• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Proteinmodelle aus dem Internet – Beispiel Insulin

Unterrichtseinheit

In dieser Unterrichtseinheit werden am Beispiel Insulin Proteindatenbanken und kostenlose Molekülbetrachter wie RasMol vorgestellt. Diese Datenbanken bieten die Möglichkeit, mithilfe des Computers Aspekte der Struktur-Funktionsbeziehung auf molekularer Ebene so anschaulich darzustellen, wie dies im Unterricht mit keinem anderen Hilfsmittel möglich ist.Möchte man die Raumstruktur eines Proteins in einem Molekülmodell darstellen, so benötigt man die Raumkoordinaten jedes einzelnen Atoms. Polypeptidsequenzen, für die diese Raumkoordinaten bereits bekannt sind, werden in der Regel in Datenbanken im Internet veröffentlicht. Von dort kann man sie auf den eigenen Rechner laden und als 3D-Molekülmodell visualisieren. Diese Unterrichtsheit zeigt am Beispiel des Insulins, wie am Rechner 3D-Molekülmodelle visualisiert werden können. In diesem Zusammenhang wird auch die Fragestellung nach dem Einsatz von Schweineinsulin und gentechnisch verändertem Insulin beim Menschen erörtert. Die Arbeit mit der Proteindatenbank schafft ein Bewusstsein dafür, wie wichtig das Internet als Drehscheibe für Biodaten und die freie Zugänglichkeit von Forschungsergebnissen für die tägliche Arbeit der weltweiten Wissenschaftsgemeinschaft ist. 3D-Computermodelle im Unterricht Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Arbeit mit Datenbanken im Biologie-Unterricht Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Unterrichtsverlauf "Proteinmodelle im Unterricht" Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden. Fachlicher Hintergrund Informationen zum Weg von der DNA-Sequenz bis zur Tertiärstruktur eines Proteins und Infos zu dem für die Visualisierung im Unterricht benötigten Molekülbetrachter RasMol Die Schülerinnen und Schüler verstehen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer. können eine Sequenz aus einer Datenbank abrufen. können mit einem einfachen Visualisierungsprogramm wie RasMol umgehen. können die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen. erarbeiten grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen. können Struktur-Funktionsbeziehungen begreifen und erklären. können Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben. Aus der durch die DNA-Sequenz definierten Primärstruktur des Proteins lassen sich Sekundärstrukturbereiche (Faltblätter, Helices, ungeordnete Schleifen) vorhersagen, die durch Wechselwirkungen zwischen den Peptidbindungen und den Seitenketten der Aminosäuren entstehen. Um aber eine Aussage über die - wie es im Fachjargon so schön heißt - Struktur-Funktionsbeziehungen machen zu können, zum Beispiel im Zusammenhang mit den Eigenschaften des katalytischen Zentrums eines Enzyms, benötigt man noch die 3D-Struktur des Proteins in Verbindung mit weiteren Daten, wie zum Beispiel der spezifischen Bindung von Substraten oder Hemmstoffen. Erst dann können Aussagen über die Proteinfunktion auf der molekularen Ebene gemacht werden. Zur Aufklärung der vollständigen räumlichen Anordnung einer nativen Polypeptidkette, seiner Tertiärstruktur, muss zunächst ein hochreiner Proteinkristall "gezüchtet" werden. Hat man ein geordnetes Proteinkristallgitter erreicht, kann dieses mithilfe der Röntgenstrukturanalyse untersucht werden. Die Röntgenstrahlen werden beim Durchtritt durch den Kristall (Wellenlänge im Ångström-Bereich, 1Å = 0,1 nm) gebeugt. Das entstehende Beugungsmuster wird entweder von einem elektronischen Detektor aufgefangen (Diffraktometer) oder mithilfe eines Films sichtbar gemacht. Durch ein mathematisches Verfahren (Fourier-Transformation) erhält man eine Elektronendichtekarte, aus der die Raumkoordinaten für jedes einzelne Atom im Kristall bestimmt werden können. Einfacher hat man es, wenn das Protein zu einer bereits bekannten Proteinfamilie gehört und eine starke Homologie zu einem Protein aufweist, dessen 3D-Struktur bereits aufgeklärt ist. Dann kann die Struktur des "neuen" Proteins durch eine Modellierung abgeleitet werden. Das Züchten von Proteinkristallen für die Röntgenstrukturanalyse ist keine triviale Angelegenheit. Um zum Erfolg zu kommen, wurden Proteinkristalle sogar schon im Weltraum gezüchtet, denn unter den Bedingungen der Schwerelosigkeit sind die Voraussetzungen für die Herstellung fehlerfreier Kristalle besonders günstig. Insbesondere Membranproteine lassen sich nur schwer kristallisieren. In solchen Fällen kann die Struktur eines Proteins mittels NMR auch in Lösung ermittelt werden. Hierbei ergibt sich jedoch keine eindeutige Struktur, da sich die Atome des Proteins in diesem Zustand bewegen (siehe "Zusatzinformationen" auf der Startseite des Artikels). Die Raumkoordinaten von Proteinen werden in Form langer Listen in Online-Datenbanken gespeichert. Von dort kann man sie als Textdateien auf den eigenen Rechner laden und mit einem geeigneten Programm visualisieren. Ein solches Programm ist zum Beispiel das im Internet für schulische Zwecke frei erhältliche RasMol. Die Software bietet die Möglichkeit, aus den Koordinatenangaben der Datenbank dreidimensionale Proteinmodelle zu erstellen, die man um ihre Achsen rotieren lassen oder mit der Maus anfassen und beliebig drehen und wenden kann. Auch ein "Hineinzoomen" in die Moleküle ist möglich. Mit RasMol können Proteine in verschiedenen Darstellungsformen visualisiert werden (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell). Heteroatome, Wasserstoffbrücken oder gebundene Wassermoleküle lassen sich oft anzeigen. Ein Nachteil des Programms ist, dass die Befehlssprache englisch ist und dass die Arbeit nur über die "Command line" läuft, die nicht sehr nutzerfreundlich ist. Empfehlenswert ist es, sich eine Liste der vom Programm erkannten Kommandos auszudrucken. Der vollständige Weg von der Peptidsequenz zum dreidimensionalen Computermodell eines Proteins ist schwierig zu vermitteln, da sehr viele mathematische und physikalische Details in ihm stecken. Die räumliche Darstellung eines Proteins, zum Beispiel eines Stoffwechselenzyms oder eines Transportmoleküls wie des Sauerstoff bindenden Myoglobins, ist jedoch sehr wichtig für das Verständnis seiner Funktion. Dies soll auch der Lehrer-Online-Artikel Die dreidimensionale Hämoglobinstruktur verdeutlichen. Die räumliche Struktur von Substratbindungsstellen steht in direkter Beziehung zur Raumstruktur der Substrate (Schlüssel-Schloss-Prinzip) und damit zur Substratspezifität der Enzyme. Auch die Wirkung kompetitiver Hemmstoffe oder allosterischer Regulatoren können mithilfe einer interaktiven 3D-Struktur der Biomoleküle besser verdeutlicht werden, als dies durch andere Lehrmittel möglich ist. Die in den beiden Arbeitsblättern gestellten Aufgaben sollen zum einen dazu beitragen, die Wichtigkeit von Proteindatenbanken in der Hinsicht auf die Vergleichsmöglichkeiten (Zugehörigkeit eines Proteins zu einer "Proteinfamilie") von Sequenzen zu zeigen. Zum anderen soll die Medienkompetenz der Schülerinnen und Schüler - der Zugang zu einer Datenbank und der Umgang mit einem Visualisierungsprogramm - geschult werden. Die Arbeit mit Originaldaten, die Forscherinnen und Forscher im Internet veröffentlicht haben und die täglich von der weltweiten Wissenschaftsgemeinschaft genutzt werden, wirkt auf die Lernenden motivierend. Außerdem entwickeln sie ein Bewusstsein dafür, wie wichtig es für die modernen Biowissenschaften ist, dass Forschungsergebnisse frei zur Verfügung stehen und welche Rolle dabei das Internet spielt, das als Informationsquelle aus dem täglichen Forschungsbetrieb der Molekularbiologen nicht mehr wegzudenken ist. Die Schülerinnen und Schüler sollten bereits Kenntnisse über Aminosäuren, den Aufbau der Peptidbindung, Primär- und Sekundärstrukturen sowie Wechselwirkungen zwischen den Peptidketten haben und mit dem Computer sicher umgehen können. Gegebenenfalls muss eine Einführung in RasMol und die Nutzung einer Datenbank eingebaut werden. Je nach Schwierigkeitsgrad des Unterrichts und der Vorbildung der Lernenden können die Methodik der Röntgenstrukturanalyse und der Kernmagnetischen Resonanz (NMR) genauer analysiert werden.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe II

Materialsammlung Biochemie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen, Anregungen und Arbeitsmaterial für den Unterricht zum Themenbereich Biochemie im Fach Biologie an weiterführenden Schulen. Das Angebot deckt die folgenden Themen ab: Proteine, Nukleinsäure, Fotosynthese und Nanotechnologie. Klicken Sie sich einfach mal durch! Das schöne in der Biologie ist der strenge Zusammenhang zwischen Struktur und Funktion von der Nano- bis zur Makroebene: Die Analyse dreidimensionaler Strukturen erweist sich stets als aufschlussreich und ist weit mehr als eine bloße "Bildbeschau". Franz Josef Scharfenberg vom Richard-Wagner-Gymnasium in Bayreuth hat die dreidimensionalen Ausarbeitungen von Eric Martz (University of Massachusetts, USA) zu unserem Blutfarbstoff für den Einsatz im deutschsprachigen Unterricht aufbereitet. Die dreidimensionale Darstellung der Proteinstrukturen, die mithilfe des kostenlosen Plugins Chime mit der Maus nach Belieben angefasst, gedreht und herangezoomt werden können, zeigen, was schon Thomas Mann wusste (woher eigentlich? - schließlich gelang das erste Beugungsbild eines Proteins Dorothy Hodgkin erst 1932): Proteine sind "unhaltbar verwickelt und unhaltbar kunstreich aufgebaute Eiweißmolekel" (aus "Der Zauberberg"). Es lohnt sich, einen genaueren Blick auf das Hämoglobin zu werfen. An diesem Beispiel lassen sich zahlreiche allgemeine Aspekte der Proteine und Enzyme herausarbeiten: Als oligomeres Protein bietet der Blutfarbstoff die Möglichkeit, alle Strukturhierarchien - von der Primär- bis zur Quartärstruktur - durchzuspielen. Von der Anordnung der Aminosäuren innerhalb der Untereinheiten - hydrophobe Aminosäureseitenketten an der Oberfläche, hydrophile im Inneren des Proteins - lässt sich leicht der Bogen zur thermodynamischen "driving force" des in der Primärstruktur kodierten Selbstfaltungsprozesses der Biopolymere schlagen. Hämoglobin ist zwar "nur" ein Transportprotein, seine in die Polypeptidketten eingebetteten Häm-Gruppen können jedoch - was die Architektur aktiver Zentren und die Modellierung ihrer katalytischen Aktivität betrifft - exemplarisch als prosthetische Gruppen der Enzyme betrachtet werden (schließlich wird Hämoglobin von Molekularbiologen gerne auch als "Enzym honoris causa" bezeichnet). Die auf dem Austausch einer einzigen Aminosäure basierende Sichelzellenanämie verdeutlicht stellvertretend für Erkrankungen wie Alzheimer oder BSE das Prinzip der auf Protein-Polymerisationen basierenden Erkrankungen. Das Startkapitel zeigt vier (zunehmend "abstrahierte") Darstellungsformen der Aminosäure Glycin. Diese "Struktursprachen" werden in den nachfolgenden Kapiteln wiederholt auf weitaus komplexere Strukturen angewendet. Das Glycin-Beispiel ist daher eine wichtige Einführung in die verschiedenen Darstellungsformen des gesamten Hämoglobin-Materials. Gezeigt werden die "ball and stick"-Projektion des Zwitterions (Vorsicht: Doppelbindungen werden nicht als solche dargestellt), eine raumfüllende Darstellung (Kalottenmodell; Abb. 1, Platzhalter bitte anklicken), die "stick"-Struktur sowie die "Aminosäure-Rückgrat"-Struktur (Hydroxylgruppe und Wasserstoffatome sind noch als "rudimentäre Stacheln" dargestellt). Wurden in dem vorausgegangenen Abschnitt die Darstellungsmöglichkeiten einer Aminosäure vorgestellt, werden diese hier auf ein Oligopeptid angewendet. Damit betritt man hier die Primärstruktur-Ebene. Als neue Darstellungsform wird schließlich das Polypeptidketten-Rückgrat vorgestellt (nicht zu verwechseln mit dem Aminosäure-Rückgrat). Zunächst wird die allgemeine Rückgrat-Struktur einer Aminosäure (ohne Seitenkette) dargestellt. Aus dieser Struktur wird das "allgemeingültige" Rückgrat eines Tripeptids aufgebaut. Die "anonymen" Einheiten werden durch Hinzufügen von Methylgruppen in ein Alanyl-alanin-alanin (Ala-Ala-Ala) umgewandelt. Um das ganze zunehmend komplexer zu machen, wird das Tripeptid in ein Lysyl-alanyl-alanin (Lys-Ala-Ala) und schließlich in ein Lysyl-alanyl-isoleucin (Lys-Ala-Ile) umgewandelt, bevor es zum Tetrapeptid ergänzt wird. Bis hierher folgen alle Darstellungen der "stick"-Struktur. Im Folgemodul haben die SchülerInnen die raumfüllende Darstellung des Tetrapeptids vor Augen (Abb. 2). Am Beispiel des Tetrapeptids wird nun verdeutlicht, wie die Biochemiker die Darstellung von Peptidketten abstrahieren, um bei der Strukturanalyse von Polypeptidketten aus mehreren Hundert Aminosäuren nicht "den Wald vor lauter Bäumen nicht mehr sehen zu können": In den beiden letzten Modulen wird daher die "Rückgrat"-Darstellung von Peptidketten eingeführt. Die erste Darstellung zeigt die Quartärstruktur des nativen Proteins mit farblich differenzierten Untereinheiten und den Häm-Komplexen (raumfüllende Darstellung, siehe Abb. 3). Das folgende Modul reduziert die Polypeptidketten auf ihr Rückgrat. Erst jetzt wird die Lage der Häm-Gruppen (raumfüllende Darstellung) klar erkennbar (und der Vorteil der diversen "Struktursprachen" deutlich). Lassen Sie Ihre SchülerInnen durch die Drehung des Moleküls den zentralen Hohlraum entdecken, in dem der Hämoglobin-Ligand 2,3-Diphosphoglycerat (DPG) bindet und dabei über eine Änderung der Quartärstruktur die Sauerstoff-Affinität des Hämoglobins senkt (DPG stabilisiert die Konformation der Desoxy-Form, indem es die beiden beta-Ketten über ionische Wechselwirkungen miteinander vernetzt). DPG wird vom Körper in Höhenlagen gebildet, wo ein niedriger Sauerstoff-Partialdruck herrscht, und erleichtert dort die Abgabe von Sauerstoff an das atmende Gewebe. Im den beiden Folgemodulen sind die Polypeptidketten komplett ausgeblendet. Das zweite der beiden Module stellt die Atomsorten der Hämgruppe farbkodiert dar. Die Lagebeziehungen der vier "freischwebenden" Häm-Gruppen verdeutlicht die tetraedrische Symmetrie (dreiseitige Pyramide) des Moleküls. Bei der Analyse der Symmetrie erweist sich wiederum das Anfassen und Drehen der Strukturen als hilfreich. Es folgt die vergrößerte Darstellung einer einzelnen Hämgruppe in raumfüllender Ansicht sowie eine Darstellung in der "stick"-Struktur, in der die Komplexbindung des zentralen Eisenatoms über die Stickstoffatome der Porphyrin-Struktur erkennbar wird. Die Besetzung der fünften Koordinationsstelle durch ein Histidin-Stickstoff der Polypeptidkette ist noch nicht berücksichtigt. An die sechste Koordinationsstelle wird nun molekularer Sauerstoff gebunden. Dabei ist deutlich erkennbar, dass die Achse des Sauerstoffmoleküls nicht senkrecht auf die Ebene des Porphyrin-Ringes ausgerichtet ist (Abb. 4; siehe auch Abb. 5 der Hintergrundinformation zu den Eigenschaften der prosthetischen Gruppe). Nun geht es wieder vom Kleinen zum Großen: Das oxygenierte Häm wird wieder in die Globin-Kette eingefügt, zunächst in eine Rückgrat-, dann in eine raumfüllende Darstellung. Die beiden letzten Darstellung zum Thema "Sauerstoffbindung" zeigen ein weiteres Details der Häm-Einbettung in das Globin und der Sauerstoffbindung: Die Positionierung hydrophiler Teile des Häms an der Oberfläche und die Ausrichtung hydrophober Bereiche zum Proteininneren. Weiterhin kommt die Besetzung der fünften Koordinationsstelle durch das sogenannte "proximale Histidin" sowie die Lage des "distalen Histidins" über dem gebundenen Sauerstoff zur Darstellung. Mehr zur Bedeutung des distalen Histidins liefert der folgende Fachliche Kommentar. Die Chime-Darstellungen heben einige Strukturmerkmale des Hämoglobins hervor, die sich zu den biochemischen Funktionen der Proteins sehr schön in Beziehung setzen lassen, auf die die vorgestellte Applikation jedoch nicht explizit hinweist. Auf der folgenden Seite finden Sie die wichtigsten Infos zu den Hämoglobin-Eigenschaften, die sich in diesen Strukturdetails abbilden: Die Proteinumgebung definiert die katalytischen Eigenschaften Warum benutzt die Natur nicht die "nackten" Hämgruppen für die Sauerstofflogistik, sondern wickelt sie in komplexe Poypeptidketten ein? Zum einen sind es die vielfältigen allosterischen Wechselwirkungen der Globine mit diversen Liganden, über die die Eigenschaften der Sauerstoffbindung durch das Häm sinnreich modelliert und den jeweiligen biologischen Erfordernissen perfekt angepasst werden - von der DPG-Bindung (siehe oben) bis hin zur Kooperativität der Sauerstoffbindung an die vier Untereinheiten des Hämoglobins. Die wichtigsten dieser "Stellschrauben" werden in Schulbüchern ausreichend thematisiert. Unberücksichtigt bleibt jedoch meist ein viel allgemeineres und enorm wichtiges Grundprinzip der Molekularbiologie und Biochemie: Die katalytischen Eigenschaften jeder prosthetischen Gruppe und jeden aktiven Zentrums werden maßgeblich von der Proteinumgebung geprägt, in die sie eingebettet sind. Man vergegenwärtige sich, dass das Häm, das im Hämoglobin zur reversiblen Sauerstoffbindung eingesetzt wird, im Atmungskettenenzym Cytochrom c als Elektronenüberträger verwendet wird! Wie die Globinkette die speziellen Bindungseigenschaften des Häms beeinflusst, wird nachfolgend an zwei Struktureigenschaften hervorgehoben, die in den Chime-Darstellungen sehr gut deutlich werden. Erst das Globin gewährleistet eine reversible Häm-Oxygenierung Frei lösliche Hämgruppen mit einem komplexierten zweiwertigem Eisen-Ion könnten Sauerstoff nur für einen sehr kurzen Moment binden. Der Sauerstoff würde das zweiwertige Eisen schnell zu dreiwertigem Eisen oxidieren, das keinen Sauerstoff mehr binden kann. Ein Zwischenprodukt dieser Oxidation ist ein "Häm-Sauerstoff-Häm-Sandwich". Die Polypeptid-"Verpackung" der Hämgruppen verhindert dies und gewährleistet damit die Verwendbarkeit der Hämgruppen als Sauerstofftransporteure im Blut. Das letzte Modul zum Thema "Hämoglobin & Häm" verdeutlicht die Lage des Häms in seiner Bindungstasche, die die Bildung von Häm-Dimeren ausschließt. Kohlenmonoxid hat eine hohe Häm-Affinität Kohlenmonoxid ist für uns ein toxisches Gas, weil es die Sauerstoffbindungsstellen des Hämoglobins vergiftet: Seine Affinität zum Hämoglobin-Eisen übertrifft die des Sauerstoffs um das 200-fache. Aus diesem Grund kann schon ein niedriger Kohlenmonoxid-Partialdruck tödliche Folgen haben. Am "nackten" Häm sähe der Vergleich noch ungünstiger aus: Zu diesem hat Kohlenmonoxid eine 25.000 mal höhere Affinität als Sauerstoff. Eine Eigenschaft, die das Pigment als Sauerstoffträger völlig unbrauchbar machen würde, denn Kohlenmonoxid ist nicht nur ein Industriebgas, sondern wird auch vom Organismus selbst erzeugt (es entsteht bei diversen katabolen Stoffwechselreakrtionen und dient auch als Botenstoff, zum Beispiel als bei der Regulation der glatten Gefäßmuskulatur). Unter normalen Umständen ist etwa ein Prozent unseres Hämoglobins mit endogen produziertem Kohlenmonoxid blockiert. Sterische Hinderung der Kohlenmonoxid-Bindung Ohne die Reduktion der Kohlenmonoxid-Affinität um das 125-fache könnte wir mit unserem Blutfarbstoff kaum leben. Aber wie schafft die Polpeptidkette dieses Kunststück? Die Natur greift an der Geometrie der Komplexierung von Sauerstoff und Kohlenmonoxid an. Während die Achse des Sauerstoffmoleküls bei der Bindung an das Eisenatom einen 120 Grad-Winkel zur Häm-Ebene bildet, steht die Achse des Kohlenmonoxid-Moleküls - bei freiem Zugang zum Häm - exakt senkrecht auf dessen Ebene. Diesen optimalen Bindungswinkel verbaut die Polypeptidkette dem Kohlenmonoxid, indem es ihm in der Häm-Bindungstasche des Globins einen sperrigen Histidin-Rest in den Weg stellt (sterische Hinderung), der den Sauerstoff nicht weiter stört. Die Position des distalen Histidins wird in dem vorletzten Modul zum Thema "Hämoglobin & Häm" sehr schön deutlich (Abb. 5). Im unteren Bereich des Bildausschnitts ist das proximale Histidin zu erkennen. Das freie Elektronenpaar des Stickstoffatoms im Histidinring besetzt eine der Koordinationsstellen des Eisenions. Die Darstellungen zum Thema "Sekundärstrukturen" stellen die Architektur der alpha-Helix in den Mittelpunkt. Die Darstellung ihrer Wechselwirkungen beschränkt sich auf die intrahelikalen Wasserstoffbrücken, die der Helix ihre Stabilität verleihen. Einzelne Darstellungen bereiten bereits das nächste Thema "Wechselwirkungen der alpha-Helix" vor, das die Interaktionen der Seitengruppen mit der wässerigen Umgebung und dem hydrophoben Proteinkern aufbereitet. Das erste Modul zeigt die Rückgrat-Struktur einer Globinkette (Tertiärstruktur) mit oxygeniertem Häm. Die alpha-helikalen Strukturabschnitte, die den Großteil des Moleküls bilden, sind farblich hervor gehoben (Abb. 6). Es folgt eine Farbvariante der ersten Darstellung ("Regenbogen-Färbung"). Die nächste Abbildung stellt eine neue "Struktursprache" der Biochemiker vor: alpha-helikale Bereiche werden von der Rückgrat-Struktur "luftschlangenartig" hervorgehoben. Diese Darstellungsform ist bei Molekularbiologen sehr beliebt, da sie bei der Analyse von Proteinstrukturen - unter anderem bei der Identifizierung von Domänen - sehr hilfreich ist. Zudem lassen sich anhand wiederholt auftretender "Sekundärstrukturmotive" Homologien und Analogien der Proteinevolution analysieren. Eine der alpha-Helices wird in ihrem Tertiärstrukturkontext (komplette räumliche Struktur einer Polypeptidkette) hervorgehoben. Dieser Kontext ist für die weitere Betrachtung wichtig (siehe "Wechselwirkungen der alpha-Helix"), da man an ihm erkennt, dass sich diese Helix an der Oberfläche des Globins befindet und sowohl mit dem wässerigen Milieu als auch mit dem Proteininneren Kontakt hat. Die Tertiärstrukturebene wird nun verlassen und auf die individuelle alpha-Helix (Sekundärstruktur) heruntergezoomt. Diese Helix wird nun in zwei andere Struktursprachen übersetzt. Zunächst in die Rückgrat-Darstellung der Polypeptidkette und schließlich in die "stick"-Darstellung ihrer Aminosäurebausteine. Das Folgemodul lässt die "driving force" der alpha-Helix-Struktur erkennen: Alle hydrophilen Teile des Polypeptid-Rückgrats (die Carbonyl-Sauerstoffatome und die Wasserstoffatome des Peptidbindungs-Stickstoff) bilden Wasserstoffbrücken miteinander. Diese vielen schwachen Wechselwirkungen verleihen der Helix ihre Stabilität. Die "Sättigung" der hydrophilen Rückgratbereiche mit hydrophilen Wechselwirkungen prädestiniert die Helix zu einem in hydrophoben Umgebungen oft verwendeten Strukturmotiv, sei es im hydrophoben Kern von Proteinen (siehe Hydrophobizität, Polarität & Ladungen") oder in Membranprotein-Abschnitten, die der Lipidphase ausgesetzt sind. Die nächste Darstellung macht deutlich, dass die Seitenketten der Aminosäuren einer Helix wie die Stufen einer Wendeltreppe immer nach außen zeigen. Besonders deutlich wird dieses wichtige Strukturprinzip, wenn man die Helix in eine Position bringt, in der man in Richtung ihrer Längsachse blickt. Während sich die Darstellungen zum Thema "Sekundärstrukturen" vor allem mit dem allgemeinen Architekturprinzip der alpha-Helix und den intrahelikalen Wasserstoffbrücken beschäftigten, veranschaulichen die Module dieses Abschnitts die Wechselwirkungen der helikalen Aminosäurereste mit dem hydrophilen Medium und dem hydrophoben Proteinkern. Die erste Darstellung zeigt das raumfüllende Kalottenmodell eines "Grenzflächenhelix"-Abschnitts. Farblich hervorgehoben sind die Stickstoff- und Sauerstoffatome der Seitengruppen und des Rückgrats. Beim Drehen und Wenden der Helix ist zu erkennen, dass es sich um eine "amphiphile Helix" handelt, d.h., dass auf einer Seite hydrophobe Reste, auf der anderen dagegen hydrophile Reste (erkennbar an den Heteroatomen) aus der Achse hervorragen. Diese Eigenschaft spiegelt die Anpassung der Aminosäuresequenz (Primärstruktur) an ihre räumliche Position im Tertiärstrukturkontext wider: Die hydrophobe Seite der Helix geht mit dem hydrophoben Proteinkern hydrophobe (van-der-Waals-)Wechselwirkungen ein und stabilisiert so die Tertiärstruktur des Proteins. Die hydrophile Seite bildet dagegen Wasserstoffbrücken mit den Wassermolekülen der Umgebung. Dieses Hydratwasser trägt dazu bei, das Protein in Lösung zu halten. Deutlicher wird dieses Prinzip in der zweiten Darstellung, die die Heteroatome des Rückgrats ausblendet. Die beiden folgenden Module zeigen dieselbe Darstellung, nur bereits entsprechend den jeweiligen Textinformationen räumlich ausgerichtet. So zeigt zum Beispiel der Blick entlang der Helixachse noch einmal deutlich deren amphipatischen Charakter (Abb. 7): Sämtliche Heteroatome der Seitenketten befinden sich in dieser Ansicht auf der rechten Seite. Die Chime-Darstellungen analysieren die Wechselwirkungen eines Globin-Molekül mit der Umgebung. Die "take home message" diese Abschnittes bildet das allgemeine Strukturprinzip löslicher Proteine: Innen hydrophob (Stabilisierung der Tertiärstruktur über van-der-Waals-Wechselwirkungen), außen hydrophil (Bindung von Hydratwasser über Wasserstoffbrücken). Die erste Darstellung zeigt die farbkodierte Verteilung hydrophober, polarer und geladener Aminosäuren auf der Globin-Oberfläche sowie die Sauerstoffatome von einem Teil des Hydratwassers. Beim Drehen des Proteins treten hydrophile und hydrophobe Oberflächenabschnitte deutlich hervor. Während die hydrophilen Bereiche mit dem Lösungsmittel Wasserstoffbrücken bilden und das Protein in Lösung halten, stabilisieren die hydrophoben Bereiche über hydrophobe Protein-Protein-Wechselwirkungen zwischen den vier Globinen eines Hämoglobin-Moleküls dessen Quartärstruktur (native Struktur eines aus mehreren Proteinuntereinheiten aufgebauten Proteinkomplexes). Der folgende Schnitt macht die Anatomie des Globins - stellvertretend für alle löslichen Proteine - deutlich. Während der Kern durch die Wechselwirkungen hydrophober Seitengruppen stabilisiert wird, ist die dem Medium ausgesetzte Oberfläche mit hydrophilen Resten gespickt. Dieses Strukturprinzip wir mithilfe von weiteren Schnittebenen verdeutlicht, die zunächst immer tiefer in das (hydrophobe) Proteininnere vordringen, um sich danach wieder seiner (hydrophilen) Oberfläche nähern (Abb. 8). Wie falten sich Proteine? Die Analyse der Strukturdarstellungen des Globins bietet sich als Ansatzpunkt für weiterführende Fragen zur Proteinstruktur an: Wie finden die linearen Aminosäureketten im lebenden Plasma ihre komplexe dreidimensionale Struktur? Und warum findet dieser Prozess in Zellen mit so hoher Effizienz, im Reagenzglas aber nur mit sehr niedrigen Ausbeuten statt? Vorhersage von Proteinstrukturen Vom Architekturprinzip der "Packung" einer Polypeptidkette lässt sich leicht der Bogen zur "driving force" ihrer Selbstfaltung schlagen. Der Selbsfaltungsprozess einer Polypeptidkette in ihre native dreidimensionale Struktur wird von ihrer Primärstruktur - also der linearen Abfolge ihrer Aminosäuresequenz - definiert. Dieser Strukturcode ist von Molekularbiologen bis heute noch nicht soweit entschlüsselt worden, dass anhand jeder Sequenz exakte Strukturvorhersagen getroffen werden können (falls das überhaupt möglich ist). In einigen Fällen lassen sich jedoch schon ganz passable Wahrscheinlichkeiten berechnen. All diese Vorhersagen basieren auf einer Bestimmung der thermodynamisch günstigsten Faltung. Das ist zum Beispiel bei einem löslichen Protein (wie vom Globin-Typ) diejenige, die über eine große Anzahl hydrophober Wechselwirkungen im Inneren und hydrophiler Wechselwirkungsmöglichkeiten an der Oberfläche verfügt. Eine gigantische Rechenaufgabe, da im Prinzip die Interaktion eines jeden Aminosäurerestes mit jedem anderen Rest analysiert werden müsste. Die Forscher schränken den Rechenaufwand jedoch erheblich ein, indem zunächst Sekundärstruktur-Wahrscheinlichkeiten analysiert werden. Auch Sequenz-Vergleiche mit Proteinen, deren Struktur bereits durch Röntgenstrukturanalysen eindeutig geklärt ist, erweisen sich als hilfreich: Die Natur verwendet nämlich beim Proteindesign sehr gerne bewährte Proteindomänen (das heißt durch Sekundärstrukturen stabilisierte globuläre Proteinabschnitte, die meist von einem Exon kodiert werden) immer wieder. Aus einem begrenzten Domänen-Repertoire hat die Natur so im Laufe der Evolution eine Vielzahl verschiedener Proteine mit vielfältigen Funktionen "zusammengepuzzelt". "Assisted Self Assembly" Das auf den bekannten Renaturierungsversuchen von Anfinsen basierende Dogma von der "Selbstfaltung" der Proteine ist seit der Entdeckung der Rolle der "Chaperone" nicht gerade ins Wanken geraten, musste jedoch vom "Self Assembly" zum "Assisted Self Assembly" modifiziert werden. Schnell hatte man erkannt, dass die in vitro beobachteten Selbsfaltungsraten viel zu niedrig sind, um eine Zelle funktionstüchtig zu halten. Zahlreiche Proteine zeigen im Reagenzglas sogar überhaupt keine Neigung, nach einer sanften Denaturierung in ihre native Struktur zurück zu finden. Der Grund dafür ist, dass jede Zelle über ein ganzes Arsenal von Chaperonen verfügt - "molekularen Anstandsdamen" - die mittlerweile auch Einzug in die Schulbuchliteratur gehalten haben. Diese Anstandsdamen (die selbst Proteine sind) erkennen "unordentlich" gefaltete Polypeptidketten, die noch keine stabilen Sekundärstrukturen oder noch keine stabile Tertiärstruktur gefunden haben. Als Symptome solcher unvollständigen oder Fehlfaltungen "fahnden" die Chaperone nach hydrophoben Resten, die an der Oberfläche falsch gefalteter Polypeptidketten exponiert werden. Chaperone entfalten diese unbrauchbaren Gebilde unter Energieverbrauch und verhelfen Ihnen somit zu einer neuen Chance, sich richtig zu falten. Sie "bugsieren" damit den Faltungsweg der Polypeptidketten sicher in die Richtung der thermodynamisch günstigsten Konformation, die in der Regel der nativen Proteinstruktur entspricht. Ursache der Sichelzellenanämie ist der Austausch eines einzigen Nukleotids im beta-Hämoglobinketten-Gen, wodurch die hydrophile Aminosäure Glutamat gegen die hydropobe Aminosäure Valin ersetzt wird. Mit fatalen Folgen: Der ausgetauschte Glutamatrest befindet sich nämlich an der Oberfläche des Proteins. Die Exposition des hydrophoben Restes setzt die Löslichkeit de Proteins vor allem im desoxygenierten Zustand stark herab und kann so die Polymerisation des Hämoglobins zu langen und unlöslichen Filamenten auslösen. Die erste Darstellung zeigt die Position des Valins auf der Oberfläche des oxygenierten Sichelzellen-Hämoglobins. Der so erzeugte "hydrophobe Fleck" ist weiß hervorgehoben. Die Desoxygenierung des Moleküls ist mit einer Konformationsänderung der Quartärstruktur verbunden, die einen zusätzlichen hydrophoben Bereich an die Oberfläche befördert (Abb. 9). Dieser ist auch beim "normalen" Hämoglobin vorhanden, wo er keinen negativen Effekt zeigt. Im Verbund mit dem neu hinzu gekommenen Valin-Rest verleiht er dem Molekül jedoch das Potenzial zur Polymerisation, sobald die Desoxy-Form eine kritische Konzentration überschreitet. Das nächste Modul zeigt den ersten Schritt der Polymerisation, die Dimerisierung zweier Moleküle über hydrophobe Wechselwirkungen (Abb. 10). Die an der Polymerisation beteiligten hydrophoben Reste und ihre Wechselwirkung wird erst dann deutlich, wenn die raumfüllende Darstellung durch die Rückgrate der Polypetidketten ersetzt wird. Die letzte Chime-Projektion zeigt eine Vergrößerung der Kontaktstellen. Die für die Sichelzellenanämie charakteristischen sichelförmigen Erythrozyten sind fragiler als ihre "Wildtyp"-Pendants, was die anämische Symptomatik verursacht. Die exponierten hydrophoben Reste wirken wie "hydrophile Lego-Noppen" oder "sticky patches", über die die Proteine zu langen Filamenten polymerisieren und so den Erythrocyten eine sichelförmige Gestalt aufzwingen. Die Sichelzellen sind im Gegensatz zu den geschmeidig-biegsamen normalen Erythrozyten nicht mehr deformierbar und verstopfen unter Sauerstoffmangelbedingungen (Höhenaufhalte, Flugreisen, Narkosen) zunächst kleine und schließlich größere Gefäße, was dann lebensbedrohliche Komplikationen verursacht. Im homozygoten Zustand führte die Krankheit noch vor kurzem im frühen Kindesalter zum Tode. Heterozygote zeigen eine deutlich abgeschwächte Symptomatik. Die Krankheit kommt fast nur bei Afrikanern vor, die aus zentralafrikanischen Regionen mit hohen Malariavorkommen stammen. In einigen Regionen tragen fast 40 Prozent der dortigen Bevölkerung das "defekte" Gen. Die Ursache dafür liegt darin, dass das Sichelzellen-Hämoglobin den Malaria-Erregern Schwierigkeiten bereitet: Heterozygote sind gegen den Malaria-Erreger besser geschützt und haben daher gegenüber den homozygot "Gesunden" einen Selektionsvorteil. Dies zeigt deutlich, wie schmal der Grat zwischen "gesund" und "krank", "nützlich" und "schädlich", sein kann und wie wichtig die genetische Vielfalt des Genpools einer Spezies für dessen Überleben ist: Genetische "Randgruppen" können an bestimmten Orten - oder zu bestimmten Zeiten! - für das Überleben der Art eine unvorhersehbare Bedeutung erlangen. Um die Moleküle der Applikation im Browser interaktiv betrachten zu können, muss der kostenlose Molekülbetrachter Chime der Firma Symyx installiert werden. Wenn dies erfolgt ist, "berühren" sie die Moleküle mit dem Mauszeiger. Wenn Sie die Maus dann bei gedrückter linker Taste bewegen, können Sie die Moleküle beliebig drehen und wenden und so von allen Blickwinkeln aus untersuchen. Um die Entfernung zum Objekt zu ändern, müssen Sie die Shift-Taste (Hochstell-Taste) gleichzeitig mit der linken Maustaste drücken. Dann kann mittels "Vor- und Zurückbewegungen" der Maus der Abstand zum Objekt variiert werden. Wenn Sie den Mauszeiger in einem Molekülfenster platzieren und mit der rechten Taste klicken, erscheint das Chime-Menü mit weiteren Funktionen. Hier können Sie zum Beispiel die Rotation der Moleküle ausschalten. Durch das Anklicken von Buttons der Hämoglobin-Lernumgebung werden die verschiedenen 3D-Darstellungen aufgerufen. Wenn Sie ein Bild bereits geladen haben und dann einen anderen Button anklicken, kann es zu Fehlern kommen. Zwar wird dann das gewünschte Molekül gezeigt, seine Darstellung entspricht dann jedoch nicht der eigentlich vorgesehen "Struktursprache". So kann zum Beispiel eine Polypeptidkette als "stick"-Struktur visualisiert werden, während die Programmierung an dieser Stelle eigentlich die Darstellung eines farbkodierten Kalottenmodells vorgesehen hat. Wenn dies passiert (oder Sie den Verdacht haben, dass dem so ist), können Sie die Seite in einem neuen Browserfenster öffnen und die gewünschte Abbildung neu laden. Alternativ kann es auch helfen, zunächst über den "Zurück-Button" des Browsers zur Übersichtseite der Hämoglobinseite zu gehen und die gewünschte Applikation erneut anzusteuern. Dynamische Arbeitsblätter sind digitale Unterrichtsmaterialien, die neben Informationstexten, Aufgabenstellungen und Abbildungen dynamische Elemente beinhalten. Mehrere Arbeitsblätter können zu Lernumgebungen zusammengefügt werden. Die hier vorgestellte Lernumgebung enthält dreidimensionale Moleküldarstellungen, die es Schülerinnen und Schülern ermöglichen, sich die Struktur und Funktion des Enzyms ATP-Synthase aktiv zu erschließen. Verschiedene Strukturelemente können ein- und ausgeblendet, die Moleküle beliebig gedreht und gewendet werden. Technische Grundlage der 3D-Moleküle ist der kostenfrei nutzbare Molekülbetrachter Jmol. Zudem enthält die Lernumgebung flash-basierte Animationen und Videos, die die ATP-Synthase aus ihrem "Black-Box-Dasein" im Unterricht herausholen sollen. Interaktive 3D-Moleküle eröffnen neue Wege des Lehrens und Lernens. Sie erlauben Visualisierungen, die mit traditionellen Materialien nicht realisierbar sind. Mit der Maus können Moleküle bewegt sowie bestimmte Strukturelemente hervorgehoben oder ausgeblendet werden. Die Schülerinnen und Schüler sollen die ATP-Synthase als Beispiel eines Enzyms kennen lernen. den Aufbau der ATP-Synthase kennen lernen. ausgehend von dem molekularen Aufbau die Funktion der ATP-Synthase forschend-entdeckend erschließen. die Möglichkeiten des Molekülbetrachters Jmol kennen und den Umgang mit dem Werkzeug lernen. am Beispiel der ATP-Synthase den Zusammenhang zwischen Struktur und Funktion eines Enzyms beschreiben. Thema ATP-Synthase - Synthese von Energieäquivalenten Autor Dr. Matthias Nolte, Dr. Thomas Engel, Dr. André Diesel, Florian Thierfeldt Fach Biologie, Chemie Zielgruppe Jahrgangsstufe 11 Zeitraum 2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit) oder Präsentationsrechner mit Beamer; Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download), Flash-Player , Quicktime-Player Struktur-Funktions-Beziehungen werden durch die detaillierte und schrittweise Untersuchung von 3D-Modellen der ATP-Synthase begreifbar. Die Lernenden arbeiten im Computerraum selbstständig in Partner- oder Einzelarbeit. Die Lehrperson hat dabei eine unterstützende Funktion. Alternativ können die Darstellungen der Lernumgebung zur Unterstützung des Unterrichtsgesprächs auch per Beamer im Fachraum projiziert werden. Vorbemerkungen und technische Hinweise Welche Vorteile bieten dynamische 3D-Moleküle im Allgemeinen und insbesondere bei der Untersuchung von Proteinstrukturen und -Funktionen? Welche kostenfreien Plugins werden für den Einsatz der Lernumgebung benötigt? Das Konzept der Lernumgebung Vorgegebene Beobachtungsaufgaben dienen als ?Leitplanken? bei der selbstständigen Entdeckungsreise in die Welt der Moleküle. ?Informations-Popups? und "Expertenaufgaben" ermöglichen eine Binnendifferenzierung. Unterrichtsverlauf und Inhalte der Lernumgebung Nach dem Impuls durch eine Animation erarbeiten die Lernenden Struktur und Funktion der ATP-Synthase weitgehend selbstständig. Die Diskussion offener Fragen zur ATP-Synthase und zur Bedeutung von Modellen bildet den Abschluss. Dr. Thomas Engel studierte Chemie sowie Lehramt Chemie und Biologie. Seit 2007 ist er Studiengangskoordinator Chemie und Biochemie an der LMU München. Er war an der Konzeption der Lernumgebung beteiligt, programmierte die Moleküle und die HTML-Seiten. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:457078) Hier können Sie Kontakt mit Herrn Dr. Engel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Dr. André Diesel ist Diplom-Biologe. Er war an der Konzeption der Lernumgebung beteiligt und entwickelte die schematischen Abbildungen der Lernumgebung. (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:700245) Hier können Sie Kontakt mit Herrn Dr. Diesel aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Florian Thierfeldt ist Lehrer für Biologie und Geographie (Gymnasium). Er war an der Konzeption der Lernumgebung beteiligt und erstellte die Flash-Animation zur Rotation des F0-Komplexes. Weitere Materialien und Anregungen zum Unterricht finden Sie auch auf seiner Homepage www.scientific-beginner.de . (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:450955) Hier können Sie Kontakt mit Herrn Thierfeldt aufnehmen. Zudem finden Sie hier eine Liste mit weiteren Lehrer-Online-Beiträgen des Autors. Die Schülerinnen und Schüler sollen am Beispiel des Insulins den Zusammenhang zwischen der in einer Proteindatenbank gespeicherten Datei und der Umsetzung als Proteinmodell im Computer verstehen. eine Sequenz aus einer Datenbank abrufen können. mit einem einfachen Visualisierungsprogramm wie RasMol umgehen können. die Vor- und Nachteile verschiedener Darstellungsarten (Kugelstabmodell, Proteinrückgrat und raumfüllendes Kalottenmodell) erkennen und diese mithilfe eines Programms umsetzen können. grundlegendes Wissen über den 3D-Aufbau (die Tertiär- und Quartärstruktur) von Proteinen erarbeiten. Struktur-Funktionsbeziehungen begreifen und erklären können. Methoden zur Strukturaufklärung von Proteinen verstehen und wiedergeben können. Thema Proteinmodelle aus dem Internet - Beispiel Insulin Autorin Prof. Dr. Susanne Bickel Fächer Biologie, Chemie Zielgruppe Jahrgangsstufe 12/13 Zeitraum etwa 6 Stunden mit abschließender Präsentation Technische Voraussetzungen Rechner mit Internetzugang in ausreichender Zahl (Partner- oder Kleingruppenarbeit), (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:458232) (kostenloser Download aus dem Internet) Planung (debug link record:lo_unit_subpage:tx_locore_domain_model_unitpopup:463298) Die Fotosynthese ist einer der bedeutungsvollsten biologischen Prozesse auf der Erde. Grüne Pflanzen wandeln Lichtenergie in chemische Energie um und speichern sie in Form energiereicher Moleküle. Diese werden dann in weiteren Stoffwechselprozessen als Energielieferanten für die Synthese von Kohlenhydraten aus den energiearmen Stoffen Kohlenstoffdioxid und Wasser verwendet. In diesem Prozess wird der für viele Lebewesen notwendige molekulare Sauerstoff gebildet. Die Fotosynthese gliedert sich somit in eine Lichtreaktion (Absorption von Lichtenergie, deren chemische Fixierung und Sauerstoffbildung) und in die lichtunabhängige Dunkelreaktion (Synthese von Glukose aus Kohlenstoffdioxid und Wasser). Die Schülerinnen und Schüler sollen die Teilreaktionen der Lichtreaktion mithilfe der Animation kennenlernen und protokollieren. die an der Reaktion beteiligten Biomoleküle und ihre Lokalisierung - innerhalb oder außerhalb der Thylakoidmembran - kennenlernen. Zusammenhänge formulieren (Kopplung der Fotosysteme) und eine Gesamtbilanz der Reaktion aufstellen. Thema Die Lichtreaktion der Fotosynthese Autor Dr. Ralf-Peter Schmitz Fach Biologie Zielgruppe Sekundarstufe II Zeitraum 1-2 Stunden für die selbstständige Erarbeitung (Einzel- oder Partnerarbeit); flexibel beim Einsatz zur Unterstützung des Unterrichtsgesprächs Technische Voraussetzungen Präsentationsrechner mit Beamer und/oder Computerarbeitsplätze in ausreichender Anzahl (Einzel- oder Partnerarbeit), Flash-Player (ab Version 8, kostenloser Download) Die Lernenden nutzen die Flash-Animation im Computerraum der Schule in Einzel- oder Partnerarbeit oder auch am heimischen Rechner (Hausaufgabe, Wiederholung). Ihre Ergebnisse können sie den Mitschülerinnen und Mitschülern im Rahmen eines kleinen Vortrags vorstellen. Den Ablauf der Lichtreaktion beschreiben sie dabei mithilfe der per Beamer projizierten Animation. Alternativ zur Nutzung der Animation im Computerraum kann sie nach einem zunächst "computerfreien" Unterricht der Lehrkraft auch dazu dienen, die Lichtreaktion zusammenzufassen und das Unterrichtsgespräch im Fachraum zu unterstützen. Inhalte und Funktionen der Animation Die Teilschritte der Lichtreaktion werden visualisiert. Arbeitsaufträge und Hintergrundinformationen ermöglichen eine selbstständige Erarbeitung des Themas. Die Schülerinnen und Schüler sollen grundlegendes Wissen über den 3D-Aufbau der Rotationsmaschine ATP-Synthase erwerben (Tertiär und Quartärstruktur). prinzipielle Struktur-Funktionsbeziehungen begreifen und erklären können. die wichtigsten Mechanismen der Zelle, chemische Energie in Bewegung umzuwandeln, kennen lernen. Proteinkomplexe in ihrer Eigenschaft als Motoren begreifen. Anwendungsmöglichkeiten für Nanomotoren kennen lernen und selber Ideen entwickeln. die Natur als Vorbild für technische Umsetzungen begreifen und dadurch ein Grundverständnis für die Bionik entwickeln. Utopien und unwissenschaftliche Presseberichte analysieren und auf ihren sachlichen Gehalt reduzieren lernen. Thema Nanomotoren in Natur und Technik Autorin Prof. Dr. Susanne Bickel Fach Biologie Zielgruppe Sek II, Leistungskurs, Projektunterricht zur Biotechnologie Zeitraum 4-5 Stunden Technische Voraussetzungen Rechner mit der Möglichkeit, Filme abzuspielen (zum Beispiel RealPlayer oder Quicktime Player , kostenlose Downloads), in ausreichender Anzahl (Partnerarbeit, Kleingruppen) Planung Nanomotoren in Natur und Technik

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner