• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 2
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Die harmonische mechanische Schwingung – hergeleitet aus der gleichförmigen Kreisbewegung

Unterrichtseinheit

Diese Unterrichtseinheit befasst sich mit Schwingungsvorgängen, die in ihrer Vielfalt zahlreiche, zum Teil komplexe physikalische Abläufe in den verschiedensten Bereichen bestimmen. Dennoch lassen sich die grundsätzlichen Gesetzmäßigkeiten sehr gut anhand der relativ einfach nachvollziehbaren Herleitungen bei mechanischen Schwingungen – beispielsweise bei Federschwingungen – ableiten. Ausgehend von den bereits bekannten Versuchen zu Federdehnungen, die mit dem Hooke'schen Gesetz beschrieben werden können, werden die Lernenden durch weitere einfache Versuche mit den Grundbedingungen für eine so bezeichnete harmonische mechanische Schwingung bekannt gemacht. Mit etwas Geschick wird den Schülerinnen und Schülern am Versuch (Projektion einer Kreisbewegung an eine Wand) vorgeführt, wie sich eine Federschwingung mit den Gesetzmäßigkeiten der gleichförmigen Kreisbewegung überlagert und damit exakt beschreiben lässt. Schwingungen sind in fast allen Bereichen der Natur und natürlich der Technik vorhanden. Man unterscheidet dabei in erster Linie zwischen periodischen und nicht periodischen Schwingungen gedämpften, ungedämpften und aperiodischen Schwingungen freien und erzwungenen Schwingungen. Am naheliegendsten zur Herleitung von Gesetzen, die Schwingungen beschreiben, sind die Abläufe bei der harmonischen mechanischen Schwingung, weil sie von der Anforderung für die Lernenden gut nachvollziehbar sind . Vorkenntnisse Die physikalischen Vorkenntnisse von Lernenden dürften eher eingeschränkt sein – am ehesten könnte das Beschreiben des Hin- und Herschwingens bei einer Kinderschaukel als Einstiegsüberlegung für die Grundvoraussetzungen von Schwingungen dienen. Didaktische Analyse Die in nahezu allen Bereichen der Physik vorkommenden Schwingungsvorgänge sind für Schülerinnen und Schüler zunächst nur schwer nachvollziehbar, weil sie nicht so einfach und direkt beobachtbar sind, wie bei der harmonischen mechanischen Schwingung – dennoch lassen sich gerade durch diese einfachen Versuche die Grundlagen für die in der Sekundarstufe II in anderen Bereichen zu besprechenden Schwingungen der Physik legen. Methodische Analyse Mithilfe der Herleitung der Gesetzmäßigkeiten aus dem Zusammenhang zwischen gleichförmiger Kreisbewegung und harmonischer Schwingungsbewegung sowie der durch die Auswertung erkennbaren Sinusschwingung lässt sich auch das Verständnis für die Ausbreitung von Schwingungen in Form von Wellen gut vorbereiten. Fachkompetenz Die Schülerinnen und Schüler können die Voraussetzungen für das Auftreten von mechanischen Schwingungen beschreiben und erläutern. kennen die verschiedenen Arten von Schwingungen und deren Zusammenhang mit den grundlegenden Gesetzmäßigkeiten der mechanischen Schwingung. können die Formeln zur Beschreibung von mechanischen Schwingungen anwenden und auch deren Abhängigkeiten von der Zeit berechnen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbstständig Fakten und Hintergründe im Internet. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Analogien zwischen mechanischen und elektromagnetischen Schwingungen

Unterrichtseinheit

In dieser Unterrichtseinheit wird anschaulich gezeigt, dass die Struktur aller Schwingungen in den meisten Fällen sehr gut mit der von mechanischen Schwingungen verglichen werden kann. Egal, ob es sich um Feder- oder Pendelschwingungen, Wasserwellen oder elektromagnetische Schwingungen handelt – sie folgen alle den gleichen Abläufen. Ausgehend von Grundkenntnissen zu den Gesetzmäßigkeiten, mit denen der Kondensator und die Spule im elektrischen Stromkreis beschrieben werden, soll ein einfacher elektromagnetischer Schwingkreis mit einem harmonischen mechanischen Federpendel verglichen werden. Die entsprechenden Zusammenhänge werden mithilfe von Zeichnungen grafisch dargestellt und anschließend mathematisch anhand der zugehörigen Gleichungen ausgewertet. So kann sehr anschaulich gezeigt werden, dass beide Schwingungsarten strukturell identischen Gesetzmäßigkeiten folgen. Mit dieser Unterrichtseinheit werden den Lernenden die Gesetze und Zusammenhänge zwischen den einzelnen physikalischen Teilbereichen – wie etwa zwischen Mechanik und elektrischem Stromkreis – vorgestellt. Eine tiefergreifende Auseinandersetzung mit dieser Thematik bleibt auf jeden Fall der Kursphase der Sekundarstufe II vorbehalten. Die Aufgaben werden in Einzel- und Gruppenarbeit erledigt, um auch die Teamarbeit zu fördern. Die Darstellung der Vorgänge wird grafisch auf einem Arbeitsblatt dargestellt, außerdem werden zur Veranschaulichung praktische Versuche im Unterricht durchgeführt. Fachkompetenz Die Schülerinnen und Schüler wissen um die vielfältigen Zusammenhänge von mechanischen und elektromagnetischen Schwingungen. können die für die Beschreibung beider Schwingungen notwendigen Gleichungen herleiten. kennen die Gemeinsamkeiten beider Schwingungsarten und können die unterschiedlichen Größen der jeweiligen Schwingungen miteinander vergleichen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern und Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Der ungedämpfte elektromagnetische Schwingkreis – Theorie und Beispiele

Unterrichtseinheit

Überlässt man nach einmaliger Aufladung einen elektromagnetischen Schwingkreis sich selbst, so entsteht – vor allem wegen der unvermeidlichen Ohmschen Reibung – eine gedämpfte Schwingung, deren Amplitude sehr schnell gegen null gehen wird. Für viele technische Anwendungen wie etwa Radiowellen oder Mikrowellen benötigt man aber möglichst ungedämpfte Schwingungen, bei denen der stets auftretende Energieverlust durch technische Lösungen ausgeglichen wird. In diesem Beitrag werden beispielhaft zwei Schaltungen vorgestellt, die es ermöglichen ungedämpfte Schwingungen zu erzeugen. Dabei handelt es sich um die "Rückkopplungsschaltung nach Meißner" zur Erzeugung von sinusförmigen elektromagnetischen Schwingungen im niederen und mittleren Frequenzbereich sowie um die "Dreipunktschaltung" als Erweiterung der Rückkopplungsschaltung zur Erzeugung hochfrequenter elektromagnetischer Schwingungen. Beiden Schaltungen ist gemeinsam, dass der jeweilige Schwingkreis aus einer Spule und einem Kondensator besteht. Der ungedämpfte elektromagnetische Schwingkreis – Theorie und Beispiele Die anspruchsvolle Unterrichtseinheit zum ungedämpften Schwingkreis setzt gute bis sehr gute mathematische Kenntnisse voraus. Dies bedeutet, dass dieses Thema zum ungedämpften elektromagnetischen Schwingkreis nur im Rahmen der Kursphase der Sekundarstufe II behandelt werden kann. Vorkenntnisse Voraussetzungen für eine fundierte Beschäftigung mit dem ungedämpften elektromagnetischen Schwingkreis sind – neben Grundkenntnissen zu mechanischen Schwingungen – Kenntnisse über Auflade- und Entladevorgänge bei Kondensatoren, über die elektromagnetische Induktion und die Lenz'sche Regel sowie das Wissen über die Funktionsweise von Triode und Transistor. Didaktische Analyse Die Behandlung des anspruchsvollen Themas im Unterricht soll auch dazu führen, dass sich die Lernenden mit dem Aufbau und der Funktion von Geräten zur Erzeugung elektromagnetischer Schwingungen näher beschäftigen wollen. Das Thema ist auch sehr gut geeignet, die Bedeutung von Differentialgleichungen zur Erklärung und Berechnung von physikalischen Zusammenhängen den Schülerrinnen und Schülern näher zu bringen – nicht zuletzt in Hinblick auf andere noch ausstehende physikalische Herleitungen in der Kursphase. Fachkompetenz Die Schülerinnen und Schüler können die Funktionsweise von Triode und Transistor in Hinblick auf die Abläufe in einem elektromagnetischen Schwingkreis beschreiben. wissen um die große Bedeutung von elektromagnetischen Schwingungen in vielen Bereichen des täglichen Lebens. können anspruchsvolle Übungsaufgaben zur mathematischen Beschreibung der elektromagnetischen Schwingungen mittels Differentialgleichungen bearbeiten und lösen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Die Sinusfunktion: Schwingungen und Schwebungen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema trigonometrische Funktionen wird die Sinusfunktion fächerübergreifend als Schwingungsfunktion eingeführt. Darauf aufbauend kann die Trigonometrie als Anwendungsbereich behandelt werden.Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Das Ziel dieser Einführung ist es, ohne größeren Zeitaufwand die vorgegebenen Lernziele auf einem neuen Weg zu erreichen und dabei ein besseres Verständnis der Sinusfunktion als Schwingungsfunktion zu vermitteln.Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler verstehen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden. erhören über das physikalische Phänomen Schwebung ein Additionstheorem. Untersuchung periodischer Vorgänge Nachdem die Schülerinnen und Schüler mit der Beschreibung der Natur durch Potenzfunktionen bereits mehr oder weniger vertraut sind, sollen als neue Funktionsklasse nicht gleich die Sinusfunktionen, sondern erst einmal beliebige periodische Vorgänge untersucht werden. Direkt am Phänomen können Amplitude und Periodenlänge als wichtigste Begriffe erfahren werden (Experimentvorschläge finden Sie auf den Arbeitsblättern 1 und 2). Dabei erscheint mir das Wort Periodenlänge (und nicht Periodendauer, Periode oder Schwingungsdauer) für die Beschreibung der Periode im Mathematikunterricht als am besten geeignet. Hier legt man sich nicht schon im Voraus auf zeitliche Perioden fest. Der Frequenzbegriff ist vom mathematischen Standpunkt aus erst einmal nicht nötig. Auch auf den Begriff der Winkelgeschwindigkeit verzichte ich, auch wenn seine konsequente Verwendung durchaus denkbar ist. Phasenunterschiede sind für das Phänomen an sich primär nicht von großer Bedeutung und werden deshalb vorerst nicht behandelt. Daher wird auch nur die Sinusfunktion und nicht zusätzlich auch noch die Kosinusfunktion eingeführt. Die Sonnenaufgangskurve als nichtphysikalisches Sicherungselement Die Begriffe Amplitude und Periodenlänge sollen erst hinreichend gesichert werden, bevor sich die harmonische Schwingungsfunktion als wichtigste periodische Funktion herauskristallisiert. Dazu eignen sich insbesondere Experimente aus der Akustik. Hier kann man Amplitude und Periodenlänge direkt hören und mit dem Oszilloskop sogar sichtbar machen. Als nichtphysikalische Sicherungselemente bieten sich insbesondere tages- und jahreszeitliche Perioden an. Ich habe mich für die Änderung der Sonnenaufgangszeit im Laufe des Jahres entschieden, weil dieses Problem zum Beispiel im Herbst höchst aktuell und schülernah ist. Die Sonnenaufgangskurve weicht zwar mit zunehmender geographischer Breite von einer Sinuskurve ab, diese Abweichungen betragen in Deutschland jedoch weniger als fünf Prozent. Definition der Funktion Erst nach der beschriebenen Einführung wird die Kreisbewegung ins Spiel gebracht und es erfolgt eine Beschränkung auf die rein harmonischen Schwingungen. Das klassische Experiment dazu ist die synchrone Projektion von Federpendel und Kreisbewegung eines Stiftes. Vor der Definition von sin(x) sollen die Schülerinnen und Schüler erkennen, dass die harmonische Schwingungsfunktion keine Potenzfunktion sein kann. Das erste Mal in ihrer mathematischen Laufbahn können sie eine funktionale Abhängigkeit nicht aus den bekannten Rechenoperationen zusammenstellen. Eine neue Funktion muss definiert werden. Das hört sich einfacher an, als es ist, denn man bekommt bei einer solchen Definition sehr viele Freiheiten mit auf den Weg. Die Kurvenform ist zwar mehr oder weniger festgelegt, doch stehen die Achsenbeschriftungen noch völlig frei. Um hier zu steuern, werden die Schülerinnen und Schüler vorher in einem Arbeitsblatt die harmonische Schwingungskurve für eine Projektion eines Punktes auf einer Kreisbahn mit festem Radius genau zeichnen (Arbeitsblatt 4). Dadurch liegt es nahe, die neue Funktion im Bogenmaß zu definieren, nur der Radius sollte noch normiert werden. Argumente im Winkelmaß führte ich erst später ein. Um schnell von der Kreisbewegung zum Graphen der Sinusfunktion zu gelangen, bietet sich das Applet von Walter Fendt an (siehe externe Links auf der Startseite dieser Unterrichtseinheit). Wer etwas mehr Zeit hat, kann seine Schülerinnen und Schüler natürlich auch auf die herkömmliche Art und Weise die Projektion des Einheitskreises mithilfe des oben genannten Arbeitsblattes durchführen lassen, diesmal allerdings vor dem Hintergrund einer echten Bewegung. Kartierung der Funktion Nach der Definition wird die Funktion zu Hause punktweise kartiert und erst anschließend mit der Taschenrechnertaste "sin" in Verbindung gebracht und als Ganzes möglichst genau gezeichnet. Damit die Schülerinnen und Schüler wirklich das Gefühl einer eigenen Definition haben, soll die Namensgebung sehr offen gestaltet werden. Ein weiterer Vorteil eines vorerst anderen Namens besteht darin, dass die Lernenden bei der Kartierung der Funktion nicht zum "Mogeln" mit dem Taschenrechner gedrängt werden. Einsatz des Computers Die "nackte" Sinusfunktion reicht zur Beschreibung der harmonischen Schwingungen noch nicht aus, sie muss verschoben, gestreckt und gestaucht werden. Dabei sollen die Schülerinnen und Schüler lernen, zu vorgegebenen Funktionen der Art f(x) = A sin(B x) + C den zugehörigen Funktionsgraphen skizzieren zu können und umgekehrt zu festen Periodenlängen, Amplituden und Verschiebungen die zugehörige Funktion nennen zu können. Phasenverschiebungen werden aus den genannten Gründen nur kurz behandelt. Bei dieser Vorgehensweise bietet es sich außerdem an, auch die Überlagerung von Schwingungen und damit das Additionstheorem am Phänomen der Schwebung zu erfahren. Die Lernenden sollen das Additionstheorem hören (langsame Amplitudenschwankungen bei ähnlicher Frequenz wie die Grundtöne) und dann mithilfe eines CAS, eines Funktionenplotters oder eines geeigneten Java-Applets den Funktionsgraphen ermitteln. Abb. 1 (Platzhalter bitte anklicken) zeigt die Darstellung einer Schwebung mit dem CAS Derive, die durch Addition von sin(12x) und sin(13x) entsteht (verwendbare Online-Materialien wie zum Beispiel Java-Applets finden Sie unter den externen Links auf der Startseite dieser Unterrichtseinheit). Dabei werden die Begriffe Amplitude und Periodenlänge nochmals gesichert und gefestigt. Der Unterricht zur Trigonometrie basiert im Wesentlichen auf Aufgaben, bei dem es um Eigenschaften von Dreiecken geht. Die Einführung der Sinusfunktion bleibt ein Anhängsel. Erst in neuerer Zeit werden in Schulbüchern die periodischen Funktionen in diesem Zusammenhang besprochen. In dieser Unterrichteinheit soll der Spieß umgedreht werden: Die Sinusfunktion wird vor der Trigonometrie als logische Konsequenz aus der Untersuchung von Schwingungen eingeführt, die Trigonometrie folgt als praktische Anwendung. Dabei entstehen völlig neue Aufgabentypen, die die Vielfalt der Aufgabenkultur bereichern. In dieser Einheit sind dies einerseits komplexe Arbeitsblätter mit offenen Fragestellungen unter Einbeziehung des Computers, andererseits kleine Erkennungsaufgaben, wie man sie von den Parabeln kennt. Mathematik und Physik werden meist nur von Physiklehrkräften fächerübergreifend vermittelt. Damit vergeben die Mathematikerinnen und Mathematiker eine große Chance, Anschauliches mit rein Mathematischem zu verknüpfen. Mit dieser Unterrichtseinheit soll auch Nichtphysikern die Möglichkeit gegeben werden, fächerübergreifend zu arbeiten.

  • Mathematik / Rechnen & Logik / Physik / Astronomie
  • Sekundarstufe I

Materialsammlung Mechanik

Unterrichtseinheit

In dieser Materialsammlung finden Sie Unterrichtsmaterialien rund um Energie und Impuls, die Newtonschen Gesetze, geradlinige Bewegungen, Wurf- und Kreisbewegungen, Gravitation sowie zu mechanischen Wellen und Schwingungen.Die von Isaac Newton bereits im 17. Jahrhundert abgeleitete klassische Mechanik mit ihren Teilgebieten " Kinematik " und "Dynamik" wird an allen Schularten unterrichtet und ist als Spezialfall sowohl in der Relativitätstheorie als auch in der Quantenmechanik enthalten. Die Kinematik beschreibt geradlinige Bewegungen mit konstanter Geschwindigkeit und Bewegungen unter dem Einfluss von Beschleunigungen, ohne dabei Masse und Kräfte zu berücksichtigen; werden die Wirkungen von Masse und Kräften auf Bewegungen miteinbezogen, spricht man von Dynamik . Dabei wird das Kräftegleichgewicht bei ruhenden Körpern als Statik bezeichnet, während die Kinetik Krafteinwirkungen behandelt, die den Bewegungszustand verändern. Kräfte wie etwa Gewichtskräfte, Reibungskräfte, Antriebskräfte oder Bremskräfte spielen eine große Rolle. So wäre beispielsweise Fliegen mit einem Airbus A-380 (Startmasse 560 Tonnen) unmöglich, wenn nicht immense Antriebskräfte durch die Triebwerke an den Flügeln eine Auftriebskraft erzeugen würden, die sowohl das Abheben als auch einen Flug zu einem anderen Kontinent ermöglichen. Kräfte beeinflussen Bewegungen wie horizontale, schräge und senkrechte Würfe. Bei Kreisbewegungen entsteht gleichzeitig mit der sie erzeugenden Zentripetalkraft auch eine als Zentrifugalkraft wirkende Scheinkraft, die man etwa aus schnellen Kurvenfahrten mit dem Auto kennt. Aus Kräften folgen wichtige mechanische Größen wie Arbeit, potentielle und kinetische Energie sowie der Impuls mit den zugehörigen Energie- und Impulserhaltungssätzen , die eine Umwandlung verschiedener Größen ermöglichen. Mithilfe der Gesetze zur Gravitation lassen sich die Bewegungsabläufe in der Raumfahrt bis hin zu den Vorgängen bei Planetenumläufen um die Sonne oder anderen Abläufen im Weltall beschreiben. Schwingungen, die nach dem Zusammendrücken oder Dehnen einer Feder entstehen, lassen sich in ähnlicher Form beschreiben wie die Bewegungsabläufe nach Auslenkung eines Pendels – sie werden als mechanische Schwingungen mit den Spezialformen harmonische Schwingungen sowie freie, gedämpfte und erzwungene Schwingungen beschrieben. Wirft man hingegen einen Stein in ein ruhendes Gewässer, so kann man die Ausbreitung einer kreisförmigen Störung beobachten, was in der Physik als mechanische Welle bezeichnet wird.

