betrifft. In dieser Unterrichtseinheit geht es darum, das Wissen der Jugendlichen zum Thema zu vertiefen, zu hinterfragen und mit dem bestehenden Wissen zu vernetzen. Vor allem auf den Austausch kommt es an: Diskutieren Sie mit Ihren Schülerinnen und Schülern so viel wie möglich, damit sie sich im Gespräch eine eigene Meinung zum Thema bilden können, denn nur so erhält das Thema Relevanz für die Jugendlichen. Im nächsten Schritt müssen Sie den Schülerinnen und Schülern Handlungsorientierung bieten. Was kann jede und jeder Einzelne tun? Zuletzt sollten die Jugendlichen ihr Wissen praktisch umsetzen können, sei es durch alltägliche Handlungen wie Einkaufen oder durch die vorgeschlagenen Praxisprojekte. Hintergrundinformationen und Vorbemerkungen Hintergrundinformationen zum Themenkomplex Regenwald sowie Bemerkungen zu zentralen Ansätzen der Unterrichtseinheit sind hier kurz zusammengefasst. Die Praxisprojekte Jedes Praxisprojekt hat einen Schwerpunkt und ein eigenes Medium, mit dem das Thema Regenwald umgesetzt wird. Materialien von OroVerde Das Materialpaket "Weil wir es wert sind" ist Lehrmaterial, das die Tropenwaldstiftung OroVerde konzipiert und herausgegeben hat. Neben den Materialien für Haupt- und Förderschulen gibt es außerdem Materialien für die Grundschule (3. und 4. Klasse, "Schokolade wächst auf Bäumen?!"), für die 5. und 6. Klasse ("Warum regnet es im Regenwald?") und für Schülerinnen und Schüler ab der 8. Klasse ("Geist ist geil!" - Werbung und Natur). Die Schülerinnen und Schüler werden für das Thema Umwelt- und Klimaschutz sensibilisiert. lernen, wie sie im Schulalltag aktiv den Umweltschutz fördern können. lernen das Thema Nachhaltigkeit und sein Bedeutung anhand konkreter Alltagsfragen kennen. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen, Grafiken und Bilder hinsichtlich relevanter Informationen auswerten setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben bzw. zusammenzufassen. Thema Grüne Schule. Ideen für mehr Umweltschutz in der Schule Autorin Anke Helle, Redaktion Focus Schule Fächer Biologie, Sachunterricht Zielgruppe Klassenstufen 3 bis 10 aller Schulformen Zeitraum etwa 8 bis 10 Unterrichtsstunden Technische Voraussetzungen Computer mit Internetzugang, Beamer, Mozilla Firefox oder Internet Explorer, Flash-Player Die Aktion "Grüne Schule" bezieht sich direkt auf das Alltagsleben der Schülerinnen und Schüler. Sie haben die Möglichkeit aktiv für den Umwelt- und Klimaschutz einzutreten und lernen, dass vor allem die kleinen Veränderungen im täglichen Leben den Schutz der Umwelt vorantreiben. Dazu werden 15 konkrete Bereiche vorgestellt, in denen die Schülerinnen und Schüler einen Beitrag zur Nachhaltigkeit leisten können: vom Inhalt des Mäppchens über den Weg zur Schule bis zur Klassenfahrt. Sie untersuchen die häufigen Fehler und Nachlässigkeiten und entwickeln dann konkrete Verbesserungsvorschläge, die sie direkt umsetzen können. 15 Ideen zum Umweltschutz an Schulen Die Redaktion von Focus Schule hat 15 konkrete Ideen zum Umweltschutz im Schulalltag zusammengestellt. Das Bildungsmagazin Focus Schule startete die bundesweite Aktion "Grüne Schule" gemeinsam mit der Deutschen Bundesstiftung Umwelt im Schuljahr 2009/10. Die Aufklärungskampagne an Schulen zu den Alltagsaspekten des Klima- und Umweltschutzes soll Umweltbewusstsein bei Schülerinnen und Schülern, Lehrkräften und Eltern fördern und das Thema für junge Leute attraktiver machen. Anhand vier interaktiver Lernmodule ("Biokraftstoffe aus der Landwirtschaft", "Abbau von Bodenschätzen im Tagebau", "Umgang mit dem Ökosystem Wald" und "Flächennutzung") erarbeiten sich die Schülerinnen und Schüler die Auswirkungen einer anthropogenen Entwicklung auf die drei Nachhaltigkeitsdimensionen - Umwelt, Wirtschaft, Gesellschaft - mithilfe einer Vielzahl vorgegebener Informationsquellen. Einen Schwerpunkt bilden dabei die Analyse und Auswertung von digitalen Fernerkundungsdaten in Form von Luft- und Satellitenbildern. Das angeeignete Wissen über die ökonomischen, ökologischen und sozialen Folgen einer Entwicklung bildet die Grundlage für eine Bewertung unter dem Gesichtspunkt der Nachhaltigkeit. Dabei steht auch die selbstständige Erforschung der Heimat im Fokus. Die Schülerinnen und Schüler lernen verschiedene geographische Räume in Deutschland sowie weltweit kennen. lernen die Auswirkungen einer anthropogenen Entwicklung auf Mensch, Umwelt und Wirtschaft in dem betrachteten Raum kennen. können die Satellitenbildauswertung mit anderen erarbeiteten Informationen sowie die aus eigener Geländearbeit gewonnenen Informationen kombinieren und hinsichtlich einer Fragestellung beurteilen. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen, Grafiken, Fotos, Luft- und Satellitenbilder hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben bzw. zusammenzufassen. Thema Raumentwicklungen bewerten lernen Autoren Michelle Haspel, Markus Jahn, Alexander Siegmund Fächer Biologie, Geographie, EWG, GWG Zielgruppe Module "Abbau von Bodenschätzen im Tagebau" und "Umgang mit dem Ökosystem Wald" für die Klassenstufen 5 bis 7; Module "Biokraftstoffe aus der Landwirtschaft" und "Flächennutzung" für die Klassenstufen 8 bis 10 Zeitraum etwa 3 bis 5 Unterrichtsstunden für ein Raumbeispiel, abhängig von Einzelarbeit oder Gruppenarbeit Technische Voraussetzungen Computer mit Internetzugang (am besten für je 2 Personen), Beamer, Mozilla Firefox oder Internet Explorer, Flash-Player Neben weltweit verorteten Raumbeispielen (globale Ebene) rücken in dieser Unterrichtseinheit auch in Deutschland auftretende Entwicklungen (lokale Ebene) in den Blickpunkt der Untersuchung. Den eigenen Heimatraum erkunden die Jugendlichen auf Satellitenbild-Karten der Bundesrepublik von verschiedenen Zeitpunkten und in unterschiedlichen Farbdarstellungen. Wichtige Bildinformationen können ausgedruckt oder kostenlos heruntergeladen werden, um sie bei der Untersuchung des persönlichen Umfelds unter dem Aspekt der Nachhaltigkeit als Datengrundlage und zur Orientierung im Gelände einzusetzen. Die Begegnung mit der realen Umwelt wird unterstützt durch zahlreiche Anleitungen zur Durchführung von geo-/umweltwissenschaftlichen Feldmethoden sowie durch Arbeitsblätter für den praktischen Einsatz vor Ort. Hinweise zur Arbeit mit dem Portal GLOKAL Change stellt globale Bezüge zur lokalen Lebenswelt der Schülerinnen und Schüler her. Die Schülerinnen und Schüler erwerben Wissen über das Ökosystem Regenwald, seine Bedrohung und über den Schutz des Regenwaldes und können dieses Wissen anwenden. stellen eine Verbindung zwischen dem Regenwald und unserem Alltag in Deutschland her und hinterfragen diese kritisch. sind in der Lage, Verständnis für globale Vernetzungen und Abhängigkeiten zu entwickeln. erlangen Entscheidungs- und Bewertungsfähigkeit und entwickeln selbst Maßnahmen, die zum Schutz des Regenwaldes beitragen. Die Schülerinnen und Schüler sind in der Lage, individuelle und kulturelle Leitbilder zu reflektieren. können das eigene Handeln als kulturell bedingt und veränderbar wahrnehmen. entwickeln eigenständige Handlungsalternativen. können die eigene Meinung äußern, akzeptieren andere Standpunkte und arbeiten kooperativ im Team. Die Schülerinnen und Schüler können verschiedenartige Medien wie Texte, Tabellen und Grafiken hinsichtlich relevanter Informationen auswerten. setzen Informationen aus verschiedenen Medien miteinander in Verbindung. lernen, diese Informationen in anderen medialen Darstellungsformen wiederzugeben und zusammenzufassen. Thema Tatort Tropenwald: Ein Mitmach-Krimi Autorinnen Birthe Hesebeck, Maike Lambrecht Fächer Biologie, Geographie, Politik, Soziales, Wirtschaft Zielgruppe Schülerinnen und Schüler ab Klasse 7 Zeitraum Krimispiel mit Auswertung: 1 Doppelstunde; Nachbereitung und Vertiefung: variabel, 1 bis 4 Unterrichtsstunden Medien optional: Computer, Internetzugang, Beamer Die Unterrichtseinheit Tatort Tropenwald führt die Schülerinnen und Schüler in der Rolle als Ermittler in einem Krimi spielend-entdeckend an die Themen Tropenwaldschutz und Erhaltung der Biodiversität heran. In Kleingruppen untersuchen sie Schritt für Schritt die komplizierte Vernetzung zwischen menschlichem Leben und der Existenz der Tropenwälder als Lebensraum für Millionen von Pflanzen- und Tierarten. Ebenso setzen sie sich mit sozialpolitisch und gesellschaftlich relevanten Bereichen auseinander. Im Fokus der Recherche stehen auch die unterschiedlich motivierten Interessensgruppen am Regenwald vor Ort - etwa Grundbesitzer, einheimische Volksstämme, Kleinbauern und die globale Großindustrie. Sie hinterfragen Produktion und Konsum in den Industrienationen und deren Auswirklungen auf den Bestand des tropischen Regenwalds. Interessant ist dabei auch, welche Rolle Journalisten in diesem "Mordfall" spielen. Hintergrundinformationen und Vorbemerkungen Hintergrundinformationen zum Themenkomplex Regenwald sowie Bemerkungen zu zentralen Ansätzen der Unterrichtseinheit sind hier kurz zusammengefasst. Inhalt und Ablauf des Krimispiels Der Mitmach-Krimi verfolgt einen handlungs- und erfahrungsorientierten Ansatz. Detailliertere Informationen zur Umsetzung im Unterricht finden Sie hier. Materialien von OroVerde Der Mitmachkrimi "Tatort Regenwald" für den Unterricht ist Lehrmaterial, das die Tropenwaldstiftung OroVerde konzipiert und herausgegeben hat. Neben dem Krimispiel gibt es außerdem Materialien für die Grundschule (3./4. Klasse, "Schokolade wächst auf Bäumen?!"), für die 5. und 6. Klasse ("Warum regnet es im Regenwald?") und für Schülerinnen und Schüler ab der 8. Klasse ("Geist ist geil!" - Werbung und Natur). Projektträger ist OroVerde, die Stiftung zur Rettung der Tropenwälder. In Addition zum Pilotprojekt "Weil wir es wert sind" entstanden die Materialien für den Unterricht.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II

WebQuests in den Naturwissenschaften

Fachartikel

Ausgehend von einem zentralen WebQuest-Dokument erarbeiten Schülerinnen und Schüler, eingebettet in eine Rahmenhandlung, mithilfe des Internets ein Wissensgebiet und präsentieren anschließend ihre Ergebnisse.Das Internet ist ein riesiger Informationsspeicher, der nicht als strukturierte Lernumgebung angelegt ist. Um es im Unterricht dennoch sinnvoll nutzen zu können, bedarf es spezifischer Strukturen. Eine solche bietet das WebQuest-Konzept, das 1995 von Bernie Dodge erstmals als "inquiry-oriented activity" vorgestellt wurde. Es gewährleistet eine didaktische Reduktion der gigantischen Informationsmenge, die das Internet zu jedem beliebigen Thema bereit hält und unterstützt durch seine Strukturierung den handlungsorientierten Unterricht, der die Lerngruppe in eigenverantwortlichem, problemorientiertem, kreativem und reflexivem Denken und Handeln fördert. Das Konzept beinhaltet eine Hinwendung zu einem problemlösenden Unterricht, der neben der Vermittlung rein fachlichen Wissens auch noch den Erwerb weiterer wichtiger Kompetenzen mit sich bringt (Problemlösevermögen, Selbstständigkeit, Urteilsfähigkeit).

  • Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Pädagogik
  • Primarstufe, Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner