• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Relativitätstheorie: Der Shapiro-Effekt

Unterrichtseinheit

Einmal Venus und zurück – Schülerinnen und Schüler untersuchen mithilfe einer Simulation die Laufzeitverzögerung von Radarechos. Der Effekt beruht auf der Krümmung des Raums durch die Masse der Sonne.Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche, die Lichtablenkung von Sternenlicht am Sonnenrand und die Periheldrehung der Merkurbahn. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zum Shapiro-Effekt und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie".Der amerikanische Physiker Irwin Shapiro schickte im Jahr 1970 Radarimpulse zur Venus, die an der Oberfläche des Planeten reflektiert und auf der Erde wieder aufgefangen wurden. Aufgrund der Raumkrümmung sollten die Impulse etwas länger unterwegs sein, als es die Newtonsche Gravitationsphysik vorhersagt. Die von Shapiro festgestellte Laufzeitverzögerung der Signale war eine wichtige Bestätigung der Allgemeinen Relativitätstheorie. Grundlage dieser Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zum Shapiro-Effekt und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen. Historisches zum Thema Um die obere Konjunktion der Venus herum macht sich die Laufzeitverzögerung ihrer Radarechos durch die Raumzeitkrümmung am stärksten bemerkbar. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Allgemeine Relativitätstheorie mit der Idee der Raumzeitkrümmung einen längeren Weg eines Radarimpulses zur Venus vorhersagt. an einem einfachen Beispiel diese Laufzeitverzögerung berechnen können. mithilfe eines Computerprogramms das Langzeit-Experiment des Physikers Irwin Shapiro aus dem Jahr 1970 simulieren, auswerten und die Ergebnisse miteinander vergleichen. erkennen, dass die Messungen Shapiros ein wichtiger Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie sind. Thema Allgemeine Relativitätstheorie: Der Shapiro-Effekt Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Einmal Venus und zurück - Laufzeitverzögerung von Radarwellen Im Jahr 1970 konnte der amerikanische Physiker Irwin Shapiro die Raumkrümmung in der Nähe der Sonne experimentell nachweisen. Er lieferte damit einen weiteren Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART). Seine Idee war, die Entfernung Erde-Venus mithilfe von Radarstrahlung exakt zu bestimmen. Dabei sollten sich Venus und Erde so gegenüberstehen, dass die Radarimpulse den Sonnenrand in geringem Abstand passieren mussten, denn in der Nähe der Sonne wirkt sich der Effekt der Raumkrümmung durch die Sonnenmasse besonders stark aus (Abb. 1). Ausgestrahlt wurden die Radarimpulse von einer riesigen Antenne auf der Erde. An der Venusoberfläche wurden sie reflektiert und auf der Erde wieder aufgefangen. Mithilfe der Laufzeit der Impulse und der Geschwindigkeit der Radarwellen (Lichtgeschwindigkeit) konnte der von den Wellen zurückgelegte Weg sehr genau berechnet werden. Der krumme Weg ist um 80 Mikrosekunden länger Shapiro führte im Laufe einiger Monate eine Vielzahl von Messungen durch. Als Beispiel betrachten wir hier die Daten, die er am 16. März 1970 ermitteln konnte. Die Positionen von Erde und Venus an diesem Tag sind in Abb. 2 dargestellt. Da die Planetenpositionen genau berechnet werden können, wusste man, dass der Abstand von Erde und Venus zu diesem Zeitpunkt 249 Millionen Kilometer betrug. Die Lichtgeschwindigkeit (Geschwindigkeit der Radarwellen) beträgt 300.000 Kilometer in einer Sekunde. Die Messung von Shapiro ergab jedoch nicht den erwarteten Wert von 1.660 Sekunden (27 Minuten und 40 Sekunden), sondern einen etwas größeren Wert, nämlich 1.660,000080 Sekunden. Die Laufzeit hatte sich also um 80 Mikrosekunden (80 millionstel Sekunden) vergrößert. Das ist nicht viel, war aber von großer Bedeutung, denn die Allgemeine Relativitätstheorie hatte genau diesen Wert vorhergesagt. Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Objekten, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetzes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zum Shapiro-Effekt. Zunächst wurde die "Bahnkurve nach Newton" simuliert. Danach wurde - ohne die Erde-Venus-Konstellation zu ändern - die Laufzeit der Signale nach Einstein simuliert. Beide Laufzeiten sowie die ermittelte Differenz werden in dem Feld "Daten für Radarecho-Experimente" angezeigt (oben rechts in Abb. 3). Die Konstellationen können im Zeitraum von 200 Tagen vor beziehungsweise nach der oberen Konjunktion gewählt werden. (Zum Zeitpunkt der oberen Konjunktion befindet sich die Sonne zwischen Erde und Venus.) Je näher die Radarwellenechos an der Sonne vorbei müssen, um zur Erde zurückzukehren, desto größer die Laufzeitverzögerung. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differenzieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Simulation liefert konkrete Werte, die im Arbeitsblatt ausgewertet werden können und veranschaulicht das Experiment von Shapiro auf dem Computermonitor. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Anmerkung zu den Begriffen Raumkrümmung und Raumzeitkrümmung Im Sinne der Allgemeinen Relativitätstheorie sollte man bei der Beschreibung von Bahnkurven bewegter Körper und Photonen eigentlich nicht den Begriff Raumkrümmung verwenden, sondern stattdessen von der Raumzeitkrümmung sprechen. Die Darstellung der Situation als gekrümmte Fläche (siehe Abb. 1) beinhaltet nämlich zwei starke Vereinfachungen: zum einen die Reduktion des dreidimensionalen Raumes auf zwei Dimensionen und zum anderen die Vernachlässigung der Zeitkomponente. Diese Vereinfachungen machen aber - gerade für jüngere Schülerinnen und Schüler- die Ideen der Relativitätstheorie begreifbar. In höheren Klassen sollte man jedoch auf diese didaktischen Reduzierungen hinweisen. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Arbeitsblatt Das Arbeitsblatt zur Simulation des Shapiro-Effekts enthält einfache Aufgaben zur Berechnung der Laufzeit und damit der Wegdifferenz. Außerdem wird die Simulation benutzt, um das Experiment Shapiros nachzustellen. Dabei werden Messungen der Laufzeit mithilfe der Simulation durchgeführt. Die gewonnenen Daten werden grafisch dargestellt und mit der Originalkurve Shapiros verglichen. Abb. 5 zeigt eine grafische Darstellung der mit der Simulation erzielten Ergebnisse. Form und Verhalten der Kurve entsprechen genau den Ergebnissen Shapiros. Einziger Unterschied: Durch die extrem überhöhte Zentralmasse in der Simulation (Faktor 10.000) liegen die Zeitdifferenzen entsprechend in einem anderen Größenbereich.

  • Physik / Astronomie
  • Sekundarstufe II

Lichtablenkung in der Nähe Schwarzer Löcher

Unterrichtseinheit

Schülerinnen und Schüler lernen die Begriffe Schwarzschildradius und "knife-edge-orbit" kennen. Mit einer Computersimulation untersuchen sie das Verhalten von Lichtstrahlen in der Nähe Schwarzer Löcher.Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie (ART). Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie, die Albert Einstein (1879-1955) im Jahr 1915 veröffentlichte und die ihm zu so großer Popularität verhalf. In der Unterrichtseinheit gehen die Schülerinnen und Schüler unter anderem der Frage nach, wie ein Schwarzes Loch aus der Nähe aussehen würde. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen zu den hier vorgeschlagenen Aufgaben. Zur Behandlung des Themas in der Schule eigenen sich auch die hervorragenden Computergrafiken und -animationen der Webseite "Tempolimit Lichtgeschwindigkeit". Phänomene der ART Neben der hier vorgestellten Simulation zur Lichtablenkung in der Nähe Schwarzer Löcher bietet die Simulation zu den Phänomenen der Allgemeinen Relativitätstheorie die Möglichkeit, drei wissenschaftsgeschichtlich wichtige Beobachtungen beziehungsweise Experimente für den "Beweis" der Allgemeinen Relativitätstheorie darzustellen und zu besprechen: die Relativitätstheorie: Lichtablenkung am Sonnenrand , die Relativitätstheorie: Die Periheldrehung der Merkurellipse und die Relativitätstheorie: Der Shapiro-Effekt bei der Reflexion an der Venusoberfläche. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Was ist der Schwarzschildradius? Was bedeutet "knife-edge-orbit" und wie sieht ein Schwarzes Loch aus der Nähe aus? Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen den Schwarzschildradius mithilfe der zweiten kosmischen Geschwindigkeit herleiten können. den Schwarzschildradius verschiedener Himmelskörper berechnen können. erfahren, dass Lichtstrahlen unter bestimmten Voraussetzungen ein Schwarzes Loch umkreisen können. mithilfe der Computersimulation das Verhalten von Lichtstrahlen in der Nähe Schwarzer Löcher spielerisch untersuchen und die angegebene Formel verifizieren können. mithilfe der Computersimulation verstehen lernen, wie ein Schwarzes Loch vor dem Hintergrund eines sternenübersäten Himmels für eine Beobachterin oder einen Beobachter aussehen würde. Thema Allgemeine Relativitätstheorie: Lichtablenkung in der Nähe Schwarzer Löcher Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum mindestens 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Die sogenannte "zweite kosmische Geschwindigkeit" beschreibt die Mindestgeschwindigkeit, die eine Masse haben muss, um dem Schwerefeld eines Himmelskörpers vollständig entweichen zu können. Diese Fluchtgeschwindigkeit lässt sich mithilfe der Formel berechnen. Dabei bedeutet R der Radius der Oberfläche des Himmelskörpers, von dem man startet. Nun kann man sich vorstellen, diesen Radius (bei gleich bleibender Masse) stetig schrumpfen zu lassen. Es ist leicht einzusehen, dass dadurch die Fluchtgeschwindigkeit ebenfalls steigen muss. Interessant ist die Frage, bei welchem Radius die absolute Grenzgeschwindigkeit, die Lichtgeschwindigkeit c = 3 • 10 8 Meter pro Sekunde, erreicht wird. Würde man den Himmelskörper noch stärker zusammenpressen, könnte selbst Licht nicht mehr von seiner Oberfläche entweichen. Damit wäre ein Zustand erreicht, der im Allgemeinen als "Schwarzes Loch" bezeichnet wird. Der oben beschriebene kritische Radius wurde erstmals von dem deutschen Ingenieur Karl Schwarzschild (1873-1916) im Jahr 1916 aus den Gleichungen der Allgemeinen Relativitätstheorie berechnet. Daher spricht man auch vom "Schwarzschildradius". In dieser Unterrichtseinheit berechnen die Schülerinnen und Schüler nach der Herleitung des Schwarzschildradius diesen Wert für Sonne und Erde. Wie verhalten sich nun Lichtstrahlen, die weit entfernt vom Schwarzen Loch starten, seinem Schwarzschildradius jedoch sehr nahe kommen? Interessanterweise kann der Lichtstrahl vollständig vom Schwarzen Loch eingefangen werden. Dabei spielt ein spezieller Stoßparameter eine entscheidende Rolle, der sich aus der Formel ergibt (etwas einfacher: b KE ≈ 2,6 R S ). Lichtstrahlen, die genau bei diesem seitlichen Abstand starten und auf das Schwarze Loch zulaufen, werden dieses auf einer Umlaufbahn ewig umkreisen (Abb. 1, Mitte). Kleine Variationen dieses Parameters bewirken bereits ein anderes Verhalten: Ist b kleiner als b KE , stürzt das Licht in das Schwarze Loch (Abb. 1, links). Ist b größer als b KE , umrundet der Lichtstrahl den Kollapsar einige Male, um sich dann wieder von diesem zu entfernen (Abb. 1, rechts). Die Umlaufbahn des Stoßparameters b KE wird treffend auch mit dem Begriff "knife-edge-orbit" beschrieben. Wie würden wir ein Schwarzes Loch visuell vor dem Hintergrund eines sternenübersäten Himmels wahrnehmen? Je näher die Lichtstrahlen am Kollapsar vorbeilaufen, desto stärker werden sie gekrümmt. Beobachterinnen und Beobachter werden also in der Nähe eines Lichtkreises den umgebenden Himmel mehrfach und völlig verzerrt wahrnehmen. Außerdem erscheint der schwarze Fleck, den der Kollapsar vor dem Himmel abgibt, etwa 2,6-mal so groß wie nach dem Schwarzschilddurchmesser zu erwarten wäre. Diese Phänomene untersuchen die Lernenden mithilfe der Simulation. Sie verändern den Stoßparameter, beobachten das Verhalten der Lichtstrahlen und zeichnen in Screenshots die Sehstrahlen ein, die den schwarzen Bereich begrenzen (Abb. 2). Auf der Webseite "Tempolimit Lichtgeschwindigkeit" finden Sie faszinierende Grafiken und Computeranimationen, die zeigen, wie ein Schwarzes Loch aus der Nähe aussähe. Auf den Abbildungen sind die oben simulierten Strahlenverläufe gut wiederzuerkennen, insbesondere die verzerrte, mehrfache Abbildung des gesamten Himmels innerhalb eines Kreisrings. Tempolimit Lichtgeschwindigkeit Hier finden Sie Ideen und Materialien von Ute Kraus und Corvin Zahn: Visualisierung der Speziellen und Allgemeinen Relativitätstheorie sowie Modellexperimente. Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Objekten, die sich in Gravitationsfeldern von Sternen bewegen. Dabei kann man wählen, ob die Bahnkurven nach Newton oder Einstein dargestellt werden sollen. Die klassische Herleitung für den Schwarzschildradius liefert erstaunlicherweise dasselbe Ergebnis wie die relativistische Herleitung. Man sollte sich aber darüber im Klaren sein, dass der Schwarzschildradius eigentlich durch die Relativitätstheorie beschrieben wird. Abb. 3 (Platzhalter bitte anklicken) zeigt einen Screenshot aus der Simulation zur Lichtablenkung in der Nähe Schwarzer Löcher. Die Schülerinnen und Schüler verändern den Stoßparameter und beobachten dabei das Verhalten des Lichtstrahls. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differenzieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation (Shapiro-Verzögerung, Lichtablenkung am Sonnenrand, Periheldrehung der Merkurbahn) um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Simulation ermöglicht dabei eine direkte Veranschaulichung der Ergebnisse aus den Berechnungen. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Die Periheldrehung der Merkurellipse

Unterrichtseinheit

Schülerinnen und Schüler lernen die Periheldrehung des innersten und kleinsten Planeten des Sonnensystems als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen.Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Periheldrehung der Merkurbahn, die Lichtablenkung von Sternenlicht am Sonnenrand und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Periheldrehung der Merkurellipse und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie". Klassische Physik und Relativitätstheorie Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Periheldrehung von Ellipsenbahnen, der Formel für die Verschiebung des Perihels sowie einem Informations- und Arbeitsblatt diskutieren und vergleichen die Schülerinnen und Schüler die Vorhersagen der Newtonschen Physik mit denen der Allgemeinen Relativitätstheorie. Lehrpersonen finden im Bereich "Mein LO" detaillierte Lösungen der vorgeschlagenen Aufgaben. Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat. Hintergrundinformationen Die Bahnbewegungen des Merkur weichen von der Vorhersagen der Newtonschen Physik ab. Sie konnten erst mit der Allgemeinen Relativitätstheorie erklärt werden. Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise und Materialien zum Einsatz im Unterricht Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass die Bahnellipse des Planeten Merkur sich im Laufe der Zeit kontinuierlich verschiebt. erkennen, dass ein Teil dieser Verschiebung mithilfe der klassischen Physik nicht erklärbar ist. die Formel für die Verschiebung des Perihels aus der Allgemeinen Relativitätstheorie kennenlernen und für Beispielrechnungen anwenden können. mithilfe der Computersimulation und von Berechnungen (Arbeitsblatt) ein Gefühl für die Abhängigkeit der Periheldrehung von der Masse des Zentralkörpers und den Parametern der Ellipse bekommen. erkennen, dass die Allgemeine Relativitätstheorie nur in Extremsituation eine deutliche Abweichung von der Newtonschen Physik zeigt. erfahren, dass die Erklärung der Periheldrehung durch die Relativitätstheorie historisch ein wichtiger Beweis für die Richtigkeit der neuen Gravitationsphysik war. Thema Allgemeine Relativitätstheorie: Periheldrehung der Merkurellipse Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit Edwin F. Taylor, John A. Wheeler Exploring Black Holes. Addison Wesely, Longman, Inc., 2000 Mithilfe des Gravitationsgesetzes von Isaac Newton (1643-1727) lässt sich zeigen, dass die Planeten die Sonne auf Ellipsenbahnen umlaufen. Eigentlich sollte man annehmen, dass diese Ellipsen feste Positionen im Raum einnehmen und sich über Jahrtausende nicht verändern. Aber wir dürfen die Planeten nicht als voneinander isolierte Objekte betrachten. Vielmehr zerren die einzelnen Himmelskörper durch ihre Gravitationskräfte aneinander, sodass sich die Lage ihrer Bahnen mit der Zeit leicht verändert - die Ellipsen beginnen sich so zu drehen, dass der sonnennächste Punkt der Ellipse, das Perihel, sich langsam verschiebt. Diese gravitativen Störungen lassen sich mithilfe der Newtonschen Physik berechnen. Bei der Merkurbahn ergibt sich so zum Beispiel eine Periheldrehung von 532,1 Bogensekunden pro Jahrhundert. Die tatsächliche Drehung der Merkurellipse, also das, was Astronomen beobachten, beträgt jedoch 575,2 Bogensekunden. Dies war bereits im neunzehnten Jahrhundert bekannt, aber die fehlenden 43 Bogensekunden blieben lange Zeit rätselhaft, denn die Gravitationsphysik Newtons konnte keine schlüssige Erklärung dafür liefern. Abb. 1 zeigt - nicht maßstabsgetreu! - die Drehung der Ellipse eines Planeten. Im Perihel (sonnennächster Punkt einer Planetenbahn) ist Merkur etwa 46, im Aphel (sonnenfernster Punkt einer Planetenbahn) fast 70 Millionen Kilometer von der Sonne entfernt. Erst die im Jahr 1915 von Albert Einstein veröffentlichte Allgemeine Relativitätstheorie war in der Lage, die fehlenden 43 Bogensekunden vorherzusagen. Dies war ein erster starker und wichtiger Beweis für die Richtigkeit der neuen Theorie über die Gravitation. Die Newtonsche Physik erweist sich als gut brauchbare Näherung für die Betrachtung kleiner Massen beziehungsweise großer Abstände. Da die Bahn des kleinsten Planeten des Sonnensystems der Sonne von allen Planeten am nächsten kommt, macht sich eine Abweichung von der klassischen Beschreibung der Planetenbahnen bei Merkur am deutlichsten bemerkbar. Informationen zum Planeten Merkur und Hinweise für seine Beobachtung finden Sie bei Lehrer-Online und im Netz: Merkur - Beobachtung des flinken Planeten Nur an wenigen Tagen eines Jahres hat man Gelegenheit, Merkur mit bloßem Auge als auffälliges Objekt zu sehen. Relativistische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 2 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Periheldrehung gemäß der Allgemeinen Relativitätstheorie. Klassische Physik Per Klick auf den Button "Bahnkurve nach Newton" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Newtonschen Physik darstellen lassen (Abb. 3, Platzhalter bitte anklicken). So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Periheldrehung der Merkurbahn Lichtablenkung am Sonnenrand Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Zusammen mit den vielfältigen Animationen der Webseite "Tempolimit Lichtgeschwindigkeit" von Prof. Dr. Ute Kraus (Physik und ihre Didaktik an der Universität Hildesheim) eröffnen die Simulationen interessante und vielfältige Möglichkeiten, verschiedene Effekte der Allgemeinen Relativitätstheorie einem größeren Publikum sehr anschaulich vorzustellen. Tempolimit Lichtgeschwindigkeit Visualisierung und Veranschaulichung der Relativitätstheorie: Hier finden Sie Artikel, Bilder, Filme und Bastelbögen. Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Periheldrehung, Lichtablenkung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Auch am heimischen Rechner können die Lernenden mithilfe des kostenfreien Programms "experimentieren".