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Der gedämpfte elektromagnetische Schwingkreis

Unterrichtseinheit

In dieser Unterrichtseinheit werden elektromagnetische Schwingkreise thematisiert, die aus unserem Alltag nicht mehr wegzudenken sind: Sie werden in Smartphones, Musikanlagen, Fernsehern, Steuerungsanlagen und vielen weiteren Anwendungen benötigt und bilden die Grundlage für die Abstrahlung elektromagnetischer Wellen, wie sie etwa für das Generieren von Telefonaten oder Fernsehbildern unabdingbar sind. Ausgehend von Grundkenntnissen zu mechanischen Schwingungen und den Analogien zu einfachen elektrischen – theoretisch ungedämpften – Schwingkreisen wird den Schülerinnen und Schülern das Thema nähergebracht. Nach Einbeziehung des immer vorhandenen elektrischen Widerstandes erkennen die Lernenden sehr schnell, dass eine sich selbst überlassene elektromagnetische Schwingung nicht ungedämpft sein kann, sondern in Abhängigkeit von der Zeit abnehmen und gegen Null gehen wird. Der gedämpfte elektromagnetische Schwingkreis Die anspruchsvolle Unterrichtseinheit zum gedämpften Schwingkreis setzt gute bis sehr gute mathematische Kenntnisse voraus. Dies bedeutet, dass dieses Thema zum gedämpften elektromagnetischen Schwingkreis nur im Rahmen der Kursphase der Sekundarstufe II behandelt werden kann. Vorkenntnisse Voraussetzungen für eine Beschäftigung mit dem gedämpften elektromagnetischen Schwingkreis sind – neben Grundkenntnissen zu mechanischen Schwingungen – Kenntnisse über Auflade- und Entladevorgänge bei Kondensatoren, über die elektromagnetische Induktion und die Lenz'sche Regel. Didaktische Analyse Die Behandlung des schwierigen Themas im Unterricht kann durchaus dazu führen, dass sich die Lernenden verstärkt mit dem Thema beschäftigen wollen, um technischen Geräte ihrer alltäglichen Lebenswelt etwas besser verstehen zu lernen. Das Thema ist auch sehr gut dazu geeignet, die Bedeutung von Differentialgleichungen zur Erklärung und Berechnung von physikalischen Zusammenhängen besser zu durchschauen und zu verstehen. Fachkompetenz Die Schülerinnen und Schüler können die Ursachen von gedämpften elektromagnetischen Schwingungen beschreiben und erläutern. kennen die verschiedenen Arten von gedämpften elektromagnetischen Schwingungen. können die zugehörige Differentialgleichung herleiten und anwenden. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Schwingungen in Mathematik, Musik und Physik

Unterrichtseinheit

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Fourier-Analyse (nach J.B.J. Fourier, 1768-1830) auf experimentelle Art und Weise kennen. Mit der Methode können komplexe Schwingungen, wie sie in der Musik und in der Physik vorkommen, in ihre Einzelkomponenten zerlegt werden.Nach der Einführung in das Thema der trigonometrischen Funktionen und insbesondere der Sinusfunktion arbeiten die Schülerinnen und Schüler weitgehend selbstständig am Computer. Mit dynamischen Arbeitsblättern, die mithilfe der kostenlosen Software GeoGebra erstellt wurden, finden sie heraus, wie sich die Parameter Amplitude, Frequenz und Nullphasenwinkel auf eine Sinusschwingung auswirken. Anschließend werden diese Erfahrungen dazu genutzt, Sinusschwingungen gezielt zu beeinflussen, um eine experimentelle Art der Fourier-Analyse durchzuführen. Die dynamischen Arbeitsblätter enthalten auch Erklärungen und Informationen aus der Physik und der Musik, wodurch sie sich für den fächerübergreifenden Unterricht eignen. Da in der Musik Hörerfahrungen nicht fehlen dürfen, stellen neun Hörbeispiele eine direkte Verbindung zur Musik her. Die Hörbeispiele stehen in unmittelbarem Bezug zu den Aufgabenstellungen und vermitteln einen direkten Zusammenhang zwischen den dynamischen Konstruktionen und den musikalischen Entsprechungen. So üben die Schülerinnen und Schüler nicht nur den Umgang mit trigonometrischen Funktionen, sondern lernen auch deren Bedeutung für die Physik und die Musik kennen. Tipps zum Unterrichtsverlauf Anregungen für den fächerübergreifenden Unterricht und zum selbstständigen, erforschenden Lernen sowie Hinweise zur Bedeutung des "klassischen" Heftes Hintergrundinfos für Lehrkräfte und Experimentiervorschläge Allgemeine Informationen zur Herleitung einer Sinusschwingung und zu Schwebungen sowie Vorschläge zu musikalischen Experimenten mit dem Klavier und der Blocklöte Die Schülerinnen und Schüler festigen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern. beeinflussen mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt. erkennen die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik. lernen durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen. kennen die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke". kennen den Aufbau eines Tons durch Überlagerung seiner Partialtöne. lernen das Phänomen der Schwebung kennen. sind mit dem Prinzip der Fourier-Analyse vertraut und kennen Anwendungsgebiete. Mit der Fourier-Analyse können komplexe Schwingungen in ihre Einzelkomponenten zerlegt werden. Jede dieser Teilschwingungen besitzt dabei die Form einer Sinusschwingung und lässt sich als Graph einer Sinusfunktion der Form mit den Parametern Amplitude a , Frequenz f und Nullphasenwinkel phi sub~0~~ darstellen. Um eine komplexe periodische Schwingung in ihre Einzelkomponenten zu zerlegen, wendet man das Verfahren der Harmonischen Analyse an. Nach ihrem Entdecker, dem französische Physiker und Mathematiker Jean Baptiste Joseph Fourier (1768-1830) wird diese Methode auch Fourier-Analyse genannt. Fourier zeigte, dass sich jede beliebige periodische Schwingung eindeutig als Summe von endlich oder unendlich vielen Sinusschwingungen darstellen lässt, deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Die mathematische Durchführung einer Fourier-Analyse ist relativ anspruchsvoll. Man benötigt dafür Kenntnisse über den Umgang mit trigonometrischen Funktionen, Summen und Integralen, sowie mit komplexen Zahlen. Daher eignet sie sich nicht direkt für den Unterricht. Um den Schülerinnen und Schülern aber das Prinzip einer Fourier-Analyse näher zu bringen, genügt es, diese auf experimentelle Weise durchzuführen. Dies wird durch die hier verwendeten dynamischen Arbeitsmaterialien ermöglicht. Musik Anwendungen der Fourier-Analyse findet man sowohl in der Musik, als auch in der Physik und dem alltäglichen Umgang mit Radio, CD-Player und Fernseher. In der Musik nutzt man diese Methode zum Beispiel zur Analyse von Klängen. Dabei nimmt man die Klänge mit einem Mikrophon auf und setzt den Schwingungsverlauf mithilfe eines Analog-Digital-Wandlers in mathematisch erfassbare Zahlenwerte um. Derartige digitalisierte Schwingungsverläufe können dann zum Beispiel auf eine CD gebrannt werden, wobei sie beim Abspielen als Überlagerung von Sinusschwingungen verschiedener Frequenzen reproduziert werden. Physik In der Physik wird die Fourier-Analyse unter anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Schwingungen zu zerlegen. Zum Beispiel nützt man dies um die Eigenfrequenzen eines Messgerätes zu berechnen. Denn um eine Verzerrung des Messvorgangs durch die Resonanzen der Eigenfrequenzen zu umgehen, darf das Messgerät keine Eigenfrequenzen innerhalb des Messbereichs aufweisen. Auch bei Radio und Fernsehen kommt die Fourier-Analyse zum Einsatz. Hier müssen die Signale erst digitalisiert und in ihre Einzelkomponenten zerlegt werden, bevor sie mit einer Trägerwelle gesendet werden können. Treten bei der anschließenden Überlagerung der Einzelfrequenzen Störungen auf, so sind sie zum Beispiel im Fernsehen als Bildstörungen wahrnehmbar. Dies tritt unter anderem auf, wenn Moderatoren Kleidungsstücke mit sehr feinen Streifen tragen und kann als flimmernde Bildstörung wahrgenommen werden. Der Verlaufsplan Schwingungen stellt eine Anregung dar und kann natürlich an die jeweiligen Unterrichtsbedingungen angepasst werden. Im Idealfall stehen Ihnen die für jeden Block vorgeschlagenen Unterrichtsstunden hintereinander zur Verfügung. Dies lässt sich eventuell durch das Tauschen von Unterrichtsstunden mit den Kolleginnen und Kollegen erreichen. Ist dies nicht der Fall, können die Blöcke auch in aufeinander folgenden Mathematikstunden behandelt werden. Die Arbeitsblätter können auch im Rahmen von Hausübungen zu Ende bearbeitet werden, damit alle Schülerinnen und Schüler beim nächsten Unterrichtsblock auf dem gleichen Wissensstand sind. Falls nicht alle über einen heimischen Internetanschluss verfügen, lassen sich die Hausübungen auch in Partner- oder Kleingruppenarbeit erledigen. Beim Abspielen der Hörbeispiele ist die Verwendung von Kopfhörern zu empfehlen, da sich die Lernenden sonst gegenseitig stören würden. Dynamische Arbeitsblätter "Schwingungen in Musik und Mathematik" Um mit den interaktiven Applets arbeiten zu können, benötigen Sie Java (Version 1.4.2 oder höher). Die Unterrichtsmaterialien eignen sich für den fächerübergreifenden Unterricht zwischen den Fächern Mathematik, Musikerziehung und Physik. Sie können in Zusammenarbeit mit den entsprechenden Fachlehrkräften zu einem Projekt ausgebaut oder ergänzt werden. So könnte Ihnen zum Beispiel die Musiklehrerin oder der Musiklehrer bei der Durchführung der beiden angeführten musikalischen Experimente in Block 2 (siehe Verlaufsplan Schwingungen und Hintergrundinfos für Lehrkräfte und Experimentiervorschläge ) behilflich sein, während die Physiklehrkraft Experimente zur Veranschaulichung von mechanischen Schwingungen durchführen könnte (Fadenpendel, Stimmgabeln, gekoppelte Pendel, ... ). Selbstständiges und erforschendes Lernen Durch die Kombination der dynamischen Arbeitsblätter mit den Hörbeispielen erleben die Schülerinnen und Schüler eine direkte Verbindung zwischen den Fächern Mathematik und Musik. So werden Informationen aus ganz verschiedenen Fachbereichen gesammelt und miteinander verknüpft. In dieser Unterrichtseinheit geschieht dies vor allem durch selbstständiges und erforschendes Lernen. Durch das Experimentieren mit den Materialien können im individuellen Lerntempo Erfahrungen gesammelt werden, welche in den Plenumsphasen mit den Mitschülern diskutiert und bestätigt werden können. Ergebnissicherung: Das Heft ist unentbehrlich! Zur Ergebnissicherung dient das Heft. Das schriftliche Festhalten der Beobachtungen und Erkenntnisse ermöglicht eine bessere Strukturierung der Ergebnisse und ein späteres Nachvollziehen des Unterrichtsgeschehens. Außerdem kann man als Lehrkraft so die Arbeitsfortschritte einzelner Schülerinnen und Schüler einsehen und gegebenenfalls unterstützend eingreifen. So wird gewährleistet, dass möglichst alle die Lernziele erreichen und vom Unterricht profitieren. Die grafische Darstellung einer harmonischen Schwingung lässt sich von der gleichförmigen Kreisbewegung ableiten, indem man diese auf eine normal zur Rotationsachse liegende Ebene projiziert, in der ein rechtwinkliges Koordinatensystem liegt. Bewegt sich ein Punkt P auf einer kreisförmigen Bahn mit Radius r , so lässt sich jedem Phasenwinkel phi im Intervall von 0 bis 2 pi der Wert der zugehörigen Auslenkung y zuordnen. Diese Werte werden entlang der Ordinaten-Achse eines Koordinatensystems aufgetragen, wodurch eine Sinuskurve entsteht. Für dieses Experiment benötigen Sie ein Klavier (Flügel oder Pianino). Es soll den Schülerinnen und Schülern verdeutlichen, dass jeder "natürliche" Ton durch die Überlagerung von Teiltönen (Partialtönen) entsteht. Drücken Sie (oder eine Schülerin oder ein Schüler) stumm die Taste des Tones C (in der großen Oktave). Betätigen Sie kurz und kräftig die Taste C 1 (in der Kontra-Oktave) und halten Sie die erste Taste währenddessen gedrückt. Lassen Sie die Klasse aufmerksam zuhören, was nach dem Auslassen der zweiten Taste passiert: Die Saite der Taste C wurde durch die tiefere Saite der Taste C 1 in Schwingung versetzt - der Ton C ist leise wahrnehmbar. Wiederholen Sie diesen Vorgang auch mit dem Stumm-drücken der Tasten c, g (beide in der kleine Oktave), c 1 , e 1 und g 1 (alle in der ersten Oktave). Dabei sind die entsprechenden Töne immer leiser und ihre Wahrnehmung wird somit schwieriger. Möglicherweise sind die letzten beiden Töne auch gar nicht mehr wahrnehmbar. Erklären Sie Ihren Schülerinnen und Schülern, dass jeder Ton des Klaviers durch Überlagerung seiner Partialtöne entsteht. Dies bedeutet für den Ton C 1 , dass er sich aus folgenden Tönen zusammensetzt: C 1 , C, G, c, e, g, b, c 1 , d 1 , e 1 , ... , wobei hier nur die ersten zehn Partialtöne aufgezählt sind. Theoretisch besteht ein natürlicher Ton aus unendlich vielen Partialtönen, wobei nur eine bestimmte Anzahl wahrnehmbar ist. Das Phänomen einer Schwebung tritt bei der Überlagerung zweier Sinusschwingungen gleicher Schwingungsrichtung mit ganzzahligen Frequenzen f sub~1~~ beziehungsweise f sub~2~~ und gleichem Nullphasenwinkel phi sub~0~~ auf. Der Einfachheit halber wählen wir dabei für den Nullphasenwinkel den Wert Null. Die Frequenzen dürfen dabei jedoch keine ganzzahligen Vielfachen voneinander sein. Ändert sich die Amplitude einer Schwingung periodisch, so nennt man dieses Phänomen in der Akustik eine Schwebung und ihre Frequenz Schwebungsfrequenz f sub~S~~. Liegt die Schwebungsfrequenz im Bereich zwischen 1 Hz und 8 Hz, so werden die einzelnen Schwebungen deutlich als Lautstärkeschwankungen wahrgenommen, was Musiker zum exakten Stimmen ihrer Instrumente nutzen. Stimmen die Amplituden A sub~1~~ und A sub~2~~ der beiden Sinusschwingungen überein, so spricht man von einer "vollkommenen Schwebung". Das heißt, die beiden Schwingungen löschen einander immer wieder aus und die Amplitude A sub~r~~ der resultierenden Schwingung schwankt zwischen den Werten 0 und A sub~1~~ + A sub~2~~. Besitzen die Amplituden der beiden Einzelschwingungen verschiedene Werte, so spricht man von einer "unvollkommenen Schwebung". Die Amplitude A sub~r~~ der resultierenden Schwingung schwankt dabei zwischen den Werten / A sub~1~~ - A sub~2~~ / und A sub~1~~ + A sub~2~~. Ein Klavierstimmer nützt die vielen Obertöne eines Klavierklanges um die Intervalle "rein" zu stimmen. Da die erste Oberschwingung eine doppelt so hohe Frequenz wie ihre Grundschwingung hat, klingt der erste Oberton genau eine Oktave höher als der Grundton. Bei einem einzeln erklingenden Ton nimmt das menschliche Ohr die auftretenden Partialtöne nicht getrennt, sondern als Klanggemisch wahr. Spielt der Klavierstimmer diesen Ton jedoch gleichzeitig mit dem etwas verstimmten Ton im Intervallabstand einer Oktave, so bilden sich Schwebungen zwischen der ersten Oberschwingung des tieferen und der Grundschwingung des höheren Tons. Durch die Veränderung der Saitenspannung lässt sich die Frequenz des höheren nun exakt an die des tieferen Tons anpassen, die Schwebung verschwindet und die Oktave klingt "rein". Für dieses Experiment benötigen Sie zwei Sopranblockflöten: Lassen Sie zwei Ihrer Schülerinnen oder Schüler kräftig denselben Ton auf den beiden Blockflöten spielen, zum Beispiel den Ton d 1 , bei dem auf der Vorderseite der Flöten lediglich das zweite Griffloch von oben verschlossen werden muss. Im Normalfall klingen die beiden Töne nun nicht "rein", da sie durch leicht unterschiedliche Frequenzen erzeugt werden. Ihre Schülerinnen und Schüler sollen nun versuchen, durch Veränderung des Anblasedrucks die Töne anzugleichen. Dabei hält ein Lernender den Luftstrom konstant (mittlere Lautstärke) während der andere seinen Anblasedruck variiert. Sobald die beiden Frequenzen übereinstimmen, klingt der Ton "rein", was deutlich hörbar ist. Das Angleichen der beiden Töne erfordert einige Sensibilität von den Schülerinnen und Schülern. Möglicherweise gibt es aber jemanden, der das Instrument gut beherrscht. Dies würde das "Reinstimmen" der beiden Blockflöten erheblich erleichtern.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Musik
  • Sekundarstufe I, Sekundarstufe II

Grundbegriffe der Wellenlehre mit GeoGebra

Unterrichtseinheit

Der hier vorgestellte Online-Kurs mit interaktiven GeoGebra-Applets bietet variabel einsetzbare Materialien zum Lehren und Erlernen der Grundbegriffe der Wellenlehre.Schwingungen und Wellen gehören zu den grundlegenden Phänomenen, die in vielen Gebieten der Physik auftreten: der Ton einer schwingenden Saite in der Akustik, die Wellennatur des Lichts in der Optik, der Schwingkreis in der Elektrizitätslehre bis hin zu den Wellenbetrachtungen in der Atom-, Kern- und Quantenphysik. In nahezu jedem Lehrbuch werden die Entstehung und das Fortschreiten von Wellen mit einer Reihe von Momentaufnahmen dargestellt, um der dynamischen Natur der Sache gerecht zu werden. Die kostenfreie dynamische Geometriesoftware GeoGebra bietet hier weitaus bessere Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und die das Verständnis erleichtern. Der Lehrende oder die Lernenden können mithilfe dynamischer Java-Applets, die mit GeoGebra erstellt wurden, gleichsam die Zeit schnell, langsam, vorwärts oder rückwärts laufen lassen und auch anhalten. Parameter wie Amplitude, Frequenz und Phasengeschwindigkeit können kontinuierlich verändert und so deren Einfluss auf die Erscheinung einer Welle beobachtet werden. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. Kurze Kontrollfragen mit einblendbaren Lösungen dienen der eigenständigen Lernzielkontrolle. Einsatz der Materialien im Unterricht Der Online-Kurs kann zur Einführung, Vertiefung und Festigung sowie zur Wiederholung des Stoffs eingesetzt werden. Gestaltung der Arbeitsmaterialien Hinweise zur Textgestaltung, zu "Mouse-Over-Effekten", zu den Kontrollfragen und Lösungen des Kurses sowie zur verwendeten Bildquelle "Wikimedia Commons". Die Schülerinnen und Schüler sollen die Zeigerdarstellung der harmonischen Schwingung verstehen. die Entstehung und das Fortschreiten einer Seilwelle (mechanische, harmonische, lineare Transversalwelle) verstehen. die Begriffe Phase, Phasenwinkel, Periodendauer, Frequenz, Wellenlänge und Phasengeschwindigkeit einer Welle kennen und erklären können. wissen, dass bei der Transversalwelle keine Materie, sondern Energie in Ausbreitungsrichtung transportiert wird. die zeitliche und räumliche Periodizität als Kennzeichen einer Welle erkennen. die Herleitung der Wellengleichung verstehen. die Wellengleichung anwenden können. Trigonometrie Erforderliche mathematische Voraussetzungen für den Kurs sind Kenntnisse in Trigonometrie, insbesondere im Umgang mit der Sinusfunktion und dem Bogenmaß. Schwingungen Zudem ist es sinnvoll, (mechanische) Schwingungen vor der Wellenlehre zu behandeln. Deshalb knüpft die Lerneinheit mit dem Phasenzeigerdiagramm direkt an die harmonische Schwingung an. Zur Einführung der wesentlichen Eigenschaften einer Welle beschränkt sich der Kurs auf die Betrachtung einer (Gummi-)Seilwelle (mechanische, lineare, harmonische, Transversalwelle). Die gewonnenen Erkenntnisse lassen sich dann auf andere Wellentypen (zum Beispiel longitudinale Wellen) übertragen. Für den Online-Kurs bieten sich drei Einsatzmöglichkeiten an: Einführung in die Wellenlehre ohne vorherige Behandlung im Unterricht. Vertiefung und Festigung des bereits im Unterricht behandelten Stoffes, eventuell in Übungsstunden oder als Hausaufgabe. Wiederholung des Stoffs in höheren Jahrgangsstufen, wenn zum Beispiel nach der Mechanik das Thema in der Atomphysik erneut aufgegriffen wird (insbesondere bei Zeitknappheit). Partnerarbeit oder Beamerpräsentation Im Idealfall arbeiten ein bis zwei Lernende selbstständig an einem Computer. Die Applets können natürlich auch mit einem Beamer in einem fragend-entwickelnden Unterricht oder im Rahmen eines Lehrervortrags präsentiert werden. Zum Einstieg: erst "austoben lassen", dann "anleiten" Erfahrungsgemäß entdecken die Schülerinnen und Schüler sehr schnell alleine die Bedienungsmöglichkeiten der Applets und welche unabhängigen Objekte bewegt werden können, so dass auf ausführliche Bedienungshinweise verzichtet werden kann. Zu Beginn der Stunde hat sich bei computergestützten Unterrichtseinheiten eine "Austob-Phase" bewährt, in der die Schüler und Schülerinnen etwa fünf Minuten lang einfach alle Knöpfe und Regler eines Programms ausprobieren dürfen, bevor sie dann zielgerecht die einzelnen Arbeitsanweisungen befolgen. Weniger ist mehr! Eine billigen Applaus verheißende Forderung vieler "Bildungsexperten" ist der Einsatz möglichst vieler Medien im Unterricht. Dabei werden aber die restriktiven Umstände der Unterrichtspraxis vergessen. Der Physiklehrer ist beispielsweise versucht, Lerninhalte sowohl am Realexperiment (hier: Wellenmaschine, Wellenwanne, Schattenprojektion einer Schraubenlinie … ) als auch mit der Computersimulation darzubieten. Dies kann jedoch aufgrund des Zeitdrucks im Unterrichtsalltag oft in ineffiziente Hektik ausarten. Eine Methode sollte genügen. Weniger ist manchmal mehr! Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. Alle wichtigen Begriffe sind wie im Tafel-Unterricht durch rote Unterstreichung hervorgehoben. Zeigt man mit der Maus auf sie, wird eine kurze Definition eingeblendet ("Mouse-Over-Effekt"). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Die Fragen am Ende der einzelnen Arbeitsblätter sind kurz und einfach zu beantworten, um die Schülerinnen und Schüler durch ein schnelles und erfolgreiches Fortkommen zu motivieren. In nachfolgenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Die Antworten der Kontrollfragen können durch Anklicken der abschließenden Frage- oder Ausrufezeichen angezeigt werden, was sich bei den Lernenden schnell herumspricht (Abb. 1, Platzhalter bitte anklicken). Hier muss an die Arbeitsdisziplin der Schülerinnen und Schüler nach dem Motto "erst denken, dann klicken" appelliert werden. Um die Applets kompakt zu halten, wurde auf die Anzeige der Einheiten einiger Größen verzichtet. Dies ist tolerierbar, solange bei der qualitativen Betrachtung die Einheiten nicht entscheidend zum Verständnis beitragen. Die Einheiten der Wellengrößen sollten auf jeden Fall bei nachfolgenden Übungsaufgaben behandelt werden. Die zusätzliche Angabe der Winkel im Gradmaß neben dem Bogenmaß ist ein Tribut an die für Schüler und Schülerinnen erfahrungsgemäß viel vertrautere Einheit beim Abschätzen von Winkelgrößen. Wie in der Realität ist die Phasengeschwindigkeit auch in den Java-Applets des Online-Kurses eine von der Frequenz unabhängige Größe. Die Wellenlänge kann deshalb nicht direkt, sondern nur über die Phasengeschwindigkeit oder die Frequenz verändert werden. Das Verständnis der Zeigerdarstellung einer Schwingung ist universell (zum Beispiel auch beim Wechselstromkreis) anwendbar. Als Bildquelle für den Onlinekurs "Grundbegriffe der Wellenlehre" wurde die Mediendatenbank "Wikimedia Commons" verwendet. Im Gegensatz zu traditionellen Medienarchiven ist Wikimedia Commons frei: Jeder darf die hier bereitgestellten Dateien kopieren, nutzen und bearbeiten, solange die Autorinnen und Autoren genannt und die Kopien und Veränderungen mit derselben Freizügigkeit anderen zur Verfügung gestellt werden. Wikimedia Commons Hauptseite von Wikimedia Commons; die Inhalte sind nach Themen, Typen (Bilder, Geräusche, Filme), Autorinnen und Autoren, Lizenzen und Quellen rubriziert. Was ist Wikimedia Commons? Wikimedia Commons nutzt dieselbe Technologie wie Wikipedia und kann ohne besondere technische Fähigkeiten direkt im Webbrowser bearbeitet werden.

  • Physik / Astronomie
  • Sekundarstufe II

Bewegung auf einer vertikalen Kreisbahn mit Excel

Unterrichtseinheit

Die Schülerinnen und Schüler untersuchen interaktiv die Gesetze der reibungsfreien Bewegung eines Körpers auf einer vertikalen Kreisbahn bei unterschiedlicher Gesamtenergie - vom Fadenpendel bis zum Looping.Winkelkoordinate, -geschwindigkeit und -beschleunigung sowie die aufzuwendende Radialkraft sind in einem Excel-Diagramm als Funktion der Zeit grafisch dargestellt. Durch kontinuierliche Veränderung des Parameters E (Summe aus kinetischer und potenzieller Energie) können die Diagramme dynamisch verformt und so die verschiedenen Bewegungsarten von der harmonischen Schwingung bis zum Looping beobachtet und analysiert werden. Die numerisch nach dem Halbschrittverfahren berechneten Diagramme, die man sonst im Unterricht und in der Literatur selten zu sehen bekommt, bieten einen beziehungsreichen Zugang zu vielen Aspekten der für die Jahrgangsstufe 11 vorgesehenen Lerninhalte.Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Rechner. Zentrales Medium ist neben der Excel-Datei das bereitgestellte Arbeitsblatt mit detaillierten Arbeitsaufträgen. Diese können je nach Intention und Umfang der Unterrichtseinheit auch nur teilweise eingesetzt oder auf verschiedene Abschnitte des Lehrplans verteilt werden. Wegen der Vielfalt der angesprochenen Themen (harmonische Schwingung, Energiesatz, beschleunigte Kreisbewegung, Kräftezerlegung, Newton'sche Grundgleichung F = ma und ihre prinzipielle Bedeutung für die Berechnung von Bewegungen) eignet sich das Material besonders zur vertiefenden Wiederholung oder für ein Projekt, in dem auch das numerische Verfahren und/oder fortgeschrittene Excel-Anwendungen thematisiert werden. Theoretischer Hintergrund, Realisierung in Excel, Einsatz des Materials im Unterricht Die Darstellung der zeitlichen Abhängigkeit der oben genannten kinematischen Größen mithilfe einer Excel-Tabelle bringt eine Reihe neuer Aspekte in den Unterricht, die hier erläutert werden. Die Schülerinnen und Schüler sollen Diagramme physikalisch interpretieren und darüber sachgerecht kommunizieren. die Gesetze der Kinematik, insbesondere der harmonischen Schwingung und der Kreisbewegung, den Energiesatz und das Prinzip der Kräftezerlegung anwenden. die Grenzen analytischer Methoden und den Vorteil numerischer Lösungen erfahren. das Halbschrittverfahren analysieren (optional). fortgeschrittene Anwendungen in Excel praktizieren (optional). Thema Vom Fadenpendel bis zum Looping - Bewegung auf einer vertikalen Kreisbahn mit Excel Autor Dr. Hans-Joachim Feldhoff Fächer Physik oder fächerübergreifendes Projekt (Physik/Informatik) Zielgruppe Jahrgangsstufe 11 Zeitraum 3-6 Stunden Technische Voraussetzungen je 1 Rechner für 1-2 Lernende Software Microsoft Excel, ergänzend für die Lehrkraft: GeoGebra (kostenfreie Software) [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007 Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft Die Bewegung eines Körpers auf einer vertikalen Kreisbahn unter dem Einfluss der Erdanziehung (zum Beispiel in einer kreisförmigen Loopingbahn oder an einem Seil) wird im Unterricht gern als Anwendung der Gesetze der Kreisbewegung und des Energiesatzes behandelt. Winkelgeschwindigkeit, Winkelbeschleunigung und Radialkraft lassen sich in Abhängigkeit von der jeweiligen Position damit leicht berechnen. Zeitlicher Verlauf der kinematischen Größen Schwieriger ist die Darstellung der zeitlichen Abhängigkeit dieser Größen: Durch Zerlegung des Gewichts in eine radiale und eine tangentiale Komponente erhält man aus der Newton'schen Grundgleichung F = ma die Differenzialgleichung phi'' = -(g/r) sin(phi) für die gegen die Vertikale gemessene Winkelkoordinate phi . Die analytische Lösung führt auf ein elliptisches Integral, das nicht durch elementare Funktionen darstellbar ist [1]. Es muss daher ein numerisches Verfahren angewendet werden, um den zeitlichen Verlauf der kinematischen Größen im Diagramm darzustellen. Dies geschieht hier mithilfe des Halbschrittverfahrens, das zum Beispiel in [2] kurz beschrieben wird. Neben der Darstellung der kinematischen Größen in Diagrammen liefert dieses Verfahren auch eine numerische Bestimmung der Periodendauer T . Zusatzmaterial für Lehrpersonen Das "klassische" Berechnungsverfahren nach [1] kann mithilfe der GeoGebra-Datei "numerische_integration.ggb" nachvollzogen werden. Diagramme Die zum Download bereit gestellte Datei "vertikale_kreisbahn.xls" enthält die beiden Tabellenblätter "Diagramme" und "Berechnung". Bei den Diagrammen befindet sich ein Schieberegler, mit dem die Gesamtenergie E kontinuierlich von 0 bis 10 mgr verändert werden kann. Dieser Wert wird in der Berechnungstabelle übernommen. Der Kreisradius r ist auf 1 gesetzt und sollte nicht verändert werden. Die Schrittweite Delta_t des Halbschrittverfahrens ist auf vier Millisekunden voreingestellt. Sie kann nach Aufhebung des Blattschutzes verändert werden, um die Genauigkeit des Verfahrens zu analysieren. Berechnungstabelle Die eigentliche Berechnungstabelle enthält die Zeit t , die Winkelkoordinate phi , die Winkelgeschwindigkeit omega , die Winkelbeschleunigung alpha und die aufzuwendende Radialkraft, hier als Seilkraft F_Seil bezeichnet, die jedoch bei positivem Vorzeichen als nach außen gerichtete Stützkraft (zum Beispiel durch eine dünne Stange) interpretiert werden muss. Zusätzlich werden zur Darstellung der Bewegung für einige ausgewählte Punkte die kartesischen Koordinaten x und y berechnet. Berechnung und Visualisierung Für die Anfangsposition phi = 0 erhält man die Winkelgeschwindigkeit omega aus der Energie. Die übrigen Größen können aus phi direkt berechnet werden. Sodann werden sukzessive nach dem Halbschrittverfahren die nächsten Werte von omega und von phi und damit dann wieder die weiteren Größen berechnet. Es werden 750 Rechenschritte durchgeführt, so dass der Bewegungsverlauf während der ersten drei Sekunden in den auf der Tabelle basierenden Diagrammen dargestellt werden kann. Dies reicht für die Diskussion völlig aus. Die interaktive Arbeit mit den Diagrammen wird durch die Arbeitsaufträge in der Datei "vertikale_kreisbewegung.pdf" strukturiert. Den wesentlichen Teil bilden die Aufgaben zum physikalischen Inhalt: Die kontinuierliche Verformung der Kurven durch die Veränderung der Gesamtenergie E lässt sehr schön erkennen, wie sich aus einer anfänglich harmonischen Pendelschwingung ( E < < mgr ) allmählich eine nicht-harmonische Schwingung mit wachsender Periodendauer T entwickelt. wie für Ausschläge über 90 Grad die erforderliche Radialkraft das Vorzeichen wechselt (bei mgr < E < 2,5 mgr ). wie die Bewegung bei E = 2 mgr aus der Schwingung in einen Looping übergeht und dann für wachsende Werte von E bei abnehmender Umlaufzeit einer gleichförmigen Kreisbewegung immer ähnlicher wird. Die Arbeitsaufträge verlangen eine detaillierte Beschreibung und Interpretation dieser Beobachtungen. Daneben sind herkömmliche Aufgaben in das Arbeitsblatt integriert (Energiesatz, Kräfte bei der Kreisbewegung, harmonische Schwingung et cetera). Optional können zusätzliche Arbeitsaufträge zum Halbschrittverfahren und zu Excel zum Einsatz kommen. Letztere setzen fortgeschrittene Kenntnisse in Excel voraus und sind gegebenenfalls in einem fächerübergreifenden Projekt (Physik/Informatik) anzusiedeln. Während im physikalischen Teil nur mit den Diagrammen gearbeitet wird, werden hier Eingriffe in die Berechnungstabelle vorgenommen. Dazu empfiehlt es sich, vorher eine Kopie der Datei "vertikale_kreisbewegung.xls" anzufertigen, für die dann der Schreibschutz aufgehoben wird. [1] Courant Vorlesungen über Differential- und Integralrechnung 1, 4. Auflage, Springer 1971 [2] Grehn/Krause Metzler Physik, 4. Auflage, Schroedel 2007

  • Physik / Astronomie
  • Sekundarstufe II

Schall und Akustik – die wichtigsten Grundlagen

Unterrichtseinheit

Diese fächerübergreifende Unterrichtseinheit widmet sich den Grundlagen von Schall und Akustik und verdeutlicht diese am Hörakustiker-Handwerk. Die Schülerinnen und Schüler lernen durch Versuche und gezielte Aufgabenstellungen, wie Schall durch Schwingungen erzeugt und im menschlichen Ohr wahrgenommen werden. Dabei lernen sie unter anderem auch, zwischen Schalldruckpegel, Lautstärke, Ton, Tonhöhe, Klang, Geräusch, Knall, Infra- und Ultraschall sowie zwischen Transversal- und Longitudinalwellen zu unterscheiden. Rechercheaufträge, Videobeiträge und die Ausführung sowie physikalische Auswertung verschiedener Hörtests runden die Unterrichtseinheit ab. Die Unterrichtseinheit thematisiert die wichtigsten Grundlagen der Phänomene Schall und Akustik. Dabei wird anhand zahlreicher Beispiele und grundlegender Versuche gezeigt, wie Schall entsteht, sich anschließend über das entsprechende Medium ausbreitet und letztlich über das Ohr aufgenommen und für das Gehirn verarbeitet wird. Nach einfachen Selbstversuchen und Beispielen werden physikalische Grundvorstellungen zur Schallentstehung und Schallausbreitung erarbeitet. Dazu werden – ausgehend vom menschlichen Hörbereich (16 bis 20 000 Hz) – auf die den Schall beschreibenden grundlegenden Größen wie Frequenz, Wellenlänge und Schallgeschwindigkeit detailliert eingegangen und verschiedene Schallarten wie Klang, Geräusch und Ton unterschieden. Thema ist ebenfalls die Ausbreitung von Schall in unterschiedlichen Medien. Die Lernenden erhalten dabei die Möglichkeit, ihre Kenntnisse und Fähigkeiten im Zusammenhang mit dem Themenfeld in Einzel-, Paar- und Gruppenarbeit zu entwickeln sowie anzuwenden und im Plenum zu diskutieren. Da Schall und Akustik zentrale Rollen im Hörakustiker-Handwerk spielen, werden im Unterrichtsmaterial stets Bezüge zu diesem Beruf hergestellt, um die physikalischen Lerninhalte zu verdeutlichen: Versuche werden mit der App Phyphox, die in der Hörakustiker-Ausbildung zum Einsatz kommen kann, durchgeführt. Mit einem Online-Hörtest ermitteln Schülerinnen und Schüler ihre individuellen hörbaren Frequenzbereiche. Nachdem der menschlichen Hörsinn erklärt wurde, wird über Gehörschutz gesprochen. Die Unterrichtseinheit beleuchtet das Thema "Schall und Akustik", das beispielsweise im Kernlehrplan Nordrhein-Westfalen (Gymnasium – Sekundarstufe 1) im Inhaltsfeld 3 "Schall" enthalten ist. Das Thema ist für viele Bereiche der Technik oder des Gesundheitswesens von grundlegender Bedeutung und wird in dieser Unterrichtseinheit in den Kontext des Hörakustiker-Handwerks eingebettet. Eingegangen wird auf verschiedene Hörtests, Hörbeispiele zum Erfahrbarmachen von Gehörschädigungen und Maßnahmen zum Gehörschutz. Die Unterrichtseinheit erarbeitet Inhalte zum Thema Akustik in den Bereichen "Tonhöhe und Lautstärke", "Schallausbreitung", "Schallquellen und Schallempfänger" sowie "Lärm und Lärmschutz" . Sie entwickelt die prozessbezogenen Kompetenzen im Bereich der Erkenntnisgewinnung gezielt weiter. Vorkenntnisse zu den Grundlagen von Schwingungen und im Ansatz auch von Wellen sind für das Thema "Schall und Akustik" vorteilhaft, aber zur Einführung in die Grundlagen nicht zwingend notwendig. Des Weiteren bieten sich bei der Einheit mit dem Unterthema "Schallquellen" Überschneidungen mit dem Fach Musik an. In diesem Fall empfiehlt es sich, bei den jeweiligen Unterrichtssituationen zur Schallerzeugung auf Musikinstrumente wie zum Beispiel Gitarre oder Flöte zurückzugreifen. Bei der Thematisierung des Schallempfangs am Beispiel des menschlichen Gehörs kann ein Fächerübergriff zum Fach Biologie erfolgen. In der Unterrichtseinheit werden verschiedene Methoden der Wissensvermittlung wie beispielsweise Einzel- und Gruppenarbeit und die Arbeit im Plenum angewandt, um eine Aktivierung aller Lerntypen zu erreichen. Dabei kommen naturwissenschaftliche Methoden der Erkenntnisgewinnung wie das Entwickeln und Bearbeiten physikalischer Fragen und das experimentelle Arbeiten zum Zug. Im Bereich der Kommunikationskompetenz üben die Schülerinnen und Schüler das Erschließen und Aufbereiten von Informationen. Fachkompetenz Die Schülerinnen und Schüler beschreiben die Erzeugung und Wahrnehmung von Schall durch Schwingungen. erklären den Schalldruckpegel als Größe der Lautstärke und ordnen Beispielwerte zu. kennen die Grundgrößen einer Schallschwingung und ordnen die Tonhöhe und Lautstärke physikalisch ein. unterscheiden die Schallarten Klang, Ton, Geräusch und Knall. erklären qualitativ die Ausbreitung mechanischer Schallwellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums. beschreiben Auswirkungen von Schall und Lärm auf das menschliche Gehör. Medienkompeten nutzen die App Phyphox auf ihrem Smartphone, um Schwingungen verschiedener Schallarten sichtbar zu machen. führen einen Online-Hörtest durch, um individuelle Frequenzbereiche zu ermitteln. entnehmen Informationen aus einem Video zum Thema "Schall und Hören" und verschriftlichen diese. nutzen vorgegebene Internetquellen für die Recherche weiterführender Informationen. Sozialkompetenz Die Schülerinnen und Schüler arbeiten zielorientiert und kriteriengeleitet in Einzel-, Paar- und/oder Gruppenarbeit. kommunizieren ermittelte Ergebnisse adressatengerecht und verknüpfen dabei Alltags- und Fachsprache situationsgerecht.

  • Physik
  • Sekundarstufe I

MP3 - ein Beispiel für angewandte Mathematik im Alltag

Unterrichtseinheit

Dateien im MP3-Format sind heutzutage sehr verbreitet. Dass hinter MP3 jede Menge interessante Mathematik steht, ist vielen nicht bewusst.Wer kennt nicht MP3-Dateien? Mit ihnen ist es möglich, große Mengen von Musik auf kleinstem Raum zu speichern und wieder abzuspielen: denn mit MP3 kann man den Speicherplatz, den man benötigt, um eine Audiodatei zu speichern, auf einen Bruchteil reduzieren. Auf modernen MP3-Playern von der Größe einer Streichholzschachtel ist es möglich, bis zu 200.000 Minuten Musik (das entspricht 130 Tagen) zu speichern. Diese Unterrichtseinheit soll einige der Prinzipien, auf denen MP3 basiert, näher beleuchten und allgemein verständlich darstellen. Dies umfasst biologische, physikalische und mathematische Aspekte.Ausgehend von verschiedenen Hörbeispielen zur Einführung werden die mathematischen Grundlagen betrachtet, die hinter der Zerlegung von Frequenzen liegen. Prinzip von MP3 und Grundlagen Wie lassen sich große Datenmengen von Video- und Audiodateien im MP3-Format platzsparend speichern? Was hört das menschliche Ohr - und was nicht? Die Grenzen des menschlichen Gehörs und welche Rolle dabei der verdeckende Schall und der verdeckte Schall spielen. Prinzip der Multiskalenanalyse Zerlegt man musikalische Töne in ihre Einzelfrequenzen, müssen ganz unterschiedliche Frequenz-Skalen betrachtet werden. Multiskalenanalyse mithilfe von Rechteckschwingungen Tonsignale lassen sich auch in Rechteckschwingungen zerlegen, deren Skala zunehmend gröber wird. Huffman-Codierung Um in MP3 die verbliebenen Informationen effizient abzuspeichern, nutzt man die Huffman-Codierung. Die Schülerinnen und Schüler sollen die Prinzipien, auf denen MP3 basiert, kennen lernen. ein grundlegendes Verständnis für das Hören von Tönen und Klängen entwickeln. einige Grenzen des menschlichen Gehörs kennen lernen. das Prinzip der Zerlegung eines Klanges in Einzelfrequenzen am Beispiel einer Multiskalenanalyse nachvollziehen. Thema MP3 - ein Beispiel für angewandte Mathematik im Alltag Autoren Dr. Anton Schüller, Prof. Dr. Ulrich Trottenberg, Dr. Roman Wienands Fach Mathematik, Physik, Biologie oder Differenzierungsbereich Mathematik/Naturwissenschaft Zielgruppe ab Klasse 8 oder im Rahmen eines Projektkurses in der Oberstufe Zeitraum 3 bis 4 Stunden oder im Rahmen einer Projektwoche Technische Voraussetzungen Computer mit Soundkarte, Software zur Wiedergabe von Audio- und Videodateien im avi-Format, zum Beispiel Windows Media Player oder Real Player MP3 ist eine Abkürzung von MPEG Audio Layer 3, wobei MPEG für Moving Picture Experts Group steht, die 1988 gegründet wurde, um einen Standard für die effiziente Kodierungvon Videocodes zu entwickeln. MP3 basiert auf dem Prinzip, dass nur der Anteil von einem Musikstück gespeichert werden muss, den das menschliche Ohr auch hören kann. Dies mag auf den ersten Blick ein wenig überraschend klingen. Hören wir denn nicht alles, was in einem Musikstück enthalten ist? Tatsächlich ist das menschliche Ohr nicht in der Lage, alle Details, die in einem Musikstück enthalten sind, wahrzunehmen. Zur Einführung in das Thema eignet sich das Zeigen der Audio-Video-Datei audio_video_kompression.avi. Hier wird gleichzeitig an einem visuellen und auditiven Beispiel demonstriert, wie sich die Qualität von Bildern und Musik verändert, wenn man die zugehörigen Dateien immer weiter komprimiert. Bei der Datenkompression bleibt die Qualität für die menschliche Wahrnehmung zunächst erhalten und man spart große Mengen Speicherplatz. Irgendwann werden jedoch die Qualitätsverluste bemerkbar. Komprimiert man dann immer noch weiter, so verschlechtert sich die Qualität dramatisch. Wieso können wir überhaupt das hören, was jemand sagt, der einige Meter von uns entfernt ist? Der Grund hierfür ist das physikalische Phänomen des Schalls. Schall entsteht, weil die Moleküle eines Mediums (zum Beispiel Luft) zum Schwingen gebracht werden. Dadurch stoßen sie an benachbarte Moleküle, bringen auch diese ins Schwingen und so weiter. Abb. 1 (bitte anklicken) zeigt eine Animation der Molekülbewegungen. Solch eine (mechanische) Schwingung breitet sich in festen, flüssigen oder gasförmigen Stoffen wellenförmig aus. Schall breitet sich als sogenannte Longitudinalwellen aus, also immer parallel zur Ausbreitungsrichtung. Die Animation in Abb. 2 (bitte anklicken) verdeutlicht dies. Entsteht ein Ton dadurch, dass eine Gruppe von Molekülen ganz regelmäßig hin und her schwingt, beispielsweise 400 mal pro Sekunde, so sagen wir auch, der Ton hat eine Frequenz von 400 Hertz, das heisst die Schwingung erfolgt 400 mal pro Sekunde. Das menschliche Ohr kann nur Töne wahrnehmen, die zwischen etwa 16 und 20.000 Hertz liegen. Ist c die Schallgeschwindigkeit in einem Medium, f die Frequenz einer Schallwelle (das heißt einer sich wellenförmig ausbreitenden Schwingung) und λ (sprich lambda) die Wellenlänge, so gilt c = λ * f Sind zwei dieser drei Größen bekannt, so kann man die dritte hiermit berechnen. Je weiter die Moleküle in der Luft hin und her schwingen, desto lauter ist der Ton. Die Lautstärke beschreibt also den Unterschied zwischen Berg und Tal der Schwingung. Geräusche haben keine exakt bestimmbare Tonhöhe mehr. Sie sind nichtperiodische Schallereignisse, die durch Überlagerungen vieler Schwingungen unterschiedlicher Frequenz mit rasch wechselnder Amplitude entstehen. Mit anderen Worten: "Der Unterschied von Ton/Klang zu Geräusch ist in der Regelmäßigkeit der Schwingung zu finden. Bei einem Geräusch ist die Schwingbewegung der Luft sehr ungleichmäßig, bei Tönen dagegen handelt es sich um immer wiederkehrende gleichförmige Luftbewegungen". Alles, was wir hören, besteht aus Überlagerungen von Schwingungen, die sich in einem Medium wie der Luft wellenförmig ausbreiten. Diese wellenförmige Ausbreitung bedeutet physikalisch gesehen, dass das menschliche Ohr Druckschwankungen wahrnimmt, die aus einer Überlagerung von Schwingungen unterschiedlichster Frequenzen resultieren. Diese Druckschwankungen führen zu einem entsprechenden Schwingen des Trommelfells. Das menschliche Ohr ist wiederum imstande, dieses Schwingen des Trommelfells über Sinneshaare im Innenohr, die auf unterschiedliche Frequenzen spezialisiert sind, in einzelne Tonfrequenzen zu zerlegen und als Nervenreize an das Gehirn weiterzuleiten. Diese werden dann vom Gehirn als Töne, Klänge und Geräusche interpretiert. Grenzen des menschlichen Gehörs: Abb. 3 zeigt Hörschwelle, Schmerzgrenze, Musik- und Sprachwahrnehmbarkeit in Abhängigkeit von der Frequenz. Nach rechts ist die Frequenz und nach oben die Lautstärke (in der Maßeinheit "Dezibel") aufgetragen. Man beachte dabei, dass "Dezibel" eine logarithmische Maßeinheit ist. Wegen log 1 = 0 bedeutet 0 Dezibel gerade nicht, dass völlige Stille herrscht. In Abb. 4 werden die Grenzen des menschlichen Gehörs deutlich: Die Hörschwelle wird angehoben durch die Anwesenheit von Tönen mit einer Frequenz von 1 kHz und verschiedenen Lautstärken (in jeweils unterschiedlichen Farben dargestellt). mp3 macht sich zunutze, dass die akustischen Informationen, die das menschliche Ohr überhaupt nicht wahrnehmen kann, auch nicht abgespeichert werden müssen. Für MP3 müssen also die Tonsignale wieder in die einzelnen Frequenzen zerlegt werden, aus denen sie zusammengesetzt sind. Anschließend werden die Anteile, die für das menschliche Gehör ohnehin nicht wahrnehmbar sind, aus der Frequenzdarstellung entfernt, denn nur die hörbaren Anteile müssen überhaupt gespeichert werden. In den Videoclips wird demonstriert, wie MP3 funktioniert. An diesen Hörbeispielen wird deutlich, dass man im MP3-Format nur einen kleinen Teil der ursprünglichen Frequenzen zu speichern braucht. Den überwiegenden Rest der Informationen kann man weglassen, ohne dass das menschliche Ohr einen Unterschied zur Originalversion wahrnimmt. Die Töne im weißen Bereich des dritten Beispiels (musikbeispiel_orig_minus_mp3.avi) werden in der Originalversion durch andere dominantere Töne überdeckt und werden somit im Gesamtzusammenhang des Musikstücks nicht wahrgenommen. Erst wenn die dominanten Töne wegfallen, werden die restlichen Töne für das menschliche Ohr hörbar. Musikalische Töne bestehen aus einer Überlagerung einer Vielzahl von Schwingungen. Wie zuvor bereits erläutert, sind nur die Schwingungen mit Frequenzen zwischen etwa 20 und 20.000 Hertz für den Menschen hörbar. Der Faktor zwischen den niedrigsten und den höchsten hörbaren Frequenzen beträgt damit immerhin 1.000 = 10³, also 3 Zehnerpotenzen. Wenn wir also musikalische Töne wieder in die darin enthaltenen Einzelfrequenzen zerlegen wollen, müssen wir ganz unterschiedliche Frequenz-Skalen betrachten. Da die Frequenzen in einem bestimmten Medium wie der Luft in direktem Zusammenhang mit den zugehörigen Wellenlängen stehen (wie in der Gleichung zu Prinzip von MP3 und Grundlagen ), können wir ganz analog auch sagen, wir müssen ganz unterschiedliche Skalen von Wellenlängen betrachten. Eine derartige Multiskalenanalyse ist durchaus nicht ungewöhnlich, wenn man die Eigenschaften von Objekten beobachten oder analysieren will. Anhand von zwei Beispielen wird das Prinzip der Multiskalenanalyse verdeutlicht. Im ersten Beispiel wird eine Multiskalenanalyse durch fortgesetzte Mittelwertbildung für eine gegebene Zahlenfolge durchgeführt. Im zweiten Beispiel betrachten wir die Zerlegung eines Tonsignals in sogenannte Wavelets, was der Zerlegung in Rechteckschwingungen entspricht. Wir betrachten als Beispiel folgende Zahlenfolge von Quadratzahlen: 0 1 4 9 16 25 36 49. Fassen wir die Zahlen in Paare zusammen und bilden die Mittelwerte dieser Paare, so erhalten wir die Folge 0,5 6,5 20,5 42,5. Fassen wir diese Zahlen ebenfalls wieder zu Paaren zusammen und bilden die Mittelwerte der Paare, so erhalten wir die Folge 3,5 31,5. Für dieses Zahlenpaar haben wir den Mittelwert 17,5. Wir haben jetzt die ursprüngliche Zahlenfolge in mehrere Skalen von Mittelwerten überführt: Um von einer Mittelwertskala wieder zur vorhergehenden zu gelangen, benötigen wir die Abweichungen der Mittelwerte von den zugehörigen Werten auf der vorigen Skala: 17,5 - 14 = 3,5 beziehungsweise 17,5 + 14 = 31,5 Entsprechend auf der nächstgröberen Skala: 3,5 - 3 = 0,5 3,5 + 3 = 6,5 31,5 - 11 = 20,5 31,5 + 11 = 42,5 Ganz analog können wir auch von der feineren Skala von Mittelwerten zu unserer ursprünglichen Folge zurückkehren: Die gröbste Skala von Mittelwerten und diese Abweichungen können wir uns wie in folgendem Schema merken. Hier ist zusätzlich die ursprüngliche Zahlenfolge nochmals mit aufgeführt: Zu den ursprünglichen Zahlen zurück kommen wir jetzt, indem wir den Mittelwert auf der gröbsten Skala und die entsprechenden gespeicherten Abweichungen auf allen feineren Skalen einfach addieren. Ein Beispiel: Annäherung an die Funktion durch Balken Um Tonsignale in Rechteckschwingungen unterschiedlicher Frequenzen zu zerlegen, können wir ganz analog vorgehen. Abb. 9 zeigt links eine Funktion, die wir in Rechteckschwingungen zerlegen wollen. Da wir den Funktionsverlauf in der Praxis oft nicht genau kennen, sondern nur an bestimmten Werten messen, nähern wir die Funktion durch die einzelnen Messwerte an. Diese Messwerte werden durch die gefärbten Balken wiedergegeben. Multiskalenanalyse in beide Richtungen möglich Auf der rechten Seite der Abbildung 9 ist der umkreiste Ausschnitt der Funktion vergrößert dargestellt. Wir erläutern das Prinzip unserer Multiskalenanalyse im Folgenden anhand dieses Ausschnitts. Vergröberung der Skalen Die linke Skizze in Abb. 10 zeigt, dass wir wie im vorangegangenen Abschnitt bei der Prinzip der Multiskalenanalyse wieder Mittelwerte der gemessenen Funktionswerte bilden, um auf die nächstgröbere Skala zu kommen. Dieses Vorgehen können wir fortsetzen, um auf gröbere Skalen zu kommen. Die mittlere Grafik von Abb. 10 zeigt den Mittelwert auf der entsprechenden nächstgröberen Skala. Verfeinerung der Skalen Aber auch die andere Richtung ist denkbar: Zurück zur feinen Skala der Funktion können wir wieder kommen, indem wir wieder die Abweichungen zum Mittelwert hinzu addieren. So erhalten wir wieder die ursprünglichen Messwerte der Funktion zurück. Betrachten wir jetzt die rechte Seite in dieser Abbildung genauer, so stellen wir fest, dass wir tatsächlich unseren Funktionsausschnitt in eine Folge von Rechteckschwingungen zerlegt haben. Abweichungen entsprechen der Rechteckschwingung Dabei sind wir ganz genauso vorgegangen wie bei der Multiskalenanalyse unserer Zahlenfolge im vorangegangenen Abschnitt ( Prinzip der Multiskalenanalyse ). Die Zahlenfolge dort können wir auch auffassen als Messwerte für die Funktion f(x) = x 2 . Daher haben wir auch dort bereits eine Zerlegung dieser Funktion in Rechteckschwingungen durchgeführt. Dies wird deutlich, wenn wir die Abweichungen auf den einzelnen Skalen nochmals genauer betrachten. Wir stellen dabei fest, dass je zwei dieser Abweichungen den gleichen Betrag haben, sich aber im Vorzeichen unterscheiden; so können z.B. die Werte ?3 und +3 auf der zweitfeinsten Skala von Abweichungen als eine Rechteckschwingung (der Höhe 3) aufgefasst werden. Prinzip der Codierung Wie bereits zu Beginn dieser Unterrichtseinheit erwähnt wurde, kann das menschliche Ohr insbesondere in polyphoner Musik (wenn viele Töne gleichzeitig erklingen und sich überlagern) viele Informationen nicht wahrnehmen. Daher werden die unhörbaren Anteile in MP3 nur ungenau gespeichert. Zusätzlich wird eine weitere Reduktion des zu speichernden Datenvolumens dadurch erreicht, dass man eine sogenannte Huffman-Codierung verwendet. Die Idee der Huffman-Codierung lässt sich am Beispiel der Codierung eines Textes einfach beschreiben: In einem Text kommen Buchstaben unterschiedlich häufig vor, in der deutschen Sprache beispielsweise das "e" viel häufiger als das "y". Deshalb verwendet man einen sehr kurzen Code für häufig vorkommende Buchstaben, längeren Code hingegen für Buchstaben, die nur selten vorkommen. Gleichzeitig ist aus einer Huffman-Codierung die ursprüngliche Information schnell, eindeutig und exakt reproduzierbar. Beispiele für Codierungen Ein Beispiel für eine derartige Codierung ist das Morsealphabet. Ein negatives Beispiel ist hingegen das Tippen einer SMS. Hier muss für häufig verwendete Buchstaben wie zum Beispiel "e" oder "n" zweimal gedrückt werden. Übertragen auf die Musik bedeutet dies: Meist besteht das ungenau zu speichernde Frequenzspektrum aus wenigen großen und vielen (also häufiger vorkommenden) kleinen Werten (Quantisierungswerte). Die Huffman-Codierung sorgt dann dafür, dass die digitalisierte Darstellung dieses Tons nur sehr wenig Speicherplatz einnimmt. Im Zusammenhang mit mp3 reduziert die Huffman-Codierung den Speicherplatz spürbar. Helmut Neunzert Einführungsvortrag auf dem Kongress Mathematik in der Praxis, Berlin, März 2009.

  • Mathematik / Rechnen & Logik / Musik
  • Sekundarstufe I, Sekundarstufe II

Quantenphysik multimedial: Atomorbitale

Video

Dieses Video veranschaulicht, wie verschiedene Atomorbitale aus Eigenzuständen des Drehoperators hervorgehen. Wie werden die Elektronen im Atom von Chemikern beschrieben? Die sogenannten Atomorbitale werden als Visualisierung der Aufenthaltswahrscheinlichkeit des Elektrons im Atom eingeführt. Im Video zu sehen sind die Orte maximaler Aufenthaltswahrscheinlichkeit für das s- p- und d-Orbital. Hinter dieser Wahrscheinlichkeit liegt allerdings die unsichtbare, interferenzfähige Schwingung in der Quantendimension, hier visualisiert durch ein drehendes Rad. Dem s-Orbital liegt die Schwingung ohne Knotenlinie zugrunde. Dem p-Orbital liegt die Schwingung mit einer Knotenlinie zugrunde, also l =1. Im Video wird der Zusammenhang zum p-Orbital genauer betrachtet. Schneidet man den Raum wie eine Zwiebel auf, ergeben sich viele Kugelschalen. Die Knotenlinie wird im Raum zu einer Knotenebene. Die maximale Schwingungsamplitude nimmt bei sehr großem Abstand zum Atomkern wieder ab. In der Chemie wird nicht die gesamte Schwingung im Raum dargestellt, sondern nur der Ort maximaler Aufenthaltswahrscheinlichkeit, was den Orten mit größter Schwingungsamplitude entspricht. So ergibt sich diese Darstellung des p-Orbitals. Dies gilt auch für alle weiteren Orbitale: Die Knotenlinien werden aus der Quantendimension in die Atomorbitale im Raum sozusagen vererbt und lassen sich dort wiederentdecken! Das hier vorgestellte Video ist Teil des Projektes "U2: Quantenspiegelungen" vom Institut für Didaktik der Physik der Universität Münster. Mathematisch fundierte Visualisierungen eröffnen Schritt für Schritt einen Zugang zu moderner Atomphysik – vom Wasserstoffatom bis zum Periodensystem der Elemente.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner