Terme - eine kontextorientierte Einführung mit GeoGebra
Unterrichtseinheit
In dieser Unterrichtseinheit wird der zentrale Begriff des Terms durch interaktive Arbeitsblätter eingeführt und in seinem vollen Umfang im Gedächtnis der Lernenden verankert.Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Hinweise zum Einsatz im Unterricht Die Schülerinnen und Schüler können eigenständig mit den interaktiven dynamischen Arbeitsblättern arbeiten. Erste und zweite Unterrichtsstunde Zunächst erschließen sich die Lernenden den Termbegriff an einem konkreten Beispiel und reflektieren anschließend ihre Lösungsstrategie. Dritte Unterrichtsstunde Die Lernenden vertiefen die bisher erworbenen Kenntnisse anhand verschiedener Aufgabenvariationen, indem sie fehlende Termwerte sowie Terme ermitteln. Die Schülerinnen und Schüler erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. gewinnen die Einsicht, dass Zuglängen mit Termen beschrieben werden können. analysieren Tabellen und können fehlende Termwerte ergänzen. können ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln. Die Unterrichtseinheit selbst beinhaltet insgesamt vier HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Beschreibung des Aufbaus der Arbeitsblätter Der Aufbau und die Bedienung aller im Rahmen der Unterrichtseinheit verwendeten Online-Arbeitsblätter ist identisch (Abb. 1, zur Vergrößerung bitte anklicken). Bei allen Aufgabenblättern wird beim Seitenstart im rechten Teil des Arbeitsblatts eine dynamische Zeichnung erzeugt, die eine ikonische, tabellarische, symbolische und grafische Darstellung eines Zuges und dessen Länge zeigt. Die einzelnen Schieberegler ermöglichen es, unterschiedliche Aufgabenstellungen nachzubilden. Da das Arbeiten mit interaktiven dynamischen Arbeitsblättern keine speziellen Softwarekenntnisse voraussetzt, wird das selbständige Arbeiten der Schülerinnen und Schüler optimal unterstützt. Kontextorientiertes Lernen Verständnis fördern bedeutet, Raum geben für eigenes Experimentieren und die Lernenden auf ihren individuellen Lernwegen unterstützen. Durch ein kontextorientiertes Lernen kann das Verständnis mathematischer Begriffe zusätzlich gefördert werden. Interaktive dynamische Arbeitsblätter verbinden mathematische Inhalte mit der Erfahrungswelt der Lernenden. Unterschiedliche Darstellungen von Sachverhalten, zum Beispiel durch Bilder, in tabellarischer, grafischer oder algebraischer Form, können zu einem umfassenderen Verständnis des Zusammenhangs oder Begriffs führen. Dies trifft besonders dann zu, wenn diese verschiedenen Darstellungen wechselseitig aufeinander bezogen sind. Verständnis vertiefen durch Aufgabenvariation Um einen mathematischen Zusammenhang beziehungsweise Begriff in seinem vollen Bedeutungsumfang zu erfassen, ist es notwendig, den Schülerinnen und Schülern durch ein vielfältiges Angebot aus Übung, Festigung und Anwendung Möglichkeiten zu eröffnen, ihre Vorstellungen und Kenntnisse einer Prüfung zu unterziehen. Da auf alle Eingaben der Lernenden unmittelbar eine Rückmeldung folgt, wird verhindert, dass sich Fehlvorstellungen verfestigen können. Durch die Variation der Aufgabenstellung kann ferner verhindert werden, dass sich ein verengtes Begriffsbild manifestiert. Interessante Aufgabenstellungen ergeben sich zudem, wenn zwischen anschaulicher und symbolischer Anwendung gewechselt wird. So kann es sich zum Beispiel als fruchtbar erweisen, wenn aus Sachzusammenhängen Terme gebildet werden sollen oder die Schülerinnen und Schüler gegebene Terme unter einem bestimmten Gesichtspunkt analysieren können. Nach einer kurzen Einführung durch die Lehrkraft in den Sachkontext anhand unterschiedlicher Zugdarstellungen, die mit der editierbaren Folienvorlage (terme_folienvorlagen.doc) erstellt werden können, folgt eine Einweisung in die Funktionsweise und Bedienung des Online-Arbeitsblatts 1 (Abb. 2). Anschließend können die Schülerinnen und Schüler selbstständig die Möglichkeiten der unterschiedlichen Darstellungen erkunden. Dabei sollen die drei Einstiegsaufgaben des PDF-Arbeitsblatts 1 mithilfe der Veranschaulichung nachgebildet und auf diese Weise gelöst werden. Nach der Auswertung der Ergebnisse erfolgt ein strukturierter Überblick anhand des PDF-Arbeitsblatts 2. Abschließend bearbeiten die Lernenden Aufgaben, bei denen per Zufall die Aufgabentexte in beschreibender Form beziehungsweise in mathematischer Form gegeben sind (Abb. 3). Dazu müssen sie lediglich den Button "Aufgabe stellen" betätigen. Durch einen Klick auf den Button "prüfen" können sie ihre Eingabe prüfen lassen. Für jede richtig gelöste Aufgabe erhalten die Schülerinnen und Schüler Punkte, bei fehlerhaften Eingaben werden Punkte abgezogen. Dabei ist die Art der Bearbeitung nicht festgelegt. So können die Lernenden mit oder auch ohne Veranschaulichung arbeiten. Nach einer kurzen Zusammenfassung der Ergebnisse der vorhergehenden Stunde anhand der dort angefertigten Folien erfolgt eine Einführung in die Aufgabenstellung 1.1 bis 1.3 des PDF-Arbeitsblatts 3. Eine Einführung in die Bedienung des Online-Arbeitsblatts 2 kann entfallen, da Aufbau und Bedienung identisch zu dem in der vorhergehenden Stunde verwendeten Online-Arbeitsblatt sind. Nach der Bearbeitung dieser drei Aufgaben sollen die Lernenden nun ohne Verwendung des Computers die Aufgaben 2.1 bis 2.3 des Arbeitsblatts lösen und ihre Lösungsstrategien schriftlich festhalten. Dadurch werden sie angehalten, ihr Vorgehen zu reflektieren und ihre Strategien anderen zu verdeutlichen. Die gestellten Aufgaben sind dabei so gewählt, dass stets unterschiedliche Lösungswege erforderlich sind. An die Vorstellung von Lösungsstrategien durch vorher ausgewählte Schülerinnen und Schüler und einer Diskussion der einzelnen Lösungsstrategien im Plenum schließt sich die Übungsphase am Computer an. Bei der Bearbeitung der Aufgaben des Online-Arbeitsblatts 2 sollte es dann das Ziel sein, möglichst viele Punkte zu erreichen. Bestimmung fehlender Termwerte Mit der ersten Übung in der dritten Stunde sollen die Schülerinnen und Schüler ihre Kenntnisse bezüglich der Struktur eines Terms vertiefen und auf unterschiedliche Tabellensituationen anwenden. Dabei wird nun auf einen beschreibenden Kontext verzichtet. Die Lernenden sollen bei der Bearbeitung des Online-Arbeitsblatts 3 nur aufgrund des gegebenen Terms und der unvollständigen Tabelle auf den fehlenden Wert schließen (Abb. 4). Nach einem Klick auf den Button "prüfen" erhält die Schülerin oder der Schüler eine entsprechende Rückmeldung auf die Eingabe. Ist die Aufgabe gelöst, so wird dies dem Lernenden bestätigt, ist der Wert falsch, so ist die Rückmeldung entsprechend formuliert: "Leider falsch!" Zusätzlich wird der richtige Wert angegeben und mit roter Farbe in die Tabelle eingetragen. Bestimmung des Terms anhand der Tabelle Die Aufgabenstellung erfährt durch das Online-Arbeitsblatt 4 eine weitere Variation. Die Aufgabe der Schülerinnen und Schüler besteht darin, den Term zu ermitteln, der zu der gegebenen Tabelle gehört (Abb. 5). Wieder sind die Aufgaben kontextunabhängig gestellt. Der Kontext ergibt sich allerdings bei allen Online-Arbeitsblättern durch die stets eingeblendete Zeichnung. Somit erfolgt die mathematische Abstraktion immer im Kontext der Bilder und Vorstellungen der Lernenden. Die Bedienung des Online-Arbeitsblatts ist wieder identisch zu den vorhergehenden, eine Einweisung durch die Lehrkraft kann somit entfallen. Die Eingabe der Lernenden wird wieder geprüft und in der Rückmeldung bewertet. Wichtig in diesem Zusammenhang ist die Tatsache, dass die Eingaben nicht nach syntaktischen sondern nach semantischen Kriterien ausgewertet werden. Dies bedeutet, dass jede Eingabe, sofern sie mathematisch korrekt ist, als richtig erkannt wird. So spielt es zum Beispiel keine Rolle, ob die Reihenfolge der einzelnen Termbestandteile mit 12x + 10 oder 10 + 12x angegeben wird oder ob die Lernenden 8*x oder 8x schreiben. Hausaufgabenstellung oder Lernzielkontrolle Am Ende der Unterrichtseinheit kann eine Lernzielkontrolle oder eine Hausaufgabenstellung stehen. Dazu steht das PDF-Arbeitsblatt 4 zur Verfügung. Die Aufgaben dieses Arbeitsblatts stellen noch einmal den Zusammenhang zur Aufgabenbearbeitung am Computer her. Wird das Aufgabenblatt im Unterricht als Lernzielkontrolle verwendet, so können die Lernenden die Aufgaben in Partnerarbeit lösen und dann ihre Lösungsstrategien im Team den Mitschülerinnen und Mitschülern vorstellen. Werden die Aufgaben hingegen als Hausaufgabe gestellt, so kann eine von der Lehrkraft angefertigte Folie an eine Schülerin oder einen Schüler ausgegeben werden, die oder der dann die Aufgaben bis zur nächsten Stunde auf dieser anfertigt. Auf diese Weise mündet die Arbeit im Computerraum wieder in den normalen Unterricht im Klassenzimmer. So verstandener Computereinsatz ist dann keine unterrichtliche Sonderveranstaltung, sondern wichtiger Bestandteil eines unterrichtlichen Gesamtkonzepts.
-
Mathematik / Rechnen & Logik
-
Sekundarstufe I