  • Physik / Astronomie
  • Sekundarstufe II

Relativitätstheorie: Lichtablenkung am Sonnenrand

Unterrichtseinheit

In dieser Unterrichtseinheit zur Relativitätstheorie lernen die Schülerinnen und Schüler die Lichtablenkung am Sonnenrand als wichtigen historischen Beweis für die Gültigkeit der Allgemeinen Relativitätstheorie (ART) kennen.Wissenschaftsgeschichtlich sind vor allem drei "Beweise" der Allgemeinen Relativitätstheorie (1915) zu nennen, die Albert Einstein (1879-1955) zu großer Popularität verholfen haben: die Lichtablenkung von Sternenlicht am Sonnenrand, die Periheldrehung der Merkurbahn, und die Shapiro-Verzögerung von Radarsignalen bei der Reflexion an der Venusoberfläche. Alle drei Beobachtungen beziehungsweise Experimente lassen sich im Unterricht mithilfe der hier vorgestellten und vom Autor programmierten Simulation anschaulich darstellen und besprechen. Darüber hinaus kann mit der Simulation die Lichtablenkung in der Nähe Schwarzer Löcher thematisiert werden. Diese Unterrichtseinheit beschreibt die Hintergründe zur Lichtablenkung von Sternenlicht am Sonnenrand und skizziert die Einsatzmöglichkeiten des Programms "Phänomene der Allgemeinen Relativitätstheorie".Grundlage der Unterrichtseinheit ist ein vom Autor programmiertes und frei verfügbares Simulationsprogramm zur Allgemeinen Relativitätstheorie. Es ermöglicht Simulationen zu verschiedenen Aspekten der Theorie. Mithilfe der Simulation zur Lichtablenkung von Sternenlicht am Sonnenrand und einem Informations- und Arbeitsblatt vergleichen die Schülerinnen und Schüler die klassischen mit den relativistischen Vorhersagen: Um welchen Winkel wird ein Lichtstrahl beim Passieren des Sonnenrandes aufgrund der Gravitation "verbogen"? Historisches zum Thema & Informationen zum Programm Das Programm "Phänomene der Allgemeinen Relativitätstheorie" ermöglicht den Vergleich der Vorhersagen von Einstein und Newton zur Gravitation. Hinweise zum Einsatz im Unterricht & Arbeitsblatt Die Simulationen können Vorträge per Beamer-Präsentation unterstützen und ermöglichen - mit entsprechenden Arbeitsaufträgen - Partnerarbeiten im Computerraum. Die Schülerinnen und Schüler sollen erfahren, dass Licht innerhalb von Gravitationsfeldern abgelenkt wird. mithilfe einer vereinfachten Herleitung diese Ablenkung klassisch berechnen können. erfahren, dass diese klassische Betrachtungsweise nicht der Wirklichkeit entspricht. erkennen, dass erst die Allgemeine Relativitätstheorie den richtigen Wert für die Lichtablenkung am Sonnenrand liefert. mithilfe einer Computersimulation die unterschiedlichen Szenarien spielerisch erfahren und nachstellen können. erkennen, dass die exakte Bestimmung der Lichtablenkung am Sonnenrand ein wichtiger historischer Beweis für die Relativitätstheorie ist. Thema Allgemeine Relativitätstheorie: Lichtablenkung am Sonnenrand Autor Matthias Borchardt Fächer Physik (Allgemeine Relativitätstheorie), Astronomie (Gravitation); Physik- und Astronomie-AGs, Projektkurse (neue Oberstufe NRW) Zielgruppe ab Klasse 10 Zeitraum 1 Stunde (je nach Vertiefung flexibel) Technische Voraussetzungen Präsentationsrechner mit Beamer; gegebenenfalls Computer in ausreichender Anzahl für Einzel- oder Partnerarbeit 1801: Johann Georg von Soldner berechnet die Lichtablenkung "klassisch" Wenn sich ein Lichtstrahl durch das Gravitationsfeld eines Sterns bewegt, wird seine Bahn gekrümmt. Bemerkenswerterweise stammt diese These bereits aus der Zeit vor der Aufstellung der Allgemeinen Relativitätstheorie. Der Gründer der Münchener Sternwarte, Professor Johann Georg von Soldner (1776-1883), hatte bereits im Jahr 1801 ausgerechnet, dass ein Lichtstrahl, der den Sonnenrand passiert, eine Ablenkung von 0,87 Bogensekunden erfahren müsste (1 Bogensekunde = 1/3.600 Grad). Dem Licht gestand er dabei Teilcheneigenschaften zu. Über die Masse dieser Teilchen brauchte er sich keine Gedanken zu machen, da sie sich im Laufe seiner Herleitung, die auf der Newtonschen Physik basiert, herauskürzte. 1919: Eine Sonnenfinsternis bestätigt Einsteins relativistische Vorhersage Albert Einstein entwickelte dagegen aus den Feldgleichungen seiner Allgemeinen Relativitätstheorie (ART) eine Formel für die Lichtablenkung, die in erster Näherung den doppelten Ablenkwinkel am Sonnenrand ergab, nämlich 1,75 Bogensekunden. Die berühmte Sonnenfinsternis-Expedition von 1919, bei der die Verschiebungen von Sternpositionen in der Nähe des Sonnenrandes bei verdunkelter Sonne bestimmt wurden, konnte schließlich den von Einstein vorhergesagten Wert bestätigen. Diese Beobachtung stellte einen wichtigen Meilenstein zur Etablierung seiner neuen Theorie dar und katapultierte Einstein über Nacht in den Rang eines Superstars der modernen Physik. Wikipedia: Sonnenfinsternis vom 29. Mai 1919 Hier finden Sie Informationen zu der historischen Expedition auf die Vulkaninsel Príncipe vor der westafrikanischen Küste. Klassische Physik Die in dieser Unterrichtseinheit eingesetzte Simulation wurde mithilfe der Programmiersprache Delphi erstellt. Die EXE-Datei ist nach dem Herunterladen direkt ausführbar. Eine Installation ist somit nicht erforderlich. Die Simulation berechnet die Bahnen von Planeten oder Photonen, die sich in Gravitationsfeldern von Sternen bewegen. Man kann wählen, ob diese Bahnkurven gemäß des Newtonschen Gravitationsgesetztes (klassisch) oder auf Grundlage der Schwarzschildmetrik der Allgemeinen Relativitätstheorie (ART) berechnet werden sollen. Abb. 1 (Platzhalter bitte anklicken) zeigt einen Screenshot der Simulation zur Lichtablenkung gemäß der Newtonschen Physik. Relativistische Physik Per Klick auf den Button "Bahnkurve nach Einstein" können die Schülerinnen und Schüler die betrachteten Effekte gemäß der Allgemeinen Relativitätstheorie darstellen lassen (Abb. 2, Platzhalter bitte anklicken): Der rechte, stärker abgelenkte Lichtstrahl folgt Einsteins Formel. So ist ein Vergleich beider Zugänge zur Gravitation möglich. Sinnvolle Anfangsbedingungen sind im Programm voreingestellt, sodass man die Simulationen direkt starten kann. Natürlich lassen sich die Werte beim Start der Simulation auch frei wählen. Eine wichtige Intention der Simulation ist die Beschäftigung mit den drei historischen Beweisen für die Richtigkeit der Allgemeinen Relativitätstheorie: Lichtablenkung am Sonnenrand Periheldrehung der Merkurbahn Shapiro-Verzögerung von Radarimpulsen bei der Reflexion an der Venusoberfläche Schwarzer Löcher und Neutronensterne Zudem kann die Lichtablenkung in der Nähe von Schwarzen Löchern und Neutronensternen simuliert werden. Dabei kann untersucht werden, wie eine Beobachterin oder ein Beobachter ein Schwarzes Loch oder einen Neutronenstern vor einem sternenübersäten Himmel wahrnehmen würde. Didaktische "Überhöhung" der Sonnenmasse Die Effekte der Allgemeinen Relativitätstheorie sind in der Umgebung der Sonne zu klein, um die Unterschiede zur Newtonschen Physik auf dem Computerbildschirm erkennen zu können. Daher wurde die Masse der Sonne in der Simulation um den Faktor 10.000 überhöht. So wird zum Beispiel aus einer Winkeländerung von 1,75 Bogensekunden eine deutlich sichtbare Abweichung von fast fünf Grad. Dies sollte man den Schülerinnen und Schülern bei der Nutzung des Programms stets deutlich machen, um den Trugschluss zu vermeiden, die Newtonsche Gravitationsphysik versage bereits in der Nähe der Sonne - das tut sie nämlich ganz und gar nicht. Nur bei extremen Massen oder bei sehr kleinen Abständen zum Massenzentrum weicht sie deutlich von den Vorhersagen der Allgemeinen Relativitätstheorie ab. Relativistische Berechnungen Grundlage für die Programmierung war das Buch "Exploring Black Holes" von Taylor und Wheeler (siehe Zusatzinformationen). Die beiden bekannten Astrophysiker entwickeln darin auf didaktisch sehr ansprechende Art Ideen, wie die Teilchenbahnen relativistisch berechnet werden können. Sie vermeiden dabei konsequent den Formalismus der Tensoralgebra und formulieren mathematische Beziehungen in rein differentieller Form, wobei die Bewegungen in der Umgebung eines Zentralkörpers in Polarkoordinaten beschrieben werden. Dadurch lassen sich die Inkremente d? und dr einer Bewegung in der Nähe einer symmetrischen, nicht rotierenden Zentralmasse mithilfe der Energie- und Drehimpulserhaltung sowie der Schwarzschildmetrik entwickeln. Es ergeben sich schließlich die folgenden Formeln (vergleiche Abb. 4): Dabei gelten die Beziehungen und und Formel Die drei Größen werden allein durch die Anfangsbedingungen festgelegt (L = Drehimpuls, E = Energie, R S = Schwarzschildradius). Die Inkremente d? und dr werden im Programm als iterative Größen in ein Euler-Cauchy-Verfahren eingebunden. So lassen sich die Bahnkurven stückweise berechnen. Da die Simulationszeiträume nicht sehr groß sind, liefert dieses Verfahren recht genaue Ergebnisse, und man kann auf komplizierte und programmiertechnisch aufwendige Methoden, wie zum Beispiel das Runge-Kutta-Verfahren, verzichten. Unterstützung von Lehrervorträgen und Schülerreferaten Lehrpersonen können die Simulation per Beamer-Präsentationen nutzen, um im Rahmen eines Lehrervortrags einer Klasse oder einem Kurs Aussagen der Allgemeinen Relativitätstheorie vorzustellen. Diese Möglichkeit kann natürlich auch von Schülerinnen und Schülern bei Referaten genutzt werden. Partnerarbeit im Computerraum Auch die Nutzung der Simulationen im Zusammenhang mit Arbeitsblättern und vorgegebenen Aufgabenstellungen zu den Aspekten der Allgemeinen Relativitätstheorie (Lichtablenkung, Periheldrehung, Shapiro-Verzögerung, Schwarze Löcher) gelingt gut. Das hier angebotene Informations- und Arbeitsblatt sowie die Lösungen der Aufgaben vermitteln einen Eindruck, wie man sich in der Schule dieser komplexen und nicht alltäglichen Thematik nähern kann. Die Schülerinnen und Schüler sollen zunächst eine vereinfachte Herleitung der Formel von Soldner durchführen, danach die Formel von Einstein kennen lernen und mithilfe der Computersimulation beide Szenarien "durchspielen". Die Simulation ermöglicht dabei eine direkte Veranschaulichung der Ergebnisse aus den Rechnungen. Auch am heimischen Computer können die Lernenden mithilfe des kostenfreien Programms "experimentieren". Nischen für die ART in der Schule Als Physiklehrer, der seit vielen Jahren in der Oberstufe unterrichtet, ist dem Autor durchaus bewusst, dass die Nischen für die Behandlung der Allgemeinen Relativitätstheorie im normalen Unterricht extrem rar geworden sind. Aber vielleicht bieten Arbeitsgemeinschaften (Physik, Astronomie), Projekttage oder die in Nordrhein-Westfalen geplanten Projektkurse der neuen Oberstufe Möglichkeiten, Aspekte der Allgemeinen Relativitätstheorie zu thematisieren und den Schülerinnen und Schülern eine Vorstellung davon zu vermitteln, mit welch faszinierenden Ideen Albert Einstein sich dem Phänomen der "Gravitation" genähert hat.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner