Bestimmung der Mondentfernung durch Triangulation
Unterrichtseinheit
Schülerinnen und Schüler aus Südafrika, Griechenland und Deutschland fotografierten zur selben Zeit Mond, Jupiter und Saturn. Nachdem die Bilder über das Internet ausgetauscht worden waren, wurde die Mondparallaxe bestimmt und die Entfernung des Mondes von der Erde berechnet.Eine günstige Stellung des Mondes wurde genutzt, um in Kooperation mit Schulen in fernen Ländern die Mondentfernung zu bestimmen. Dazu wurde der Winkelabstand Jupiter-Saturn mit einem Jakobsstab gemessen. Der Winkelabstand des Mondes wurde mithilfe von Fotografien bestimmt, die zeitgleich an verschiedenen Orten (Neumünster, Thessaloniki, Johannesburg) aufgenommen, digital bearbeitet und ausgewertet wurden. Aus den ermittelten Werten wurde mithilfe des Sinussatzes die Entfernung der Erde zum Mond mit 372.500 Kilometern bestimmt. Der Literaturwert für die mittlere Entfernung beträgt 384.401 Kilometer. Das hier vorgestellte anspruchsvolle Projekt eignet sich für Astronomie-Arbeitsgemeinschaften und wurde vom Autor im Rahmen des SINUS-Programms in Schleswig-Holstein durchgeführt. Die Auswertung der Messdaten gelingt im Mathematik-Unterricht der 10. Klasse (Sinussatz). Das Thema ist Teil des Unterrichts zur Gravitation in Jahrgangstufe 11 (Mechanik).Die Aufgabe "Bestimme die Entfernung des Mondes" ist schnell formuliert, lässt sich aber nur mit relativ großem Aufwand lösen. Sie erfordert neben vielfältigem Wissen aus verschiedenen Gebieten auch handwerkliche und organisatorische Fähigkeiten und Fertigkeiten Vorbereitung und Softwaretipps Hinweise für die Suche nach Beobachtungspartnern und Tipps zur Softwarenutzung bei der Auswahl des Beobachtungstermins und der Bildbearbeitung Grundlagen und Winkelmessungen Geometrische Grundlagen und praktische Vorschläge zur Durchführung der Winkelmessungen Ergebnisse Vorschläge zur Auswertung der Fotografien und zur Berechnung der Entfernung von der Erde zum Mond Die Schülerinnen und Schüler sollen Kenntnisse über die Positionen und Bewegungen der Körper im Sonnensystem erwerben. ein ziemlich großes Dreieck vermessen. Fotografie für Messzwecke einsetzen lernen. verschiedene Winkelmessverfahren kennen lernen. Thema Messung der Mondentfernung durch Triangulation Autor Bernd Huhn Fach Physik, Astronomie Zielgruppe Astronomie-AGs, Schülerinnen und Schüler ab Klasse 10 Zeitraum Das komplette Projekt dauert sicher mehrere Monate. Wenn man auf vorhandene Fotos zurückgreift, geht es schneller, es verliert aber einen Teil seines Reizes. Technische Voraussetzungen "klassischer" Fotoapparat oder Digitalkamera, Stativ, Drahtauslöser, Winkelmessscheibe, Geodreieck, Kompass, Wasserwaage, Knetgummi, dünner Stab (z.B. Schaschlikspieß), Schiebelehre, doppelseitiges Klebeband, Globus, Telefon- und E-Mail-Anschluss Software, Literatur Bildbearbeitungsprogramm (Corel Photo-Paint, GIMP oder vergleichbare Software), Astronomie-Software wie KStars, XEphem (beide kostenlos), SkyMap, Skyplot oder Tabellenwerke, zum Beispiel das Kosmos Himmelsjahr (Franckh-Kosmos Verlags-GmbH) oder Ahnerts Kalender für Sternfreunde (Spektrum der Wissenschaft Verlagsgesellschaft) Keller, Hans-Ulrich Kosmos Himmelsjahr, Franckh-Kosmos Verlags-GmbH, erscheint jährlich; alle wichtigen Infos zu Sonne, Mond und Sternen, den Planeten, Finsternissen und sonstigen Himmelsschauspielen sowie den "Monatsthemen" mit aktuellen und interessanten Beiträgen. Neckel, Thorsten; Montenbruck, Oliver Ahnerts Astronomisches Jahrbuch, Spektrum der Wissenschaft Verlagsgesellschaft mbH, erscheint jährlich; in den Monatsübersichten wird unter anderem dargestellt, welchen Planeten und hellen Sternen der Mond begegnet und wie die Sichtbarkeitsbedingungen der Planeten sind. Soffel, Michael ; Müller, Jürgen Lasermessungen der Monddistanz, Sterne und Weltraum 7/1997, Seiten 646-651; Die Autoren erläutern das Messverfahren und stellen weit reichende Folgerungen dar, die man aus dem auf wenige Zentimeter genauen Messergebnis ziehen kann. Zimmermann, Otto Astronomisches Praktikum, Spektrum der Wissenschaft Verlag GmbH, ISBN 3-8274-1336-2 (2003); hier werden weitere Methoden zur Messung der Mondentfernung beschrieben (Erdschattendurchmesser auf dem Mond ,Änderung der Mondgröße mit der Höhe, parallaktische Libration, Sternbedeckungen durch den Mond) Gut geeignet für die Triangulation ist eine Kombination von Beobachtungsstandorten mit einer großen Differenz der geographischen Breiten und einer kleinen Differenz der geographischen Längen. Die erste Bedingung sichert eine große Basislänge, die zweite sorgt dafür, dass die fotografierte Himmelsgegend etwa zur gleichen Zeit an beiden Standorten möglichst hoch über dem Horizont steht. Wenn sich ein Standort in Deutschland befindet, sollte der zweite also idealerweise im Süden Afrikas liegen. Auch das östliche Südamerika kommt in Frage. Aufgeschlossene Kolleginnen und Kollegen findet man durch Nachfragen bei den deutschen Auslandsschulen: Bundesverwaltungsamt: Schulverzeichnis Auf der Website des BVA finden Sie das Schulverzeichnis der Zentralstelle für das Auslandsschulwesen. Für die vorbereitenden Verabredungen und den Austausch der Ergebnisse reicht der Kontakt per E-Mail. Zum Zeitpunkt der Aufnahmen selbst ist eine Telefonverbindung nützlich: Wenn der Himmel nur teilweise klar ist und "Wolkenlöcher" genutzt werden müssen, können kurzfristige Absprachen gewährleisten, dass die Aufnahmen möglichst zeitgleich entstehen. Alternativ können dafür auch Chat-Rooms genutzt werden. Für die Aufnahme muss sich der Mond in möglichst geringem Winkelabstand zu zwei hellen und sehr viel weiter entfernten Objekten am Himmel befinden. Günstig dafür ist eine Konjunktion von mindestens zwei der Planeten Venus, Mars, Jupiter und Saturn; der Mond sollte zwischen ihnen stehen. Die Mondphase ist nicht entscheidend; ein zunehmender Mond ist allerdings zu bevorzugen, wenn jüngere Schülerinnen und Schüler mitarbeiten sollen, da er vor Mitternacht kulminiert. Einen geeigneten Zeitpunkt findet man durch systematische Suche in entsprechenden Tabellenbüchern (Kosmos Himmeljahr, Ahnerts Astronomisches Jahrbuch) oder durch Verwendung eines Astronomieprogramms, das ein Planetarium simulieren kann: KStars Diese Software unterliegt der GNU General Public License (GPL) und steht kostenfrei zur Verfügung. XEphem Auf der Website des Clear Sky Institute ist auch dieses Programm kostenlos erhältlich. Skyplot Informationen und Bestellmöglichkeit zur Software auf der Website des Autors Frank P. Thielen. Skyplot ist für 30 € zu haben. SkyMap Die kommerzielle Software ist in der Lite-Version für etwa 37 € und in der Pro-Version für etwa 100 € zu haben. In dem hier beschriebenen Projekt wurden die beiden Planeten Jupiter und Saturn als "Fixpunkte" verwendet. Besser wäre natürlich die Verwendung von Sternen, weil sie der Forderung, unendlich weit entfernte Fixpunkte zu sein, besser entsprechen. Allerdings müssen die Sterne relativ dicht nebeneinander und nahe der Ekliptik stehen und auch noch hell genug sein. Gute Gelegenheiten für Aufnahmen mit Fixsternen bieten totale Mondfinsternisse. Der dann nur schwach beleuchtete Mond überstrahlt auch die schwächeren Sterne in seiner Umgebung nicht. Allerdings bietet sich diese Gelegenheit seltener, wodurch man mehr von günstigen Beobachtungsbedingungen abhängig ist. Probeaufnahmen In dem hier vorgestellten Projekt wurde eine klassische Kamera benutzt, natürlich kann auch eine Digitalkamera verwendet werden. Probeaufnahmen vor dem Aufnahmetermin sind anzuraten. Die Qualität der Aufnahmen sollte immer am Negativ oder an der Rohdatei beurteilt werden. Bildverwackelungen können durch die Nutzung eines Stativs und eines Drahtauslösers vermieden werden. Eine Nachführung ist nicht nötig. Für die spätere Auswertung der Fotos ist es wichtig, die Aufnahmezeitpunkte und die verwendete Zonenzeit zu notieren! Der Winkelabstand Jupiter-Saturn betrug bei unseren Messungen etwa 10 Grad. Dabei ist eine Brennweite von 15 Zentimetern beim Kleinbildformat 24 Millimeter mal 36 Millimeter optimal. Die Auflösung von Standardfilmen reicht völlig, unabhängig davon, ob Farb- oder Schwarz-Weiß-Filme verwendet werden. Verschiedene Belichtungszeiten bei jedem Aufnahmezeitpunkt Die Belichtungszeit soll so gewählt werden, dass die im Vergleich zum Mond lichtschwachen Planeten (oder Sterne) gerade sicher zu erkennen und der Mond nicht unnötig überbelichtet wird. Der Mondrand sollte auf den Bildern noch gut erkennbar sein. Belichtungszeiten zwischen 0,1 und 10 Sekunden sollten bei mittlerer Blende passen. Die Zeiten sind allerdings stark von den aktuellen Dunstverhältnissen und der lokalen Lichtverschmutzung abhängig. Daher ist es sinnvoll, zu jedem Aufnahmezeitpunkt immer mehrere Aufnahmen mit unterschiedlichen Belichtungszeiten zu machen. Lichtschwache und lichtstarke Objekte auf einem Bild? Wie in der Astronomie üblich, werden die Bildnegative bearbeitet, also dunkle Objekte vor hellem Hintergrund. Wenn die punktförmigen Objekte - zwei Planeten oder Sterne - auf den Fotografien sicher abgebildet sind, der Mondrand aber unscharf dargestellt ist, nutzt man ein Bildbearbeitungsprogramm um für die Auswertung der Bilder einen scharfen Mondrand zu erzeugen, ohne dabei die lichtschwachen Objekte zu verlieren. Dabei geht man in zwei Schritten vor. Retusche der lichtschwachen Planeten Zunächst werden die zentralen Pixel der Planetenbilder bei hoher Vergrößerung schwarz eingefärbt. Es reichen Quadrate von vier oder neun retuschierten Bildpunkten. Abb. 1 (Platzhalter bitte anklicken) zeigt ein Beispiel: S-01-03-1 zeigt das stark vergrößerte digitalisierte Bild des Planeten Jupiter aus der linken unteren Ecke des Bildes S-01-03. Darunter sieht man in s-01-03-2 das retuschierte Jupiterbild mit neun zentralen schwarzen Pixeln. Noch wichtiger ist die Retusche beim relativ schwachen Bild des Saturns rechts im oberen Drittel des Bildes S-01-03. Benutzt wurde das Programm Corel Photo-Paint, Version 6.0. "Scharfstellen" des Mondes Im zweiten Schritt wird die Helligkeit des gesamten Bildes angehoben und der Kontrast so verstärkt, dass der "echte" Mondrand scharf erscheint. Das ist dann der Fall, wenn der Mond hellgrau vor weißem Hintergrund erscheint und das Mondbild bei einer weiteren Anhebung der Helligkeit nicht mehr kleiner wird (Abb. 2, Platzhalter bitte anklicken). Mithilfe der Vorschaufunktion von Corel Photo-Paint lässt sich dies gut beurteilen. Anschließend kann der Kontrast des Bildes weiter erhöht werden, bis die Abbildung schwarze scharfe Objekte vor weißem Hintergrund zeigt. Alternativ zu kommerzieller Software kann auch das kostenfreie Bildbearbeitungsprogramm GIMP verwendet werden: Zwei Punkte A und B auf der Erde und der Mittelpunkt M des Mondes bilden ein Dreieck (Abb. 3). Die Längen der Strecken AM beziehungsweise BM sind gesucht. Um sie zu ermitteln, müssen wir drei Stücke dieses Dreiecks messen, ohne die Erde zu verlassen. Eines dieser Stücke muss eine Seitenlänge sein, dafür kommt nur die Länge der Strecke AB in Frage. Zwei Winkel sind also noch zu messen. Da die Messgenauigkeit der gesuchten Längen sehr empfindlich von dem Winkel pi mit dem Scheitelpunkt M abhängt, ist es unerlässlich, diesen direkt zu messen und ihn nicht etwa aus der Differenz 180 Grad - Winkel BAM - Winkel MBA zu errechnen, denn kleine relative Fehler bei den Messungen der Winkel BAM und MBA hätten einen großen relativen Fehler für den Wert von pi zur Folge. Leider können wir uns nicht auf den Mond begeben und von dort einfach die beiden Punkte A und B auf der Erde anpeilen. Wir können pi aber auch auf der Erde messen, denn er ist gleich der Winkeldifferenz der Richtungen, in denen der Mond von den beiden Punkten A und B aus gesehen erscheint, also gleich dem Winkel zwischen BM und der Parallele zu AM durch B. Er heißt daher auch Parallaxenwinkel (Abb. 3). Einer der beiden weiteren Winkel - BAM oder MBA - muss außerdem gemessen werden. Die Genauigkeit dieser Messung ist unkritisch für die Genauigkeit des Ergebnisses, besonders wenn der Wert des Winkels nahe 90 Grad liegt. Mithilfe des Sinussatzes ergeben sich die gesuchten Längen der Seiten MA oder MB. Um die Entfernung des Mondmittelpunktes vom Erdmittelpunkt und nicht von einem Punkt der Erdoberfläche zu erhalten, wäre weiterer Aufwand nötig. Dies erscheint angesichts der erzielbaren Messgenauigkeit jedoch nicht sinnvoll. Das Vorgehen sollte für Schülerinnen und Schüler, die gerade den Sinussatz am ebenen Dreieck verstanden haben, gut nachvollziehbar sein. Jüngere Schülerinnen und Schüler können die Anwendung des Sinussatzes möglicherweise durch eine Dreieckskonstruktion ersetzen, die aber sehr präzise sein muss, da der Parallaxenwinkel naturgemäß recht klein ist. Kenntnisse über astronomische Koordinatensysteme oder sphärische Trigonometrie sind nicht nötig. Es sollte Wert darauf gelegt werden, alle Schritte durch manuelle Tätigkeiten an einem räumlichen Modell (Globus mit aufgesetztem Horizontsystem, Mond in einiger Entfernung davon) zu veranschaulichen. Hinweise zur Aufnahme der Fotos Wir haben den Parallaxenwinkel pi auf fotografischem Weg gemessen. Ideal für die Auswertung ist ein Paar von zwei Aufnahmen des Mondes und der Hintergrundobjekte - hier Jupiter und Saturn -, die an den beiden Positionen A und B exakt zum gleichen Zeitpunkt gemacht werden. Wenn merklich Zeit zwischen den Aufnahmen liegt, weil zum Beispiel die Bewölkung an den Aufnahmestandorten dies erzwingt, könnte das Ergebnis durch die Bewegung des Mondes vor dem Hintergrund (etwa 15 Grad in 24 Stunden) verfälscht werden. Sollte diese Gefahr bestehen, so fotografiert man an einem oder an beiden Standorten mehrfach zu verschiedenen Zeitpunkten, etwa in jedem geeigneten Wolkenloch, und rekonstruiert dann jeweils die Position des Mondes für einen vereinbarten Zeitpunkt aus diesen Aufnahmeserien durch eine lineare Interpolation. Auswertung der Fotos Legt man zwei zeitgleich entstandene Bilder von den Standorten A und B so übereinander, dass die beiden Planetenbilder aufeinander liegen, so sind die Mondbilder gegeneinander verschoben. Diese Verschiebung kann man in den Parallaxenwinkel pi umrechnen, wenn man einen passenden Umrechnungsfaktor hat. Man erhält ihn aus einer Messung des Winkelabstandes delta der beiden Hintergrundobjekte am Himmel und dem Abstand ihrer Abbilder auf den auszuwertenden Fotos. Der Parallaxenwinkel ergibt sich dann per Dreisatz. Zur Kontrolle des Verfahrens kann man damit den Winkeldurchmesser des Mondes bestimmen: er muss etwa 0,5 Grad betragen. Messung des Winkels zwischen den Planeten Für die Messung des Winkels delta zwischen den Planeten Jupiter und Saturn haben wir in unserem Projekt einen improvisierten "Jakobsstab" benutzt (Abb. 4). Er besteht aus Stativmaterial und Längenmessgeräten aus der Physik-Sammlung. Das Durchblicksloch sollte möglichst klein sein. Man schaut durch die Öffnung und verschiebt die Markierungen auf dem Querstab so lange, bis die Peilung zu den Planeten passt. Dann lässt sich der Winkel delta messen beziehungsweise errechnen. Diese Winkelmessung sollte etwa zeitgleich mit den fotografischen Aufnahmen erfolgen. Messung von Azimut- und Höhenwinkel zum Aufnahmezeitpunkt Während wir zur Messung des Parallaxenwinkels pi mindestens zwei zeitgleich aufgenommene Fotografien von verschiedenen Standorten benötigen, kann der zweite Winkel im Dreieck an nur einem der Beobachtungsorte, zum Beispiel am Punkt A, ermittelt werden. Dazu bestimmt man die Position des Mondes im Horizontsystem (Azimut- und Höhenwinkel) zum Aufnahmezeitpunkt. Daraus lässt sich später der Winkel zwischen den Verbindungslinien zum Mond und zum zweiten Standort B mithilfe eines Globus ermitteln. Das kann man so machen: Man legt eine ebene, leichte und dünne Platte, zum Beispiel eine Winkelmessscheibe, wie sie für Schülerübungen in der Optik verwendet wird, horizontal ausgerichtet (Wasserwaage, Dosenlibelle, Untertasse voll Wasser ... ) auf eine feste Unterlage und markiert darauf mithilfe eines Kompasses die Nord-Süd-Richtung. Dabei muss unbedingt die lokale Missweisung beachtet werden, besonders wenn ein Partner im südlichen Afrika beteiligt ist. Dort erreicht nämlich die Missweisung auf Grund einer geomagnetischen Anomalie beträchtliche Werte. Durch ein Lot vom Himmelspol auf den Horizont oder mithilfe einer Landkarte und Landmarken am Horizont lässt sich das Ergebnis überprüfen. Nun befestigt man mit Knetgummi auf dieser Linie das Ende eines dünnen Stäbchens, zum Beispiel einen Schaschlik-Spieß, und richtet das Stäbchen genau auf den Mond, sodass es im Mondlicht keinen Schatten mehr wirft. Dann kann man den Höhenwinkel eta und den Azimutwinkel gamma mit einem Geodreieck messen (Abb. 5). Diese Messung muss man für jeden Aufnahmezeitpunkt wiederholen und protokollieren. Natürlich kann man für die Messungen von Azimut und Höhe auch einen vertikal stehenden Schattenstab benutzen. Dann lässt sich der Azimutwinkel direkt auf der Winkelmessscheibe ablesen. Der Höhenwinkel muss aus der Schattenlänge und der Stablänge berechnet oder an einem Faden von der Stabspitze zum Ende des Stabschattens abgelesen werden. Auch einen Theodolithen kann man verwenden, wenn man damit einen hinreichend großen Höhenwinkel messen kann. Rekonstruktion der Richtungen und Winkelmessung am Globus In einem letzten Schritt wird nun mit doppelseitigem Klebeband die Platte mit der Vorrichtung zur Bestimmung von Höhen- und Azimutwinkel auf einem Globus am Aufnahmeort A angeklebt. Auf den Ort A fällt der Fußpunkt A' des Stäbchens. Dann liegt die Platte in der Tangentialebene an den Globus in A, also in der Horizontebene von A (Abb. 6). Natürlich muss auch die Nord-Süd-Linie die Tangente an den Längenkreis durch A bilden. Wenn nun Azimut- und Höhenwinkel noch oder wieder passend eingestellt sind, so wird die Position des Mondes relativ zum Globus bei der Aufnahme reproduziert. Eine große "Schiebelehre" wird nun so angelegt, dass die Spitzen ihres "Schnabels" auf den Punkten A und B liegen. Ihre Kante bildet mit dem Stäbchen den gesuchten Winkel alpha, der nun mit einem Geodreieck gemessen werden kann (Abb. 7). Nicht notwendig, aber sehr sinnvoll ist es, auch am Ort B den Azimut- und den Höhenwinkel zum Aufnahmezeitpunkt zu messen und die Richtung zum Mond von Punkt B aus ebenfalls auf dem Globus zu rekonstruieren. Wenn diese Richtungen dann sehr voneinander abweichen, ist irgendwo ein Fehler passiert. Wir haben auf diese Weise die große Kompassmissweisung in Johannesburg "entdeckt". Bestimmung von Azimut- und Höhenwinkel aus Tabellendaten Falls Azimut- und Höhenwinkel nicht messbar sind, kann man sie aus Tabellenwerten der Mondephemeriden, der geographischen Breite und der Sternzeit des Aufnahmeortes rekonstruieren. Das gelingt - wenn auch etwas mühsam - mit den Formeln der sphärischen Geometrie. Zwar nicht so genau, aber anschaulicher und für Schülerinnen und Schüler nicht nur manuell begreifbarer, ist ein Kartonmodell. Abb. 8 zeigt die Mondposition (rotes Kügelchen) im Horizontsystem von Thessaloniki am 12. November 2000 um 20:00 Uhr Weltzeit. Dazu wurde auf der Horizontebene zunächst ein Sektor der Äquatorebene um den Winkel von 90 Grad minus geographische Breite gegenüber der Horizontebene geneigt aufgeklebt. Auf der Äquatorebene sind aus gelbem Karton zwei orthogonal zueinander stehende Sektoren für den Stundenwinkel und die Deklination des Mondes befestigt. Die Deklination des Mondes (hier 18 Grad) erhält man aus einem astronomischen Jahrbuch (Kosmos Himmelsjahr, Ahnerts Astronomisches Jahrbuch), ebenso die Rektaszension (hier 4 h 08 min). Der Stundenwinkel ergibt sich dann aus der Beziehung Stundenwinkel = Sternzeit - Rektaszension. Mit der Sternzeit 1 h 01 min, die man ebenfalls einem Jahrbuch entnimmt und auf den Aufnahmeort und -zeitpunkt umrechnet, erhält man den Stundenwinkel von -3 h 07 min, wie in Abb. 8 näherungsweise abzulesen ist. Mit einem Geodreieck misst man nun Azimut- und Höhenwinkel im Horizontsystem. Das Kartonmodell kann man anstelle der Winkelmessscheibe mit dem Schaschlikstäbchen zur Auswertung auch direkt auf den Globus kleben. Prinzipiell macht man dabei allerdings einen kleinen Fehler: Die Angaben für Deklination und Rektaszension beziehen sich auf einen Beobachter im Erdmittelpunkt, während das Kartonmodell auf der Erdoberfläche sitzt. Der so ermittelte Winkel BAM wird also entsprechend verfälscht. Der Fehler dürfte aber angesichts der begrenzten Genauigkeit des Modells zu vernachlässigen sein. Die Länge der Dreiecksseite AB, das heißt die Entfernung zwischen den Beobachtungspunkten wird, wie in Abb. 7 gezeigt, mit einer großen Schiebelehre auf einem Globus ausgemessen und mithilfe des Globus-Maßstabes berechnet. Die Entfernung BM ergibt sich nun leicht aus dem Sinussatz: Es ist sinnvoll, an dieser Stelle weitere Werte für pi, alpha und die Länge von AB in die Berechnung der Mondentfernung einzusetzen und die Auswirkungen auf das Ergebnis zu diskutieren. Dabei sollte sich als kritische Größe der Parallaxenwinkel herausstellen. Beobachtungsnacht Um sicher auswertbares Fotomaterial zu erhalten, wurde die Begegnung des Mondes mit den Planeten Jupiter und Saturn im Abstand von vier Wochen in zwei Vollmondnächten dokumentiert. Am 12. November 2000 standen neun Kollegen in Brasilien, Südafrika, Griechenland und Deutschland mit ihren Schülerinnen und Schülern bereit, um den Mond und die beiden Planeten zu fotografieren. Allerdings spielte das Wetter nur in Thessaloniki und Johannesburg mit: Lediglich Max Ruf (Deutsche Schule Johannesburg) und Wolfgang Hofbauer (Deutsche Schule Thessaloniki) gelangen auswertbare Aufnahmen. Die folgenden vier Abbildungen zeigen je zwei Bilder von diesen Standorten. Das jeweils erste zeigt die Originalaufnahme mit den ergänzten Aufnahmedaten. In der jeweils zweiten Abbildung ist das digitalisierte Foto mit einem Bildbearbeitungsprogramm zu einer Schwarz-Weiß-Grafik verarbeitet worden. Der Grauton, bei dem die Entscheidung zwischen Schwarz und Weiß liegt, wurde dazu so gewählt, dass der Mondrand optimal zu erkennen ist. Damit die Planeten Jupiter und Saturn bei der Bildbearbeitung nicht verloren gingen, wurden diese vorher retuschiert. Winkelabstand und geographische Koordinaten Den Winkelabstand Jupiter-Saturn hat Max Ruf in Johannesburg zu delta = 10,5° gemessen. Die geographischen Koordinaten der Aufnahmeorte sind: Johannesburg: 26° 12' südlicher Breite, 28° 06' östlicher Länge Thessaloniki: 40° 36' nördlicher Breite, 23° 06' östlicher Länge Bilder aus Johannesburg Bilder aus Thessaloniki Bestimmung der Mondparallaxe am Bildschirm Abb. 13 zeigt eine Montage, in der die beiden Aufnahmen aus Abb. 10 und Abb. 12 so gedreht und zentrisch gestreckt wurden, dass die Verbindungsstrecken Jupiter-Saturn horizontal liegen und gleich lang sind. Nun können die Schülerinnen und Schüler die Mondparallaxe am Bildschirm mit der folgenden Anleitung ermitteln: Markiere auf dem Monitor mit einem abwaschbaren Folienschreiber die Positionen von Jupiter, Saturn und Mond aus der oberen Aufnahme. Verändere nicht die Position deines Kopfes! Schiebe das zweite Bild mithilfe der Scroll-Leiste auf dem Bildschirm in die Position, in der Jupiter und Saturn auf "ihren" Markierungen liegen. Zeichne den "zweiten Mond" auf den Bildschirm. Wenn die Scroll-Funktion zu grob arbeitet, kopiere das Bild zuerst auf eine leere neue Seite eines Webseiten-Editors oder eines Bildbearbeitungsprogramms. Verfahre dann so, wie oben beschrieben. Bestimme auf dem Bildschirm den Abstand Jupiter-Saturn und den Abstand der Mondbilder. Der Abstand Jupiter-Saturn entspricht einem Winkelabstand von [ ... ] Grad. Berechne per Dreisatz den Winkelabstand pi der beiden Mondbilder. Bestimmung der Mondparallaxe mithilfe von Ausdrucken Alternativ zu der beschriebenen Bestimmung der Mondparallaxe am Bildschirm können Ausdrucke der Bilder durch die entsprechende Funktion des Druckprogramms auf den gleichen Abstand Jupiter-Saturn gebracht werden. Man kann dazu auch einen Fotokopierer verwenden. Ein Bild wird auf eine Folie kopiert oder per Hand übertragen. Dann wird die Folie auf das zweite Bild gelegt und die Mondparallaxe wie zuvor beschrieben bestimmt. In der Physik-AG der IKS Neumünster haben wir die beiden Fotos vom 12. November 2000 aus Thessaloniki und Johannesburg ausgedruckt und übereinander gelegt. Jupiter und Saturn hatten dort einen Abstand von 171 Millimetern. Die beiden Mondpositionen lagen 18 Millimeter voneinander entfernt. Daraus ergab sich ein Parallaxenwinkel von pi = 10,5° (18 / 171) = 1,1°. Am großen Globus aus dem Erdkunde-Fachraum haben wir als nächstes die Richtung zum Mond von Thessaloniki aus mithilfe der Winkelmessscheibe rekonstruiert (Abb. 14a) und den Winkel Johannesburg-Thessaloniki-Mond zu 103 Grad gemessen. Gleichzeitig ergab sich der Abstand Johannesburg-Thessaloniki zu 36,4 Zentimetern bei einem Globusdurchmesser von 63,2 Zentimetern (Abb. 14b). Mit dem Erddurchmesser von 12.740 Kilometern konnten wir die wahre Entfernung JT Johannesburg-Thessaloniki errechnen: 12.740 km (36,4 / 63,2) = 7.340 km Um den Sinussatz anwenden zu können, benötigten wir noch den Winkel Mond-Johannesburg-Thessaloniki. Er betrug 180° - 103° - 1,1° = 75,9°. Nun konnten wir alles in den Sinussatz einsetzen und erhielten die Entfernung TM Thessaloniki-Mond: (sin 75,9° / sin 1,1°) 7.340 km = 372.500 km. Fertig (Abb. 15)! Später haben wir erfahren, dass der von uns benutzte Messwert von 85 Grad für den Azimutwinkel um 10 Grad zu groß war. Er beträgt nur 75 Grad. Dadurch muss mit einem kleineren Basiswinkel gerechnet werden. Da dieser nahe bei 90 Grad liegt, wo die Sinuskurve nur eine geringe Steigung hat, wirkt sich dieser Fehler aber kaum auf das Ergebnis aus. Der Mond liegt zwar - in astronomischen Maßstäben - vor unserer Haustür. Dennoch ist die in Zahlen gefasste Entfernung nicht mehr anschaulich. Hilfreicher sind für die Veranschaulichung sind grafische Darstellungen, wie zum Beispiel die folgenden, die uns der Amateur-Astronom Thomas Borowski freundlicherweise zur Verfügung gestellt hat:
-
Mathematik / Rechnen & Logik / Physik / Astronomie
-
Sekundarstufe II