• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Nullstellen von quadratischen Funktionen entdecken

Unterrichtseinheit

Die Lösungen einer quadratischen Gleichung müssen sich laut Theorie ja mit Zirkel und Lineal konstruieren lassen. Aber wie geht das? Eine andere interessante Frage lautet: Wie kann man die komplexen Lösungen einer quadratischen Gleichung sichtbar machen? Der Blick über den reellen Tellerrand schafft dabei eine neue Sicht auf die Lösungen von Gleichungen.Quadratische Funktionen mit reellen Koeffizienten haben in R zwei Nullstellen, eine doppelte oder gar keine Nullstelle. Diese Lösungen kann man mit Zirkel und Lineal konstruieren, falls diese reell existieren. GeoGebra zeigt, wie es geht. Die analytische Bestätigung dieser Konstruktion stellt sich als sinnvolle algebraische Aufgabe. Im komplexen Zahlenbereich hingegen hat laut Hauptsatz der Algebra eine quadratische Funktion immer zwei Nullstellen (inklusive doppelte Nullstelle), die man im Funktionsgraphen aber nicht zu sehen bekommt, wenn sie komplex sind.Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Hinweise zum Unterrichtsverlauf Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Fachkompetenz Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Medienkompetenz Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Inhaltliche Voraussetzungen Die Schülerinnen und Schüler können quadratische Gleichungen ohne Mühe lösen. Sie verstehen das Konzept der komplexen Zahlen und können mit ihnen rechnen, etwa den Betrag oder das Einsetzen in einen quadratischen Term. Die Lernenden kennen den Hauptsatz der Algebra und verstehen seine Bedeutung für die Lösbarkeit von Gleichungen. Technische Voraussetzungen Die Unterrichtseinheit beinhaltet insgesamt fünf Online-Arbeitsblätter, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss das Java Plugin (1.4.2 oder höher, kostenloser Download) auf dem Rechner installiert und Javascript aktiviert sein. Nachdem im komplexen Zahlenbereich eine quadratische Funktion immer zwei Nullstellen hat, sollen diese komplexen Lösungen auf zwei verschiedene Arten sichtbar gemacht werden: Mit der komplexen Funktion wird ein Kreis in eine aufgefaltete Bildkurve transformiert, die dynamisch zu den Lösungen führt. Der Real- beziehungsweise Imaginärteil der zugehörigen komplexen Funktion wird als Fläche im Raum dargestellt. Damit erhält man die Nullstellen in 3D-Ansicht. Kreiskonstruktion Die Methode der Konstruktion der reellen Lösungen einer quadratischen Gleichung wird mit GeoGebra demonstriert. Der Nachweis kann dann analytisch erfolgen. Das Arbeitsblatt ist als GeoGebra- und HTML-Datei verfügbar. Funktionen als Flächen im Raum Hier werden Funktionen mit zwei Variablen mithilfe von wxMaxima räumlich dargestellt. Der Aufwand mit wxMaxima hält sich dabei in Grenzen, vorausgesetzt, der Umgang mit dieser Software ist entsprechend eingeübt. Die grafische Umsetzung erlaubt Rotationen und somit die Betrachtung der Flächen von allen Seiten. Der Einsatz eines CAS-Programms erspart den manuell sehr mühsamen Weg komplexer Berechnungen, was die Konzentration der Schülerinnen und Schüler auf die theoretischen Zusammenhänge erhöht. Die wesentlichen Sachinhalte bestehen darin, dass der Realteil beziehungsweise der Imaginärteil einer komplexen Funktion je eine Fläche im Raum darstellt. Ein Beispiel sehen Sie in Abb. 1 (bitte zur Vergrößerung anklicken). Ihr Schnitt mit der xy-Ebene liefert die Spuren, auf denen die Lösungen liegen müssen. Sie ergeben sich tatsächlich als Schnitt dieser Spuren. Mit dem Betrag der komplexen Funktion ändert sich nichts am Funktionswert Null, es pointiert aber die Veranschaulichung der Nullstellen. Anwendung des Fundamentalsatzes Ein anderes Konzept ist die topologisch dynamische Umsetzung und Anwendung des Fundamentalsatzes der Algebra mit GeoGebra. Dabei wird ein Punkt P(a,b) mittels der Transformation f(x+iy) auf P' abgebildet. Zunächst soll man den Punkt P so verschieben, dass P' im Ursprung liegt, P stellt dann die Lösung dar. Systematische Untersuchung der Ebene Das für Arbeitsblatt 4 beschriebene Unterfangen ist eher mühsam, wenn man gar keine Ahnung von der Lösung hat, weil man ja die ganze Ebene durchsuchen muss. Es liegt also nahe, eine Kreislinie mit sich änderndem Radius zu wählen, um die Ebene systematisch zu durchwandern. Dies mögen Schülerinnen und Schüler selber überlegen oder aber man stellt das Arbeitsblatt 5 zur Verfügung. Legt man also P auf einen Kreis mit Radius r, so ist dessen Bild eine geschlossene Kurve. Während P den Kreis einmal durchläuft, macht der Bildpunkt P' in der Bildkurve so viele Umläufe, wie der Grad von f beträgt. Der Radius des Kreises ist nun so einzustellen, dass die Bildkurve durch den Ursprung geht. Anschließend dreht man den Punkt solange im Kreis, bis P' im Ursprung liegt. Zeichnerische Konstruktion Bei der Konstruktion mit Zirkel und Lineal kann man etwa auf die Konstruktion des regelmäßigen Siebzehnecks zu sprechen kommen. Nullstellenkonstruktion Die Nullstellenkonstruktion im Komplexen funktioniert natürlich auch mit höhergradigen Polynomen, sowohl die Entfaltung mittels Kreistransformation in entsprechende Bildkurven als auch die Flächendarstellung im Raum. Konkret bieten sich primitive Kreisteilungsgleichungen der Form z n - 1 = 0 an. Eine solche Standardgleichung n.ten Grades hat genau n komplexe Lösungen. Das Schöne daran ist, dass diese alle auf einem Einheitskreis liegen und ein regelmäßiges n-Eck darstellen. Exemplarisch seien hier eine Kreisteilungsgleichung 3. und eine 5. Grades präsentiert.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Materialsammlung Algebra

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Algebra: Rechnen in Zahlenbereichen, Zuordnungen, Gleichungen und Ungleichungen, lineare Funktionen, quadratische Funktionen, Potenzfunktionen, ganzrationale Funktionen, Exponentialfunktionen und Begabtenförderung. Das Wilhlem-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit. Thema Stationenlernen mit Netbooks: "Quadratische Gleichungen und Funktionen" Autor Henrik Lohmann Anbieter Universität Duisburg Essen - learning lab, MINTec Fächer Informatik, Mathematik Zielgruppe Sekundarstufe I und II, Material erprobt in Jahrgangsstufe 9 Technische Voraussetzungen Computer mit Geogebra und Maxima, Internetzugang mit Schulplattform Materialien zur Informationstechnischen Grundbildung Beiträge und Resultate aus den vielfältigen Aktivitäten des nationalen Excellence-Schulnetzwerks MINT-EC und seiner Netzwerkschulen werden in der Schriftenreihe "Materialien zur Informationstechnischen Grundbildung" zusammengeführt und veröffentlicht. In verschiedenen Themenclustern erarbeiten MINT-EC-Lehrkräfte und Schulleitungen Schul- und Unterrichtskonzepte, entwickeln diese weiter und nehmen dabei neue Impulse aus Wissenschaft und Forschung und aus aktuellen Herausforderungen der schulischen Praxis auf. Das learning lab der Universität Duisburg Essen befasst sich seit Jahren mit der Konzeption und Entwicklung innovativer Lösungen für das Lernen insbesondere mit digitalen Medien. Im IT-Cluster des MINT-EC arbeitet eine Gruppe von Schulleitung und Medienbeauftragten aus dem Netzwerk von über 180 Gymnasien bundesweit zusammen, um die Potentiale digitaler Medien für den Unterricht systematisch nutzbar zu machen. Die Kopiervorlagen lassen sich einfach und schnell individualisieren und an die jeweiligen schulischen Erfordernisse anpassen - und Sie gehen als Lehrkraft stets bestens gerüstet in Ihren Unterricht. Der Mathelehrer Algebra unterstützt Sie mit allem, was Sie zur Unterrichtsvorbereitung brauchen. Hier wird das gesamte Algebra-Wissen der Unter- und Mittelstufe vermittelt - und zwar vollständig vertont. 80 spannende Themenaufgaben helfen den Schülerinnen und Schülern, den Unterrichtsstoff zu begreifen. Druckbare Darstellungen und viele Beispiele machen den trockenen Algebra-Stoff zum leicht verständlichen Lernerlebnis. Die vielen Beispielaufgaben mit Lösungen schaffen abwechslungsreiche Übungsmöglichkeiten. Auch Eltern profitieren von der Lernsoftware - als Nachschlagewerk, Übungsquelle und Unterstützung beim gemeinsamen Lernen mit den Schülerinnen und Schülern. Empfehlen Sie als Mathelehrkraft den Eltern Ihrer Schülerinnen und Schüler diese Software, damit diese auch in ihren Familien die optimale Lernunterstützung erhalten. Die Mappe im praktischen DIN-A4-Format enthält: Lernsoftware für das Fach Algebra 133 Kopiervorlagen mit allen lehrplanrelevanten Themen Alle Kopiervorlagen zum Drucken und Editieren in elektronischer Form Auszeichnung: CLEVER 2009 für Mathelehrer Algebra! CLEVER ist das Prüfsiegel für empfehlenswerte Software, das die ZUM (Zentrale für Unterrichtsmedien) und die Redaktionsagentur S@M Multimedia Services gemeinsam herausgeben. Die hier vorgestellte dynamische Veranschaulichung wurde mit der kostenlosen Mathematiksoftware GeoGebra erstellt und in eine interaktive Webseite eingebunden. Dies ermöglicht es den Schülerinnen und Schülern zu probieren, zu beobachten und ihre Vermutungen einer Prüfung zu unterziehen. Direkte Rückmeldungen unterstützen die Lernenden auf dem Weg, die Rechenregeln für die Addition ganzer Zahlen zu finden, sowie bei der Anwendung und Festigung der erworbenen Kenntnisse. Durch den Einsatz interaktiver dynamischer Arbeitsblätter erfährt das selbstverantwortete Lernen eine methodische Bereicherung. Die Schülerinnen und Schüler sollen durch Experimentieren die unterschiedlichen Regeln für die Addition ganzer Zahlen selbstständig finden. die Regeln für die Addition ganzer Zahlen verbal beschreiben und die erworbenen Kenntnisse auf unterschiedliche Beispiele anwenden können. Thema Addition ganzer Zahlen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Addition ganzer Zahlen Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Die Schülerinnen und Schüler sollen erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden können. Thema Subtraktion ganzer Zahlen mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Verlaufsplan: Subtraktion ganzer Zahlen Die Schülerinnen und Schüler sollen im Lernbereich "Natürliche Zahlen" die Begriffe Teilbarkeit, Vielfache und Teiler sowie Mengen kennen (Klasse 5). im Wahlpflichtbereich "Wie die Menschen Zählen und Rechnen lernten" Einblick gewinnen in das Zählen und in die Schreibweisen von Zahlen in einem anderen Kulturkreis (Klasse 5). sich im Rahmen der Prüfungsvorbereitung mit den Begriffen Teiler- und Vielfachmengen sowie mit Stellenwertsystemen auseinandersetzen (Klasse 10). Thema Zahlen und Kalender der Maya Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 5 (natürliche Zahlen, Schreibweisen von Zahlen) Klasse 10 (Prüfungsvorbereitung) Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit) Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 5 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Auch die Steuerung einer VRML-Animation sollte demonstriert werden. Die 3D-Animationen der Lernumgebung zum Maya-Kalender sorgen für Anschaulichkeit und vereinfachen die Visualisierung von Aufgabenstellungen und Zusammenhängen. Alle animierten GIFs und Videos der Lernumgebung wurden vom Autor mithilfe des 3D-CAD-Programmes FluxStudio 2.0 erzeugt. Hinweise zum Einsatz der Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Inhalte der Lernumgebung Schülerinnen und Schüler lernen die Maya-Ziffern kennen. Zahnrad-Modelle veranschaulichen die Kalenderzyklen bis hin zum "Long Count", der 2012 enden wird. Die Schülerinnen und Schüler sollen eigene Vorstellungen zu den verschiedenen Grundvorstellungen der Bruchzahlen entwickeln. ihre eigenen Vorstellungen von Bruchzahlen verbalisieren können. Bruchzahlen als wichtige Bestandteile in ihrer Umwelt identifizieren und Verständnis für Sinn und Bedeutung der einzelnen Aufgaben entwickeln. an die Bedeutung von Bruchzahlen intuitiv herangehen und ein eigenes Verständnis für diese entwickeln, ohne die Begriffe Zähler und Nenner zu benutzen. die Aufgaben nach Abschluss des jeweiligen Entdeckerarbeitsblattes selbst erarbeiten können. Thema Schulung der Grundvorstellung von Bruchzahlen Autor Katrin Hausmann unter Mithilfe von Thomas Borys Fach Mathematik Zielgruppe Klasse 5 oder 6 Zeitraum 2 Stunden Technische Voraussetzungen Computerraum, Software: Excel Innerhalb der gesamten Anwendung wurde das Konzept verfolgt, zu den Grundvorstellungen spezielle Übungsaufgaben (im Hauptmenü grün gefärbt) und eine zugrunde liegende Erklärung - oder Entdeckungsseite (gelb gefärbt) - anzubieten. Die Entdeckungsseiten sollen für unerfahrene Schülerinnen und Schüler einen ersten Zugang liefern. Sie verfügen über ein Textfeld, in das die Lernenden ihre Beobachtungen und ersten Versuche zur Beschreibung der verschiedenen Grundvorstellungen der Bruchzahlen schreiben können. Die Texte können nach Ende der Bearbeitung von der Lehrkraft in dem Tabellenblatt "Beobachtungen" eingesehen werden. Damit die Excel-Arbeitsblätter richtig funktionieren, müssen Makros aktiviert sein und die Sicherheitsstufe auf "mittel" eingestellt werden. Hinweise zur Durchführung im Unterricht Die interaktive Excel-Lernumgebung ermöglicht den Schülerinnen und Schülern ein selbstständiges Entdecken der Lerninhalte. Thomas Borys ist Gymnasiallehrer für Mathematik und Physik. Er arbeitet als Studienrat im Hochschuldienst an der Pädagogischen Hochschule Karlsruhe am Institut für Mathematik und Informatik. Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Die Schülerinnen und Schüler sollen natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen können. Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren können. die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen lernen. die Subtraktion gemischter Zahlen symbolisch ausführen können. Thema Gemischte Zahlen anschaulich subtrahieren Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 2-3 Stunden Technische Voraussetzungen Mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; für die Nutzung der dynamischen Materialien benötigen Sie das kostenlose Plugin Java Runtime Environment (Version 1.4 oder höher), Javascript muss aktiviert sein. Planung Gemischte Zahlen anschaulich subtrahieren Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Die Schülerinnen und Schüler sollen erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. durch Experimentieren das Erweitern eines Bruchs visuell erfahren. das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig entdecken. die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele anwenden. Thema Erweitern von Brüchen - eine interaktive Einführung Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Unterrichtsplanung Erweitern von Brüchen - eine interaktive Einführung In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt. Die Schülerinnen und Schüler sollen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen vertiefen. durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen erlangen. das arithmetische Mittel auf ganze Zahlen anwenden können. mithilfe des arithmetischen Mittels auf Ausgangswerte schließen können. Thema Ganze Zahlen - Grundrechenarten verbinden und anwenden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schüler oder Schülerinnen; Software: Java , Version 1.4 oder höher, kostenfreier Download Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Die Schülerinnen und Schüler sollen erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. Einsicht gewinnen, dass Zuglängen mit Termen beschrieben werden können. Tabellen analysieren und fehlende Termwerte ergänzen können. ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln können. Thema Terme - eine kontextorientierte Einführung mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Software: Java , Version 1.4 oder höher, kostenfreier Download Planung Terme - eine kontextorientierte Einführung mit GeoGebra Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Verwendung webbasierter interaktiver Arbeitsblätter zum Thema Gleichungen und Ungleichungen ermöglicht Schülerinnen und Schülern in dieser Unterrichtseinheit einen neuen Umgang mit Fehlern. Die eingesetzten Online-Arbeitsblätter sind Bestandteil der umfangreichen Unterrichtsmaterialien von realmath.de . Bei der Bearbeitung des ersten Arbeitsblattes analysieren die Schülerinnen und Schüler die Hausaufgaben des fiktiven Geschwisterpaares Paul und Paula, suchen Fehler und beschreiben deren Ursachen. Anschließend begegnen sie in einem zweiten Online-Arbeitsblatt Aufgabenstellungen, bei denen sie ihre Fehleranalyse produktiv umsetzen können: Sie bauen ganz bewusst Fehler in Gleichungen ein, die ihre Partnerin oder ihr Partner dann korrigieren soll. Die hier vorgestellte Unterrichtseinheit entstand im Rahmen der Mitarbeit am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung webbasierter Arbeitsblätter umgesetzt werden können (Modul 3: Aus Fehlern lernen). Die Schülerinnen und Schüler sollen Fehler in bearbeiteten Gleichungen und Ungleichungen finden. Fehler und deren Ursachen beschreiben. das Wissen über Fehler kreativ und produktiv umsetzen. Thema Gleichungen und Ungleichungen - Fehler produktiv nutzen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Browser mit aktiviertem Javascript; Beamer Unterrichtsplanung Verlaufsplan Gleichungen und Ungleichungen der Unterrichtseinheit Das Lösen von Gleichungen und Ungleichungen durch Äquivalenzumformungen sowie das Inversions- und Distributivgesetz müssen bereits besprochen und an Beispielen behandelt worden sein. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Methodische Vorgehensweise Wie können die negativen Vorerfahrungen der Schülerinnen und Schüler mit dem Begriff ?Fehler? ins Positive gewendet werden? Unterrichtsverlauf "Gleichungen und Ungleichungen" Beschreibung der Unterrichtsphasen, Hinweise zum Einsatz der Arbeitsmaterialien und Screenshots der Online-Arbeitsblätter Bezug der Unterrichtseinheit zu SINUS-Transfer Aus Fehlern lernen - Schwerpunkt von SINUS-Modul 3 ist die Rehabilitierung des Fehlers als Lerngelegenheit. Zentrales Element dieser Lerneinheit ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation herstellen können. die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Thema Pixel auf Abwegen Autoren Dr. Kerstin Voß, Henryk Hodam Fach Mathematik Zielgruppe Klasse 8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) Planung Pixel auf Abwegen Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls vielmehr das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in die Thematik Das interaktive Modul gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der multimedialen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abb. 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abb. 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter. Die Besonderheit der Übungen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass von Schülerinnen und Schülern erstellte Zeichnungen per Computer analysiert und bewertet werden. Somit muss sich die Lehrkraft nicht mehr mit der unmittelbaren Korrektur der Schülerarbeiten befassen, sondern kann sich in einer differenzierten Unterrichtssituation leistungsschwächeren Schülerinnen und Schülern zuwenden und diesen bei auftretenden Schwierigkeiten helfend und erklärend zur Seite stehen. Alle dynamischen Zeichnungen innerhalb der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um interaktive dynamische Lernumgebungen zu erstellen. Die Schülerinnen und Schüler sollen erkennen, dass die Steigung einer Geraden durch das Steigungsdreieck eindeutig festgelegt ist. die Gleichung von Ursprungsgeraden anhand der Steigung bestimmen können. Ursprungsgeraden nach einer gegebenen Gleichung zeichnen können. die Gleichung von Ursprungsgeraden aus den Koordinaten eines Punktes bestimmen können. Thema Steigung einer Geraden - mit GeoGebra entwickeln Autor Dr. Andreas Meier Fach Mathematik Zielgruppe 8. und 9. Klasse Zeitraum 2-3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript, Java Runtime Environment (kostenloser Download) Planung Steigung einer Geraden - mit GeoGebra entwickeln In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes (von der Website realmath.de ), das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Schülerinnen und Schüler sollen Texte grafischen Darstellungen zuordnen. Informationen aus grafischen Darstellungen entnehmen und interpretieren. selbstständig Texte zu grafischen Darstellungen erstellen. eigene grafische Darstellungen zu Sachverhalten entwerfen. Thema Lineare Funktionen - grafische Darstellungen interaktiv erkunden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 8-9 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler, Browser mit aktiviertem Javascript, Beamer, OHP Unterrichtsplanung Lineare Funktionen der Unterrichtseinheit Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Das ?ICH-DU-WIR?-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf "Lineare Funktionen" Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen anhand der Funktionsmaschine den Funktionsbegriff verinnerlichen. Zuordnungsvorschriften linearer Funktionen kennen und anwenden können. Zuordnungsvorschriften der Form y=mx+n formulieren können. das Ablesen von linearen Funktionen aus dem Koordinatensystem beherrschen. das Eintragen von linearen Funktionen in ein Koordinatensystem beherrschen. Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen erkennen. das grafische Lösen linearer Gleichungssysteme kennen lernen. Thema Lineare Funktionen - die Funktionsmaschine Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 7 oder 10 Zeitraum etwa 4 Stunden bei der Erarbeitung in Klasse 7; etwa 2 Stunden beim Einsatz als Prüfungskomplex in Klasse 10 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Schülerin/Schüler), Flash-Player (kostenloser Download aus dem Internet), Browser mit aktiviertem Javascript Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten! Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler sollen die Bedeutung des Vorfaktors a in der Funktionsvorschrift f(x) = ax 2 + bx + c erkennen und benennen können. erkennen, dass ein negatives (positives) Vorzeichen des Vorfaktors b eine Verschiebung der Parabel nach rechts (links) bewirkt, vorausgesetzt der Vorfaktor a ist positiv (negativ). den Einfluss des Vorfaktors c auf die Lage der Parabel angeben können. anhand vorgegebener Funktionsvorschriften angeben können, wie die Parabel geöffnet und verschoben ist. Thema Untersuchung von Parabeln mit Excel Autorin Sandra Schmidtpott Fach Mathematik Zeitraum 1-2 Unterrichtsstunden (je nach Excel-Vorkenntnissen) Zielgruppe Klasse 9 technische Voraussetzungen Rechner in ausreichender Menge für Partnerarbeit, Beamer Software Excel Die Schülerinnen und Schüler sollen Quadratische Funktionen in der Normalform erkennen und zeichnen können. Quadratische Funktionen in der Scheitelpunktform erkennen und zeichnen können. Quadratische Funktionen von der Scheitelpunktform in die Normalform überführen können und umgekehrt. das Lösen Quadratischer Gleichungen beherrschen. das Lösen von Sachaufgaben mittels Quadratischer Gleichungen beherrschen. Thema Quadratische Funktionen und Gleichungen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 9 oder 10 Zeitraum 7 Stunden Technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Flash-Player , Java Runtime Environment , Browser mit aktiviertem Javascript, Excel (für die Nutzung einer Hilfedatei zur Lösung Quadratischer Gleichungen); im Idealfall Beamer Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Unterrichtsverlauf "Nullstellen" Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Am Beispiel der Einführung in die Potenzfunktion mit ganzzahligem Exponent soll aufgezeigt werden, wie Schülerinnen und Schüler sich die Eigenschaften dieser Funktionen durch Experimentieren und Beobachten erarbeiten können. Durch die mit GeoGebra erzeugten dynamischen Veranschaulichungen werden sie in die Lage versetzt, sich ihrem eigenen Lerntempo entsprechend mit den Eigenschaften von Potenzfunktionen aktiv auseinander zu setzen. Die inhaltliche Aufbereitung der einzelnen interaktiven dynamischen Arbeitsblätter bietet eine Vorstrukturierung der zu erarbeitenden Unterrichtsinhalte. So leitet die Unterteilung in geradzahlige und ungeradzahlige Exponenten sowie die Vorgabe von jeweils neun zu prüfenden Aussagen zu zielgerichtetem Experimentieren an und unterstützt den individuellen Lernprozess. Die Zahl n als Exponent steht im Folgenden in allen Funktionsgleichungen stets für eine natürliche Zahl. Die Schüler und Schülerinnen sollen erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax n auf den Verlauf des Graphen beschreiben können. erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x -n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax -n auf den Verlauf des Graphen beschreiben können. anhand vorgegebener Graphen deren Gleichung ermitteln können. Thema Potenzfunktion - Graphen analysieren, Eigenschaften entdecken Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 10 Zeitraum etwa 3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang und aktiviertem Javascript für je zwei Lernende, Java Plugin (1.4.2 oder höher, kostenloser Download) Planung Potenzfunktion - Graphen analysieren Die Schülerinnen und Schüler sollen Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen können. Potenzfunktionen mithilfe von Funktionsplottern darstellen können. das Berechnen von Wertetabellen für Potenzfunktionen beherrschen. den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax n erarbeiten. Wurzelfunktionsgraphen erkennen und beschreiben können. Thema Potenzfunktionen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 2 Stunden technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript; eventuell Beamer Die Vorteile von Netbooks für den schulischen Einsatz liegen auf der Hand: Sie sind klein, leicht und deutlich preiswerter als herkömmliche Laptops. Die vorliegende Unterrichtseinheit zeigt Einsatzmöglichkeiten digitaler Medien für den Mathematikunterricht, ohne dass dafür der Computerraum aufgesucht werden muss. Vielmehr dienen die Netbooks dazu, im eigenen Klassenraum die fachlichen Inhalte mithilfe digitaler Medien noch anschaulicher zu vermitteln. Die Schülerinnen und Schüler sollen die mathematischen Inhalte der Kurvendiskussion erfassen und anwenden können. die mathematische Software (GeoGebra, wxMaxima) bedienen können. die verschiedene Software entsprechend ihrer Vorteile unterscheiden und zielgerichtet einsetzen können. Thema Nullstellen ganzrationaler Funktionen in Netbook-Klassen Autor Dr. Karl Sarnow Fach Mathematik Zielgruppe Klasse 10 im G8 Zeitraum 7 Stunden Technische Voraussetzungen Netbooks, Mathematiksoftware GeoGebra und wxMaxima (beides kostenfrei erhältlich) Hintergrund Einordnung der Unterrichtseinheit in den schulischen Kontext mit einer Verkürzung der Gymnasialzeit auf acht Jahre Unterrichtsverlauf 1. bis 3. Stunde Die ersten Stunden dienen dazu, dass sich die Lernenden beim ersten Einsatz von Netbooks mit den Geräten vertraut machen können. Unterrichtsverlauf 4. bis 6. Stunde Die Nullstellen einer Gleichung 3. Grades werden mit wxMaxima untersucht und anschließend mit dem konventionellen Ansatz begründet. Unterrichtsverlauf 7. Stunde Thema der letzten Stunde ist die Untersuchung der Nullstellen ganzrationaler Funktionen mit wxMaxima. Das Ergebnis wird im Nullstellensatz zusammengefasst. Die Schülerinnen und Schüler sollen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen lernen. Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. die Nutzung von Funktionsplottern üben. Die Schülerinnen und Schüler sollen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse gewinnen. die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch) verstehen. ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge übertragen. die exponentielle Regression unter Verwendung von Hilfsmitteln nutzen. im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a * x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. Thema Die Exponentialfunktion und die "Unendlichkeitsmaschine" Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit), VRML-Plugin (blaxxun Contact, Cortona3D Viewer) In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Linearen Funktionen und Exponentialfunktionen kennen. die Begriffe Wachstumsrate und Wachstumsfaktor kennen und anwenden können. den Unterschied zwischen Linearem Wachstum und Exponentiellem Wachstum (Zerfall) kennen und aus Anwendungsbezügen das entsprechende Wachstumsmodell bestimmen können. die Begriffe Anfangswert und Wachstums-(Zerfalls-)faktor kennen und anwenden können. den Einfluss des Wachstumsfaktors a beziehungsweise des Zerfallsfaktors 1/a auf den Graphen der Exponentialfunktion kennen. die Eigenschaften der Exponentialfunktionen kennen. verschiedene Wachstums-(Zerfalls-)faktoren bestimmen und Funktionsvorschriften angeben können. Thema Einführung der Exponentialfunktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 10 Zeitraum 6-8 Unterrichtsstunden Technische Vorraussetzungen Computer in ausreichender Anzahl (Partner- oder Kleingruppenarbeit), Beamer, GeoGebra, Java-Plugin Von der GeoGebra-Homepage können Sie die dynamischen Arbeitsblätter der Unterrichtseinheit in zwei Paketen (ZIP-Archive) herunterladen: Das Bevölkerungsmodell von Malthus sowie die Materialien zur Verzinsung und Exponentialfunktion . Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Webtalk: Stationenlernen mit Netbooks

Fachartikel

Das Learning Lab der Universität Duisburg Essen stellt in Webtalks regelmäßig Einsatzmöglichkeiten (privater) mobiler Geräte im Unterricht vor. In diesem Webtalk berichtet Henrik Lohmann vom Wilhelm-Ostwald-Gymnasium in Leipzig über ein Stationenlernen mit Netbooks im Mathematik-Unterricht.Das Wilhelm-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit.

  • Mathematik / Rechnen & Logik / Informatik / Wirtschaftsinformatik / Computer, Internet & Co. / Informationstechnik
  • Sekundarstufe I, Sekundarstufe II

Ein(-)Blick ins Chaos – nichtlineare dynamische Systeme

Unterrichtseinheit

Warum kann man eine Sonnenfinsternis vorausberechnen, die Lottozahlen aber nicht? Gibt es den Wetterbericht für nächstes Jahr? Wann kommt die nächste Heuschreckenplage? Ist alles schon vorausbestimmt? Gibt es eine Ordnung im Chaos? Was hat das alles mit dem "Apfelmännchen" zu tun?Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Hinweise zu den Voraussetzungen und Materialien Das Skript zu dem Kurs soll als Leitfaden dienen. Den Quellcode der im Kurs verwendeten Programme finden Sie hier in Turbo Pascal. Die meisten Programme lassen sich auch per Tabellenkalkulation umsetzen. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Erforderlich beziehungsweise hilfreich für die Durchführung dieses Kurses sind folgende Vorkenntnisse: quadratische Funktionen Differentialrechnung, insbesondere Ableitung als Steigung des Funktionsgraphen Grundkenntnisse und Fertigkeiten in Bedienung und Programmierung von Computern (Tabellenkalkulation, Basic, Pascal oder Java) für eine Weiterführung des Unterrichtsprojekts mit fraktaler Geometrie: komplexe Zahlen "Pluskurse" und vergleichbare Rahmen bieten im Vergleich zum Pflichtunterricht viele Vorteile, welche erfahrungsgemäß die Unterrichtsgestaltung wesentlich vereinfachen und die Lerneffizienz steigern: kleine Kursstärken homogene Lerngruppen spontanes und flexibles Agieren und Reagieren aufgrund fehlender Lehrplananbindung motivierte, leistungsbereite Schülerinnen und Schüler Wegfall von zeitaufwändigen Leistungserhebungen Die genannten Gelegenheiten gestatten der unterrichtenden Lehrperson und ihren Schülerinnen und Schülern erheblich mehr individuellen Freiraum zum experimentellen, entdeckenden Lernen und für fächerübergreifende Betrachtungen. Leitfaden statt exakte Unterrichtsplanung Der Natur der "Pluskurse & Co." entsprechend ist der Aufbau des Skripts zu dem Kurs (einblick_ins_chaos.pdf) gestaltet: Es ist als Leitfaden zu verstehen, von dem bei Bedarf abgewichen werden kann. Der Stoff wird in mehreren Kapiteln schülergerecht aufbereitet dargeboten, jeweils gefolgt von didaktischen Hinweisen, ergänzenden Vertiefungen oder Aufgabenvorschlägen. Eine exakte Unterrichtsplanung entfällt. Software zur Darstellung fraktaler Mengen Das Skript enthält eine Liste begleitender und weiterführender Literatur. Von den zahlreichen zum Thema (meist frei) erhältlichen Programmen sei der Real-Time Fractal-Zoomer "XaoS" erwähnt, der mit seinen ästhetischen Bildern fraktaler Mengen auch den affektiven Lernbereich zur Geltung bringt. Hinweise zu den Materialien Im Download-Material zu diesem Beitrag finden Sie die im Kurs verwendeten Programme samt Quellcode in Turbo Pascal, das aufgrund seiner streng strukturierten Syntax immer noch gut zum Erlernen der Grundkenntnisse des Programmierens eingesetzt werden kann. Die Programmstrukturierung mittels Prozeduren erlaubt aber auch eine Portierung in andere Programmiersprachen (zum Beispiel das frei erhältliche QBasic, das sich bei der Grafikprogrammierung sehr unkompliziert zeigt). Die meisten Programme lassen sich alternativ gut in einem Tabellenkalkulationssystem umsetzen (das Endzustandsdiagramm "Feigenbaum" nur mit Einschränkungen).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II, Sekundarstufe I

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

MP3 - ein Beispiel für angewandte Mathematik im Alltag

Unterrichtseinheit

Dateien im MP3-Format sind heutzutage sehr verbreitet. Dass hinter MP3 jede Menge interessante Mathematik steht, ist vielen nicht bewusst.Wer kennt nicht MP3-Dateien? Mit ihnen ist es möglich, große Mengen von Musik auf kleinstem Raum zu speichern und wieder abzuspielen: denn mit MP3 kann man den Speicherplatz, den man benötigt, um eine Audiodatei zu speichern, auf einen Bruchteil reduzieren. Auf modernen MP3-Playern von der Größe einer Streichholzschachtel ist es möglich, bis zu 200.000 Minuten Musik (das entspricht 130 Tagen) zu speichern. Diese Unterrichtseinheit soll einige der Prinzipien, auf denen MP3 basiert, näher beleuchten und allgemein verständlich darstellen. Dies umfasst biologische, physikalische und mathematische Aspekte.Ausgehend von verschiedenen Hörbeispielen zur Einführung werden die mathematischen Grundlagen betrachtet, die hinter der Zerlegung von Frequenzen liegen. Prinzip von MP3 und Grundlagen Wie lassen sich große Datenmengen von Video- und Audiodateien im MP3-Format platzsparend speichern? Was hört das menschliche Ohr - und was nicht? Die Grenzen des menschlichen Gehörs und welche Rolle dabei der verdeckende Schall und der verdeckte Schall spielen. Prinzip der Multiskalenanalyse Zerlegt man musikalische Töne in ihre Einzelfrequenzen, müssen ganz unterschiedliche Frequenz-Skalen betrachtet werden. Multiskalenanalyse mithilfe von Rechteckschwingungen Tonsignale lassen sich auch in Rechteckschwingungen zerlegen, deren Skala zunehmend gröber wird. Huffman-Codierung Um in MP3 die verbliebenen Informationen effizient abzuspeichern, nutzt man die Huffman-Codierung. Die Schülerinnen und Schüler sollen die Prinzipien, auf denen MP3 basiert, kennen lernen. ein grundlegendes Verständnis für das Hören von Tönen und Klängen entwickeln. einige Grenzen des menschlichen Gehörs kennen lernen. das Prinzip der Zerlegung eines Klanges in Einzelfrequenzen am Beispiel einer Multiskalenanalyse nachvollziehen. Thema MP3 - ein Beispiel für angewandte Mathematik im Alltag Autoren Dr. Anton Schüller, Prof. Dr. Ulrich Trottenberg, Dr. Roman Wienands Fach Mathematik, Physik, Biologie oder Differenzierungsbereich Mathematik/Naturwissenschaft Zielgruppe ab Klasse 8 oder im Rahmen eines Projektkurses in der Oberstufe Zeitraum 3 bis 4 Stunden oder im Rahmen einer Projektwoche Technische Voraussetzungen Computer mit Soundkarte, Software zur Wiedergabe von Audio- und Videodateien im avi-Format, zum Beispiel Windows Media Player oder Real Player MP3 ist eine Abkürzung von MPEG Audio Layer 3, wobei MPEG für Moving Picture Experts Group steht, die 1988 gegründet wurde, um einen Standard für die effiziente Kodierungvon Videocodes zu entwickeln. MP3 basiert auf dem Prinzip, dass nur der Anteil von einem Musikstück gespeichert werden muss, den das menschliche Ohr auch hören kann. Dies mag auf den ersten Blick ein wenig überraschend klingen. Hören wir denn nicht alles, was in einem Musikstück enthalten ist? Tatsächlich ist das menschliche Ohr nicht in der Lage, alle Details, die in einem Musikstück enthalten sind, wahrzunehmen. Zur Einführung in das Thema eignet sich das Zeigen der Audio-Video-Datei audio_video_kompression.avi. Hier wird gleichzeitig an einem visuellen und auditiven Beispiel demonstriert, wie sich die Qualität von Bildern und Musik verändert, wenn man die zugehörigen Dateien immer weiter komprimiert. Bei der Datenkompression bleibt die Qualität für die menschliche Wahrnehmung zunächst erhalten und man spart große Mengen Speicherplatz. Irgendwann werden jedoch die Qualitätsverluste bemerkbar. Komprimiert man dann immer noch weiter, so verschlechtert sich die Qualität dramatisch. Wieso können wir überhaupt das hören, was jemand sagt, der einige Meter von uns entfernt ist? Der Grund hierfür ist das physikalische Phänomen des Schalls. Schall entsteht, weil die Moleküle eines Mediums (zum Beispiel Luft) zum Schwingen gebracht werden. Dadurch stoßen sie an benachbarte Moleküle, bringen auch diese ins Schwingen und so weiter. Abb. 1 (bitte anklicken) zeigt eine Animation der Molekülbewegungen. Solch eine (mechanische) Schwingung breitet sich in festen, flüssigen oder gasförmigen Stoffen wellenförmig aus. Schall breitet sich als sogenannte Longitudinalwellen aus, also immer parallel zur Ausbreitungsrichtung. Die Animation in Abb. 2 (bitte anklicken) verdeutlicht dies. Entsteht ein Ton dadurch, dass eine Gruppe von Molekülen ganz regelmäßig hin und her schwingt, beispielsweise 400 mal pro Sekunde, so sagen wir auch, der Ton hat eine Frequenz von 400 Hertz, das heisst die Schwingung erfolgt 400 mal pro Sekunde. Das menschliche Ohr kann nur Töne wahrnehmen, die zwischen etwa 16 und 20.000 Hertz liegen. Ist c die Schallgeschwindigkeit in einem Medium, f die Frequenz einer Schallwelle (das heißt einer sich wellenförmig ausbreitenden Schwingung) und λ (sprich lambda) die Wellenlänge, so gilt c = λ * f Sind zwei dieser drei Größen bekannt, so kann man die dritte hiermit berechnen. Je weiter die Moleküle in der Luft hin und her schwingen, desto lauter ist der Ton. Die Lautstärke beschreibt also den Unterschied zwischen Berg und Tal der Schwingung. Geräusche haben keine exakt bestimmbare Tonhöhe mehr. Sie sind nichtperiodische Schallereignisse, die durch Überlagerungen vieler Schwingungen unterschiedlicher Frequenz mit rasch wechselnder Amplitude entstehen. Mit anderen Worten: "Der Unterschied von Ton/Klang zu Geräusch ist in der Regelmäßigkeit der Schwingung zu finden. Bei einem Geräusch ist die Schwingbewegung der Luft sehr ungleichmäßig, bei Tönen dagegen handelt es sich um immer wiederkehrende gleichförmige Luftbewegungen". Alles, was wir hören, besteht aus Überlagerungen von Schwingungen, die sich in einem Medium wie der Luft wellenförmig ausbreiten. Diese wellenförmige Ausbreitung bedeutet physikalisch gesehen, dass das menschliche Ohr Druckschwankungen wahrnimmt, die aus einer Überlagerung von Schwingungen unterschiedlichster Frequenzen resultieren. Diese Druckschwankungen führen zu einem entsprechenden Schwingen des Trommelfells. Das menschliche Ohr ist wiederum imstande, dieses Schwingen des Trommelfells über Sinneshaare im Innenohr, die auf unterschiedliche Frequenzen spezialisiert sind, in einzelne Tonfrequenzen zu zerlegen und als Nervenreize an das Gehirn weiterzuleiten. Diese werden dann vom Gehirn als Töne, Klänge und Geräusche interpretiert. Grenzen des menschlichen Gehörs: Abb. 3 zeigt Hörschwelle, Schmerzgrenze, Musik- und Sprachwahrnehmbarkeit in Abhängigkeit von der Frequenz. Nach rechts ist die Frequenz und nach oben die Lautstärke (in der Maßeinheit "Dezibel") aufgetragen. Man beachte dabei, dass "Dezibel" eine logarithmische Maßeinheit ist. Wegen log 1 = 0 bedeutet 0 Dezibel gerade nicht, dass völlige Stille herrscht. In Abb. 4 werden die Grenzen des menschlichen Gehörs deutlich: Die Hörschwelle wird angehoben durch die Anwesenheit von Tönen mit einer Frequenz von 1 kHz und verschiedenen Lautstärken (in jeweils unterschiedlichen Farben dargestellt). mp3 macht sich zunutze, dass die akustischen Informationen, die das menschliche Ohr überhaupt nicht wahrnehmen kann, auch nicht abgespeichert werden müssen. Für MP3 müssen also die Tonsignale wieder in die einzelnen Frequenzen zerlegt werden, aus denen sie zusammengesetzt sind. Anschließend werden die Anteile, die für das menschliche Gehör ohnehin nicht wahrnehmbar sind, aus der Frequenzdarstellung entfernt, denn nur die hörbaren Anteile müssen überhaupt gespeichert werden. In den Videoclips wird demonstriert, wie MP3 funktioniert. An diesen Hörbeispielen wird deutlich, dass man im MP3-Format nur einen kleinen Teil der ursprünglichen Frequenzen zu speichern braucht. Den überwiegenden Rest der Informationen kann man weglassen, ohne dass das menschliche Ohr einen Unterschied zur Originalversion wahrnimmt. Die Töne im weißen Bereich des dritten Beispiels (musikbeispiel_orig_minus_mp3.avi) werden in der Originalversion durch andere dominantere Töne überdeckt und werden somit im Gesamtzusammenhang des Musikstücks nicht wahrgenommen. Erst wenn die dominanten Töne wegfallen, werden die restlichen Töne für das menschliche Ohr hörbar. Musikalische Töne bestehen aus einer Überlagerung einer Vielzahl von Schwingungen. Wie zuvor bereits erläutert, sind nur die Schwingungen mit Frequenzen zwischen etwa 20 und 20.000 Hertz für den Menschen hörbar. Der Faktor zwischen den niedrigsten und den höchsten hörbaren Frequenzen beträgt damit immerhin 1.000 = 10³, also 3 Zehnerpotenzen. Wenn wir also musikalische Töne wieder in die darin enthaltenen Einzelfrequenzen zerlegen wollen, müssen wir ganz unterschiedliche Frequenz-Skalen betrachten. Da die Frequenzen in einem bestimmten Medium wie der Luft in direktem Zusammenhang mit den zugehörigen Wellenlängen stehen (wie in der Gleichung zu Prinzip von MP3 und Grundlagen ), können wir ganz analog auch sagen, wir müssen ganz unterschiedliche Skalen von Wellenlängen betrachten. Eine derartige Multiskalenanalyse ist durchaus nicht ungewöhnlich, wenn man die Eigenschaften von Objekten beobachten oder analysieren will. Anhand von zwei Beispielen wird das Prinzip der Multiskalenanalyse verdeutlicht. Im ersten Beispiel wird eine Multiskalenanalyse durch fortgesetzte Mittelwertbildung für eine gegebene Zahlenfolge durchgeführt. Im zweiten Beispiel betrachten wir die Zerlegung eines Tonsignals in sogenannte Wavelets, was der Zerlegung in Rechteckschwingungen entspricht. Wir betrachten als Beispiel folgende Zahlenfolge von Quadratzahlen: 0 1 4 9 16 25 36 49. Fassen wir die Zahlen in Paare zusammen und bilden die Mittelwerte dieser Paare, so erhalten wir die Folge 0,5 6,5 20,5 42,5. Fassen wir diese Zahlen ebenfalls wieder zu Paaren zusammen und bilden die Mittelwerte der Paare, so erhalten wir die Folge 3,5 31,5. Für dieses Zahlenpaar haben wir den Mittelwert 17,5. Wir haben jetzt die ursprüngliche Zahlenfolge in mehrere Skalen von Mittelwerten überführt: Um von einer Mittelwertskala wieder zur vorhergehenden zu gelangen, benötigen wir die Abweichungen der Mittelwerte von den zugehörigen Werten auf der vorigen Skala: 17,5 - 14 = 3,5 beziehungsweise 17,5 + 14 = 31,5 Entsprechend auf der nächstgröberen Skala: 3,5 - 3 = 0,5 3,5 + 3 = 6,5 31,5 - 11 = 20,5 31,5 + 11 = 42,5 Ganz analog können wir auch von der feineren Skala von Mittelwerten zu unserer ursprünglichen Folge zurückkehren: Die gröbste Skala von Mittelwerten und diese Abweichungen können wir uns wie in folgendem Schema merken. Hier ist zusätzlich die ursprüngliche Zahlenfolge nochmals mit aufgeführt: Zu den ursprünglichen Zahlen zurück kommen wir jetzt, indem wir den Mittelwert auf der gröbsten Skala und die entsprechenden gespeicherten Abweichungen auf allen feineren Skalen einfach addieren. Ein Beispiel: Annäherung an die Funktion durch Balken Um Tonsignale in Rechteckschwingungen unterschiedlicher Frequenzen zu zerlegen, können wir ganz analog vorgehen. Abb. 9 zeigt links eine Funktion, die wir in Rechteckschwingungen zerlegen wollen. Da wir den Funktionsverlauf in der Praxis oft nicht genau kennen, sondern nur an bestimmten Werten messen, nähern wir die Funktion durch die einzelnen Messwerte an. Diese Messwerte werden durch die gefärbten Balken wiedergegeben. Multiskalenanalyse in beide Richtungen möglich Auf der rechten Seite der Abbildung 9 ist der umkreiste Ausschnitt der Funktion vergrößert dargestellt. Wir erläutern das Prinzip unserer Multiskalenanalyse im Folgenden anhand dieses Ausschnitts. Vergröberung der Skalen Die linke Skizze in Abb. 10 zeigt, dass wir wie im vorangegangenen Abschnitt bei der Prinzip der Multiskalenanalyse wieder Mittelwerte der gemessenen Funktionswerte bilden, um auf die nächstgröbere Skala zu kommen. Dieses Vorgehen können wir fortsetzen, um auf gröbere Skalen zu kommen. Die mittlere Grafik von Abb. 10 zeigt den Mittelwert auf der entsprechenden nächstgröberen Skala. Verfeinerung der Skalen Aber auch die andere Richtung ist denkbar: Zurück zur feinen Skala der Funktion können wir wieder kommen, indem wir wieder die Abweichungen zum Mittelwert hinzu addieren. So erhalten wir wieder die ursprünglichen Messwerte der Funktion zurück. Betrachten wir jetzt die rechte Seite in dieser Abbildung genauer, so stellen wir fest, dass wir tatsächlich unseren Funktionsausschnitt in eine Folge von Rechteckschwingungen zerlegt haben. Abweichungen entsprechen der Rechteckschwingung Dabei sind wir ganz genauso vorgegangen wie bei der Multiskalenanalyse unserer Zahlenfolge im vorangegangenen Abschnitt ( Prinzip der Multiskalenanalyse ). Die Zahlenfolge dort können wir auch auffassen als Messwerte für die Funktion f(x) = x 2 . Daher haben wir auch dort bereits eine Zerlegung dieser Funktion in Rechteckschwingungen durchgeführt. Dies wird deutlich, wenn wir die Abweichungen auf den einzelnen Skalen nochmals genauer betrachten. Wir stellen dabei fest, dass je zwei dieser Abweichungen den gleichen Betrag haben, sich aber im Vorzeichen unterscheiden; so können z.B. die Werte ?3 und +3 auf der zweitfeinsten Skala von Abweichungen als eine Rechteckschwingung (der Höhe 3) aufgefasst werden. Prinzip der Codierung Wie bereits zu Beginn dieser Unterrichtseinheit erwähnt wurde, kann das menschliche Ohr insbesondere in polyphoner Musik (wenn viele Töne gleichzeitig erklingen und sich überlagern) viele Informationen nicht wahrnehmen. Daher werden die unhörbaren Anteile in MP3 nur ungenau gespeichert. Zusätzlich wird eine weitere Reduktion des zu speichernden Datenvolumens dadurch erreicht, dass man eine sogenannte Huffman-Codierung verwendet. Die Idee der Huffman-Codierung lässt sich am Beispiel der Codierung eines Textes einfach beschreiben: In einem Text kommen Buchstaben unterschiedlich häufig vor, in der deutschen Sprache beispielsweise das "e" viel häufiger als das "y". Deshalb verwendet man einen sehr kurzen Code für häufig vorkommende Buchstaben, längeren Code hingegen für Buchstaben, die nur selten vorkommen. Gleichzeitig ist aus einer Huffman-Codierung die ursprüngliche Information schnell, eindeutig und exakt reproduzierbar. Beispiele für Codierungen Ein Beispiel für eine derartige Codierung ist das Morsealphabet. Ein negatives Beispiel ist hingegen das Tippen einer SMS. Hier muss für häufig verwendete Buchstaben wie zum Beispiel "e" oder "n" zweimal gedrückt werden. Übertragen auf die Musik bedeutet dies: Meist besteht das ungenau zu speichernde Frequenzspektrum aus wenigen großen und vielen (also häufiger vorkommenden) kleinen Werten (Quantisierungswerte). Die Huffman-Codierung sorgt dann dafür, dass die digitalisierte Darstellung dieses Tons nur sehr wenig Speicherplatz einnimmt. Im Zusammenhang mit mp3 reduziert die Huffman-Codierung den Speicherplatz spürbar. Helmut Neunzert Einführungsvortrag auf dem Kongress Mathematik in der Praxis, Berlin, März 2009.

  • Mathematik / Rechnen & Logik / Musik
  • Sekundarstufe I, Sekundarstufe II

Materialsammlung Zeit und Relativitätstheorie

Unterrichtseinheit

Auf dieser Seite finden Sie Informationen und Anregungen für Ihren Astronomie- und Physik-Unterricht zum Themenkomplex Zeit und Relativitätstheorie (allgemeine und spezielle Relativitätstheorie). Wissenschaftliche Ergebnisse und Methoden können eine hohe Motivationskraft in sich tragen. Die in diesem Beitrag vorgeschlagenen Kontexte sind virtuelle Realitäten, generiert mit in der Astrophysik gebräuchlichen Visualisierungsmethoden. Ihr didaktischer Zweck in der Einstiegsphase besteht darin, Vorerfahrungen bei relativistischen Effekten zu schaffen, die das normale, klassisch geprägte Vorstellungsvermögen übersteigen. Das zentrale Problem bei solchen Visualisierungsmethoden ist die Darstellung dreidimensionaler Objekte auf einer zweidimensionalen Projektionsebene, die man sich als Filmleinwand oder Kamerabild vorstellen kann. Beim so genannten relativistischen Rendering werden Bilder schnell bewegter Objekte mit einer ruhenden Kamera beziehungsweise ruhende Objekte mit einer schnell bewegten Kamera aufgenommen. Wie relativistische, das heißt schnell bewegte, Objekte dem Betrachter erscheinen, kann gemäß den Gesetzen der Speziellen Relativitätstheorie berechnet werden. Neben der Längenkontraktion sind die endliche Laufzeit von Lichtsignalen und die Lichtaberration zwei Effekte, die die Geometrie solcher Abbildungen bestimmen. Schülerzentrierte Unterrichtsmethoden und kooperative Arbeitsformen Die Schülerinnen und Schüler sollen einige geometrische Effekte bei verschiedenen Fluggeschwindigkeiten der Kamera durch das Brandenburger Tor erkennen und in dieser Phase nur ansatzweise miteinander vergleichen - vorzugsweise als vorbereitende Hausaufgabe in Partner- oder Gruppenarbeit. Als Grundlage dienen das Arbeitsblatt (lorentz_modul_1_ab.pdf) sowie MPEG-Filme, die den Schülerinnen und Schülern für die Hausarbeit, zum Beispiel über den Dateiaustausch eines virtuellen Klassenraums von lo-net, dem Lehrer-Online-Netzwerk, zur Verfügung gestellt werden können. Neben dem "klassischen" Arbeitsblatt steht auch ein Online-Arbeitsblatt mit aktiven Links auf die Filme zur Verfügung. Filmsequenzen Die folgenden Abbildungen zeigen jeweils ein Einzelbild der Simulationsflüge mit unterschiedlichen Geschwindigkeiten der Kamera durch das stilisierte Brandenburger Tor. Zu jeder Geschwindigkeit steht ein komprimierter MPEG-Film zur Verfügung. Auf Details zu den Filmen werden wir zu einem späteren Zeitpunkt eingehen (siehe Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Bei der Besprechung der Hausaufgabe wird unter anderem folgender Problemfragenkomplex entwickelt: Problemfrage 1.1 Warum sehen schnell bewegte Körper so aus wie in den Computersimulationen? Problemfrage 1.2 Welche Aussagen macht die Newtonsche Mechanik zu diesem Problem? Dieses Modul behandelt Standardstoff des Physikunterrichts. In der Diskussion der virtuellen Realitäten werden Szenen aus dem Alltag angesprochen, die physikalisch eine verwandte Problemstellung enthalten, wie zum Beispiel Koffer auf einem Rollband oder das Ablesen einer Hinweistafel von einem sich bewegenden Laufband aus, zum Beispiel im Flughafen. Zwischen bewegtem Objekt und bewegtem Beobachter (fliegender Kamera) wird differenziert. Ausgehend von der Fragestellung des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird folgende Problemfrage entwickelt: Wie kann die Bewegung beziehungsweise die Bahn eines sich mit konstanter Geschwindigkeit bewegenden Objektes bezüglich eines Koordinatensystems beschrieben werden? Als Lernvoraussetzung ist der Begriff des Inertialsystems notwendig. Ebenso das Relativitätsprinzip Galileis: Alle Inertialsysteme sind (bezüglich der Gesetze der Mechanik) gleichwertig. Als Zusatz kann Newtons Relativitätsprinzip angesprochen werden: "The motion of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line." Der Begriff der Gleichwertigkeit kann, je nach Vertiefungsabsicht, verschieden gefasst werden. Von Gleichwertigkeit sprechen wir, wenn grundlegende physikalische Gesetze in allen Inertialsystemen gleichermaßen gelten oder später formal mathematisch vertieft: Gesetze unter den Transformationen sind, die von einem Inertialsystem zu einem anderen Inertialsystem führen. Im Hinblick auf die spätere Ableitung der Lorentztransformation wird ein Ereignis in zwei Inertialsystemen beschrieben und die Galileitransformation als vermittelnde Abbildung eingeführt (Abb. 8, Platzhalter bitte anklicken). Die Grafik zeigt zwei Inertialsysteme S und S', die gegeneinander mit der Geschwindigkeit V bewegt sind. Der Punkt P = P(x, y, z) = P(x', y', z') bezeichnet ein Ereignis zur Zeit t . Mit x, y, z, t werde ein Ereignis im Inertialsystem S charakterisiert; das gleiche Ereignis werde in einem anderen Inertialsystem S' durch die Koordinaten x', y', z', t' beschrieben. V beschreibt die Relativgeschwindigkeit zwischen S und S'. In diesem Fall bewegt sich das System S' mit der Geschwindigkeit bezüglich System S in die positive Richtung der gemeinsamen x -Achsen. Keine Mathematisierung der Sachverhalte In diesem Abschnitt sollen die Schülerinnen und Schüler einen ersten Einblick in Laufzeiteffekte bei Beobachtungen von schnell bewegten Objekten erhalten. Da noch keine relativistischen Werkzeuge zur Verfügung stehen, wird rein klassisch argumentiert. Auf eine Mathematisierung der Sachverhalte wird in diesem Stadium weitgehend verzichtet. Die Arbeit mit den interaktiven Materialien (Online-Arbeitsblätter, Java-Applets) ermöglicht den Schülerinnen und Schülern eigene Beobachtungen. Verzicht auf Visualisierung inkorrekter klassischer Effekte Sowohl die in Modul 1. Einstieg in das Thema verwendeten Computerfilme als auch die für diesen Abschnitt empfohlenen Java-Applets zeigen die relativistische (zumindest geometrische) Realität. Es wird bewusst davon Abstand genommen, die Effekte der Newtonschen Mechanik bei hohen Geschwindigkeiten zu visualisieren, obwohl auch dazu Java-Applets existieren. Dies hat mehrere Gründe: Sowohl Retardierung als auch Aberration (Erläuterung der Begriffe siehe weiter unten) treten im klassischen und im relativistischen Fall auf, wenn auch mit unterschiedlicher Intensität. Bei einer Konstellation von ruhendem Objekt und nahezu darauf zu fliegender Kamera sind klassische und relativistische Laufzeiteffekte bis nahe an die Lichtgeschwindigkeit aufgrund der perspektivischen Darstellung trotz Lorentzkontraktion kaum zu unterscheiden, wenn man von der Bildgröße bei gleicher Kameraposition absieht. Die Größe des Bildes ist nicht nur abhängig vom momentanen Standort der Kamera, sondern auch von deren Geschwindigkeit und damit von der Lorentzkontraktion der Bildweite. Die Untersuchung der letzteren wird Gegenstand von Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes sein. Im relativistischen Fall sind die Beobachtungen für die Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" identisch. Insbesondere wenn die Unterrichtseinheit auf Level 1 absolviert werden soll, schaffen zusätzliche klassische Varianten virtueller Realitäten (un-)vermeidbare Verwirrung, da dann auch andere Anflug- beziehungsweise Vorbeiflugwinkel notwendig werden. Dies geht zu Lasten eines zügigen Fortschritts in Richtung der Ableitung der speziellen Lorentztransformation (Modul 5. Ableitung der speziellen Lorentztransformation ). Die einzelnen Untermodule des Moduls 3 "Messen versus Beobachten" behandeln die folgenden Themen: Grundlagen zu Messen und Beobachten, Zentralperspektive, klassische Retardierung Frontaler Anflug auf ein Objekt, klassische Retardierung Seitlicher Vorbeiflug an einem Objekt, Aberration Für den hier präsentierten schnellen Weg zur algebraischen Herleitung der Lorentztransformation ist es nicht notwendig, zuvor einen Überblick über Längen- und Zeitmessverfahren zu geben. Allerdings ist zu empfehlen, diese Problematik später bei der Diskussion der Längenkontraktion aufzugreifen (im Anschluss an Modul 6.3 Längenkontraktion ). Eine Diskussion von Retardierungseffekten, das heißt Effekten, die auf der endlichen Laufzeit des Lichtes beruhen, ist allerdings unumgänglich, da diese infolge der Kameraposition beim Durchflug des Brandenburger Tores den Hauptbeitrag zu den beobachtbaren Formänderungen leisten. Retardierungseffekte treten immer auf, sowohl bei klassischer als auch bei relativistischer Betrachtung. Im klassischen Fall ist ihre Ausprägung davon abhängig, ob sich die Kamera oder das Objekt bewegt. Im relativistischen Fall gilt dies nicht, da die Form der Lorentztransformation genau dies als Folge von Einsteins zweitem Postulat (Konstanz der Lichtgeschwindigkeit, siehe auch Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) "verhindert". Ausgehend von den virtuellen Realitäten des Einstiegs (siehe Modul 1. Einstieg in das Thema ) wird die scheinbare Formänderung des Brandenburger Tores als Funktion der Fluggeschwindigkeit und der Position der Kamera ins Bewusstsein gehoben. Daraus ergibt sich unter anderem die Frage nach der genauen Form und Größe des ruhenden Tores. Nach deren mehr oder weniger intensiven Behandlung - je nach angestrebtem Level - wird die Beobachtung eines den Gesetzen der klassischen Mechanik unterworfenen bewegten Objektes in das Zentrum des Interesses gerückt. Problemfrage 3.1.1 Welche Informationen können über die exakte Geometrie des Tores und der Kamera aus der perspektivischen Ansicht gewonnen werden, wenn die Kamera ruht oder sich mit geringer Geschwindigkeit ( V = 0,01 c ) bewegt? Problemfrage 3.1.2 Wie sieht ein Beobachter beziehungsweise eine Kamera ein fernes und relativ einfach geformtes Objekt, wie zum Beispiel einen Würfel? Messen und Beobachten Als Lernvoraussetzung ist die Kenntnis des Messvorganges als Vergleich mit einem Eichnormal notwendig. Es wird geklärt, dass Messen und Beobachten unterschiedlich sind: Von (Ab-)Messen sprechen wir, wenn die Koordinaten der Randpunkte eines Objektes, also im Prinzip dessen Umriss, gleichzeitig bestimmt werden. Von Beobachten sprechen wir, wenn wir ein Abbild eines Objektes betrachten, wie zum Beispiel ein Netzhautbild oder einen Kamerafilm. Dabei werden die Bildpunkte von Lichtstrahlen erzeugt, die gleichzeitig auf der Netzhaut oder dem Film eintreffen. Lösung von Problemfrage 3.1.1 Es wird mitgeteilt, dass die Tordurchflüge im Prinzip mit einer Lochkamera aufgenommen worden sind. Die Abbildungsgesetze der Lochkamera werden von den Schülerinnen und Schülern selbstständig memoriert und zur Ausmessung einiger Bilder in dem folgenden Online-Arbeitsblatt benutzt: Online-Arbeitsblatt Die Schülerinnen und Schüler werten Bilder der Simulationsflüge durch das Brandenburger Tor mit einem interaktivem Messtool aus. Das Messtool funktioniert nicht im Internetexplorer, bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Lösung von Problemfrage 3.1.2 Aus den Überlegungen zum Problemkreis Messen wird gefolgert: Es gibt zwei Arten, die Position eines Objektes zu beschreiben. Die momentane Position der Oberfläche eines Objektes zum Zeitpunkt t sowie die retardierte Position, bei der die endliche Ausbreitungsgeschwindigkeit des Lichtes vom Objekt zum Beobachter mit zu berücksichtigen ist. Anschließend wird ein Würfel betrachtet, der mit der Geschwindigkeit V an einer Kamera vorbei fliegt, wobei eine Momentaufnahme gemacht werden soll. Dabei werden alle Lichtstrahlen erfasst, die gleichzeitig bei der Kamera eintreffen. Die dabei angestellten Betrachtungen sind auf dem Informationsblatt (lorentz_modul_3_1_info.pdf) zusammengefasst. Dieses Beispiel kann vertieft werden. Im klassischen Fall besitzt das Licht die Geschwindigkeit c nur im stationären Bezugssystem des Beobachters. Aufgrund des Galileischen Relativitätsprinzips besitzt von einem Objekt ausgehendes Licht unterschiedliche Geschwindigkeiten, zum Beispiel c + V in Bewegungsrichtung und c - V in der entgegen gesetzten Richtung. Das hier vorgestellte Beispiel sollte nach Einführung der Lorentzkontraktion unter relativistischen Gesichtspunkten erneut aufgegriffen werden (frühestens im Anschluss an Modul 6.3 Längenkontraktion ). Der Trick der unendlich weit entfernten Kamera in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung hat Wesentliches verborgen beziehungsweise nicht geklärt. Die dem Beobachter beim Vorbeiflug zugewandte Seite des Würfels ist unverzerrt als ebene Fläche abgebildet worden. Dies ist bei endlichem Kameraabstand falsch, da streng genommen alle Punkte des Objektes unterschiedlich weit von der Blende der Kamera entfernt sind. Die unten verlinkten Applets rechnen relativistisch. Bei einem Anflug auf ein Objekt sind klassische und relativistische Rechnung aufgrund der Perspektive kaum zu unterscheiden. Der relativistische Fall ist bezüglich der Konstellationen "bewegte Kamera und ruhendes Objekt" sowie "ruhende Kamera und bewegtes Objekt" nicht unterscheidbar, das heißt ein Applet beschreibt beide Fälle, da kein gekachelter Boden als Referenz vorhanden ist. Die im Einstieg beobachtete Wölbung horizontaler und vertikaler Kanten beziehungsweise die Verbiegung von Flächen ist ein Rätsel geblieben. Um das Problem zu akzentuieren, können statt des Brandenburger Tores Java-Applets von einfachen Drahtgittermodellen betrachtet werden. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Erklärung der Randwölbungen in den Raum. Es wird vorgeschlagen den Effekt der endlichen Lichtlaufzeit nur bei einem Stab zu besprechen, der sich gemäß der klassischen Mechanik mit seiner Breitseite auf eine Kamera zu bewegt, die sich mittig vor ihm befindet. Es genügt, die Diskussion auf die Stabenden zu beschränken. Von jedem Punkt der sichtbaren Stabseite fällt ein Lichtstrahl in die Kamera. Licht von der Stabmitte muss den kürzesten Weg und von den Stabenden den längsten Weg zurücklegen. Aufgrund der endlichen Lichtgeschwindigkeit, im klassischen Fall V + c (beziehungsweise im relativistischen Fall c ), muss Licht, das zum gleichen Zeitpunkt bei der Kamera eintrifft, zu unterschiedlichen Zeitpunkten ausgesandt worden sein, wenn sein Weg unterschiedlich lang ist. Die Überlegung verläuft völlig analog zu den Überlegungen des Beispiels in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , wo der Effekt der klassischen Retardierung bei einem vorbei fliegenden Würfel betrachtet worden ist. Punkte mit zunehmendem Abstand von der Stabmitte werden dem Betrachter daher weiter entfernt erscheinen, was insgesamt den Eindruck einer Stabwölbung erzeugt. Damit ist auch geklärt, weshalb die Stärke der Wölbung geschwindigkeits- und abstandsabhängig sein muss. Drahtrahmen Java-Applet zum frontalen Anflug auf einen quadratischen Rahmen (relativistisch). Zwei Linien Java-Applet zum frontalen Anflug auf zwei horizontale Linien (relativistisch). Gitter aus 9 Punkten Java-Applet zum frontalen Anflug auf ein Gitter aus neun Punkten (relativistisch). Die Rückseite des Brandenburger Tores ist grün eingefärbt. Obwohl die fliegende Kamera einen Öffnungswinkel von 60 Grad in horizontaler Richtung und 51,33 Grad in vertikaler Richtung besitzt, wird die grüne Rückseite der Pfeiler beim Durchflug mit hohen Geschwindigkeiten sichtbar (Abb. 9, Platzhalter bitte anklicken). Um den Einfluss von Retardierung und Aberration zu verdeutlichen, können Java-Applets mit Drahtgittermodellen eingesetzt werden. Unter Aberration versteht man den Effekt, dass zwei unterschiedlich schnell bewegte Beobachter ein und dasselbe Objekt nicht an seinem realen Ort wahrnehmen, sondern an zwei verschiedenen scheinbaren Orten, deren Lage von der jeweiligen Geschwindigkeit des Beobachters abhängt. Aberration tritt sowohl bei klassischer als auch relativistischer Rechnung auf. Ein Analogmodell dafür stellt zum Beispiel "Schnürlregen" dar. Wenn man im Regen steht, kommen die Tropfen bei Windstille genau senkrecht von oben. Fährt man jedoch mit dem Fahrrad im Regen, so scheinen die Tropfen von schräg vorne zu kommen, wobei der Winkel von der eigenen Geschwindigkeit abhängt. Erklärbar ist der Effekt dadurch, dass ein Objekt einer vorbei fliegenden Kamera Lichtstrahlen hinterher sendet, die die Flugbahn der Kamera kurz vor deren Blende schneiden und dann auf dem sich nähernden Kamerafilm auftreffen. Die Formel für den Aberrationswinkel wird hier weder angesprochen noch abgeleitet. Weitere allgemeine Informationen zum Thema Aberration finden Sie hier: Die bereits im Einstieg (Modul 1. Einstieg in das Thema ) beobachtete Sichtbarkeit der grünen Rückseite des Brandenburger Tores ist bisher nicht geklärt. Um das Problem zu vereinfachen, können statt des Tores einfache Drahtgittermodelle betrachtet werden. Die Visualisierung geschieht wiederum mithilfe von Java-Applets. Ein Anflug mit hoher Geschwindigkeit auf ein Quadrat stellt nochmals die Frage nach der Sichtbarkeit der Rückseite eines Objektes in den Raum. Die folgenden Java-Applets verdeutlichen sowohl die bereits bekannte Retardierung als auch die Aberration. Letztere wird aus Gründen der Elementarisierung im klassischen Fall nur im Ruhesystem des Drahtrahmens qualitativ erklärt. Eine Lochkamera bewegt sich mit hoher Geschwindigkeit. Bestimmte Lichtstrahlen, die von der Rückseite des Drahtrahmens in Richtung der wegfliegenden Kamera ausgesandt werden und die Flugbahn vor der Kamera schneiden, werden durch die bewegte Blende dringen und dann vom Film "eingefangen". Eine Herleitung der Aberrationsformel erfordert eine genaue Berechnung des Auftreffpunktes des Lichtstrahls auf der Bildebene und kann in Level 3 frühestens im Anschluss an Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes in Angriff genommen werden. Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an einem Quadrat (relativistisch). Zwei Drahtrahmen Java-Applet zum seitlichen Vorbeiflug an zwei Quadraten (relativistisch). Es ist üblich, der Begründung von Einsteins zweitem Postulat zur Konstanz der Lichtgeschwindigkeit im Unterricht einen Abschnitt über die verschiedenen historischen Methoden zur Bestimmung der Lichtgeschwindigkeit voranzustellen (siehe Links und Literatur ), woraus das Postulat als Konsequenz von Messungen gefolgert wird. Diese saubere physikalische Fundierung ist allerdings an dieser Stelle der Unterrichtseinheit nicht zwingend notwendig, weshalb eine Alternative vorgeschlagen wird. Einstein schreibt selbst in seiner Biografie (Albert Einstein, Autobiographisches, 1946): "Nach zehn Jahren Nachdenkens fand ich ein Prinzip, auf das ich schon mit 16 Jahren gestoßen bin. Wenn ich einem Lichtstrahl mit Lichtgeschwindigkeit nacheile, so sollte ich diesen Lichtstrahl als ruhend wahrnehmen. So etwas scheint es aber nicht zu geben. Intuitiv klar schien es mir von vornherein, dass sich für einen solchen Beobachter alles nach denselben Gesetzen abspielen müsse wie für einen relativ zur Erde ruhenden Beobachter." Diese ursprünglich intuitive Erkenntnis war offensichtlich mit ein Anstoß zu Einsteins Postulat zur Konstanz der Lichtgeschwindigkeit. Wir werden sie in verfremdeter Form als Kontext zur Motivation des zweiten Postulats einsetzen (siehe unten). Die Originalformulierung der Einsteinschen Postulate, entnommen aus seiner Publikation von 1905, lautet: P1' Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden. P2' Jeder Lichtstrahl bewegt sich im "ruhenden" Koordinatensystem mit der bestimmten Geschwindigkeit c , unabhängig davon, ob dieser Lichtstrahl von einem ruhenden oder bewegten Körper emittiert ist. Verständnis der Galileitransformation Kenntnis des Galileischen Relativitätsprinzips Wissen, dass Messungen einen konstanten Wert für die Geschwindigkeit des Lichtes liefern. Es wird ein Gedankenexperiment ("Einsteins Traum") vorgestellt, das anregen soll, die Konsequenzen der Galileitransformation zu durchdenken. Das Gedankenexperiment liefert den Anstoß zur Problemfrage in Modul 5. Ableitung der speziellen Lorentztransformation , da die Galileitransformation dem experimentellen Resultat der Konstanz der Lichtgeschwindigkeit widerspricht. Einsteins Traum "Einstein sieht sich im Traum auf einem Lichtstrahl durch die Galaxis reiten. In der Hand hat er eine wundersame Lichtquelle, heller als tausend Sonnen, mit der er Lichtpulse aussenden kann. Als er einen langen Lichtpuls in Flugrichtung schickt, materialisiert sich auf diesem zweiten Strahl ein Spiegelbild von ihm selbst, Zweistein. Mit wehenden Haaren und Lichtquelle unter dem Arm, mit der Zweistein die Sterne anblinkt. Auch Zweistein blinkt irgendwann in Flugrichtung. Dreistein erscheint auf diesem Strahl ... " Die Schülerinnen und Schüler sollen überlegen, wie schnell das Licht aus der Lichtquelle von N-Stein ist. Modifizierung der Postulate für den Unterricht Für die Einsteinschen Postulate wird eine gegenüber der Originalformulierung modifizierte Form empfohlen. Sie werden als Lösung der Diskrepanz zwischen Messung und Konsequenzen der Galileitransformation betrachtet: P1 Alle Inertialsysteme sind bezüglich aller Gesetze der Physik gleichberechtigt. P2 Die Lichtgeschwindigkeit im leeren Raum hat immer und überall den konstanten Wert c . In der Speziellen Relativitätstheorie werden Beobachtungen untersucht, die von zwei verschiedenen Beobachtern gemacht werden, die bezüglich zueinander eine konstante Geschwindigkeit besitzen. Die einzig verwendbaren Bezugssysteme sind daher Inertialsysteme. In der Allgemeinen Relativitätstheorie spielen hingegen beschleunigte Bezugssysteme eine wichtige Rolle, da ihr Ziel die Verallgemeinerung der Newtonschen Gravitationstheorie ist. Die Raumzeit der klassischen Mechanik Newtons trägt eine affine Struktur, da eine gleichförmige Bewegung in jedem Inertialsystem als Gerade beschrieben wird (Gültigkeit des Trägheitssatzes). Infolge des ersten Postulates von Einstein (P1') (siehe Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat ) muss also auch die neue Transformation der Speziellen Relativitätstheorie, die Lorentztransformation, eine affine Transformation sein. Postulat (P1') bestimmt die Gestalt dieser Transformation zwischen Inertialsystemen bis auf eine universelle Konstante völlig. Durch Postulat (P2') wird diese Konstante eindeutig festgelegt. Im Unterricht beschränkt man sich auf Inertialsysteme, die sich nur durch eine Relativbewegung unterscheiden, wie sie bereits in Modul 2. Die spezielle Galileitransformation eingeführt worden ist. Die Transformation zwischen Ereignissen ist in diesem Fall linear in x und t beziehungsweise x' und t' , was zur speziellen Lorentztransformation führt. Kenntnis des experimentell ermittelten konstanten Wertes der Lichtgeschwindigkeit Kenntnis des Begriffs der linearen Bewegung Fähigkeit zur mathematischen Beschreibung der Bahnkurve linearer Bewegungen Kenntnis des ersten Newtonschen Axioms (Trägheitssatz) Einsicht, dass die Annahme der Gültigkeit der Galileitransformation den Betrag der Lichtgeschwindigkeit vom gewählten Inertialsystem abhängig macht. Wissen, dass das Postulat (P1) die Gültigkeit des Relativitätsprinzips Galileis auf alle Gesetze der Physik erweitert. Das Gedankenexperiment "Einsteins Traum" aus Modul 4. Einsteins Traum - Kontext zu Einsteins zweitem Postulat liefert den Anlass, die Galileitransformation als modifizierungsbedürftig einzustufen, da alle Messungen die Konstanz der Lichtgeschwindigkeit bestätigen. Welche Form muss eine neue Transformation aufweisen? Man wird nur im oberen Leistungsbereich mit einem zweiparametrigen linearen Ansatz für die gesuchte Transformation starten und durch Widerspruchsbeweis zeigen, dass nur diese lineare Gestalt Postulat (P1) erfüllt und damit alle Transformationen von dieser Gestalt sein müssen. Wenn, wie es die Regel ist, die Zeit drängt, kann die Lehrkraft alternativ als Impuls die Frage nach der Transformation eines Ereignisses (x, t) durch folgenden Vorschlag initiieren: Diese Transformation muss eine gleichförmige Bewegung, wir wählen die einfachste Form, x = v t , in eine gleichförmige Bewegung überführen. Für zwei Zeitpunkte t 1 und t 2 gilt dann: Die Gleichförmigkeit ist für alle Zeiten t genau dann erhalten, wenn gilt. Damit ist ein korrekter Ansatz entwickelt. Ein Beispiel für eine Tafelanschrift zur Ableitung der Lorentztransformation liefert das folgende PDF. In den folgenden Ausführungen wird statt k das in der Literatur übliche gamma verwendet, was nur für einen höheren Leistungslevel zu empfehlen ist. Die Schülerinnen und Schüler sind mit den folgenden Inhalten vertraut: Ein Punktereignis wird im Bezugssystem S durch die Koordinaten (x, t) , genauer (x, y, z, t) , und im System S' durch die Koordinaten (x', t') , genauer (x', y', z', t') , beschrieben. Stimmen die Ursprünge der beiden Systeme S und S' zur Zeit t = t' = 0 überein, dann ist die Beziehung zwischen (x, t) und (x', t') durch die Lorentztransformation gegeben: wobei Welches Ergebnis liefert die Lorentztransformation bei Transformation eines (Punkt-)Ereignisses (x, t)? Es werden zwei verschiedene Punktereignisse betrachtet. Benötigt werden nur die Ergebnisse für Ereignis 1: Ereignis 2: Anschließend wird der räumliche und zeitliche Abstand der Ereignisse im System S' berechnet: Algebraisch ist damit auch die Relativität der Gleichzeitigkeit bewiesen: Für jeden Beobachter ist Gleichzeitigkeit eine Funktion des verwendeten Bezugssystems. Ein Verständnis für die Implikationen aus den Gleichungen (A1) und (A2) kann erst nach weiterer eingehender Diskussion erzielt werden. Dies soll in den beiden folgenden Modulen geschehen. Es wird der Spezialfall betrachtet, das heißt es werden zwei aufeinander folgende Ablesungen einer Uhr im System S mit den Ablesungen von zwei verschiedenen Uhren im System S' verglichen, weshalb das Problem der Synchronisation verschiedener Uhren angeschlossen werden sollte. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Zeitspannen? Eine Uhr ruhe im System S im Punkt Zwei verschiedene Ablesungen der Uhr definieren eine Zeitspanne und sollen als zwei Ereignisse angesehen werden: Ereignis 1: Ereignis 2: Die Zeitkoordinaten dieser Ereignisse für das System S', das relativ zu S die Geschwindigkeit V hat, sind im Prinzip bereits in Modul 6.1 Punktereignisse und ihre Transformation bestimmt worden. Falls 6.1 nicht behandelt worden ist, rechnet man analog dazu neu. Es ergibt sich also: woraus folgt womit eine Verknüpfung der entsprechenden Zeitintervalle in S und S' gefunden ist. Das Ergebnis wird durch Zahlenbeispiele vertieft. Es wird der Spezialfall betrachtet, das heißt es werden die Koordinaten der Endpunkte eines Stabes in System S' zur Zeit gleichzeitig bestimmt. Anmerkung zu Level 1 Hier wird analog zu Modul 6.1 Punktereignisse und ihre Transformation der Spezialfall neu gerechnet. Anmerkung zu Level 2 und 3 Es werden die Ergebnisse des Moduls 6.1 Punktereignisse und ihre Transformation spezialisiert. Welche Konsequenzen ergeben sich aus der Lorentztransformation für die Messung von Längen? Die gleichzeitige Messung zur Zeit der Endpunkte eines Stabes in S', wird durch die zwei Punktereignisse und beschrieben, das heißt es gilt in S' Das gesuchte Ergebnis ergibt sich sofort für aus den allgemeinen Abstandsgleichungen (siehe Gleichungen (A1) und (A2) in Modul 6.1 Punktereignisse und ihre Transformation ): Falls Modul 6.1 Punktereignisse und ihre Transformation nicht behandelt worden ist, rechnet man analog dazu neu. Angeschlossen werden sollte eine Diskussion der Messzeitpunkte in beiden Systemen, das heißt unter anderem, dass die Messung der Stabenden im System S nicht gleichzeitig stattfindet. Bisher sind bei den Auswertungen der virtuellen Realitäten aus Modul 1. Einstieg in das Thema (Flüge durch das Brandenburger Tor) wichtige Daten der Aufnahmen, wie Kameraposition und Bildgröße des Objektes, nicht bearbeitet worden. Ursache für unterschiedliche Bildgrößen bei gleicher Kameraposition und verschiedenen Anfluggeschwindigkeiten auf ein Objekt ist die Lorentzkontraktion der Bildweite. Dies bedeutet, dass die Projektionsebene näher an die Blende heran gerückt ist, was das Bild vergrößert. Im Lochkameramodell ist die Kamera lorentzkontrahiert. Die Schülerinnen und Schüler haben Modul 3.1 absolviert und kennen die Lorentzkontraktion (Modul 5. Ableitung der speziellen Lorentztransformation ). Es wird den Schülerinnen und Schülern die Kameraposition des jeweils ersten - und bei Bedarf auch letzten - Bildes der Computerfilme zum Durchflug des Brandenburger Tores mitgeteilt (Tab. 1). Die Beobachtung, dass die Startbilder in der Größe recht ähnlich sind, führt direkt zu der Problemfrage. Tab. 1: Infos zur Bildauswertung Geschwindigkeit Kameraposition Startbild in LE (Längeneinheiten) Kameraposition Endbild in LE (Längeneinheiten) 0,01 c 70 -2 0,50 c 46 -2 0,90 c 24 -7 0,95 c 16 -12 0,99 c 8 -28 Warum sind unterschiedliche Startpositionen gewählt worden beziehungsweise warum sind bei den verschiedenen Flügen die Bilder des Tores bei identischer Kameraposition unterschiedlich groß? Hinweise zum Einsatz der Materialien Falls eine genügend schnelle Internetanbindung und genügend Speicherplatz vorhanden sind, kann die Lehrkraft die Originaleinzelbilddateien der Filme im Schulnetz zur Auswertung speichern. Andernfalls wird auf die interaktiven Online-Materialien zurückgegriffen, die ausgewählte und skalierte Einzelbilder zur Ausmessung am Bildschirm bereitstellen. Schon ein rein optischer Vergleich dieser Bilder zeigt die mit wachsender Geschwindigkeit abnehmende Größe des Tores. In beiden Fällen werden die in Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung beim Ausmessen von Bilddaten gewonnenen Erfahrungen genügen, um die Bildweite für einige Fälle zu berechnen. Ein Vergleich der erhaltenen Werte bestätigt die Lorentzkontraktion der Lochkamera (Bildweite). Online-Arbeitsblätter Die interaktiven Funktionen der Arbeitsblätter arbeiten nicht im Internetexplorer. Bitte verwenden Sie einen anderen Browser (Firefox, Netscape, Mozilla, Konqueror, Opera, Safari). Beachten Sie auch die Hinweise am Ende der Seiten zur Nutzung des Messtools. Brandenburger Tor 1 Kameraposition 8 LE (LE = Längeneinheiten) Brandenburger Tor 2 Kameraposition 16 LE Brandenburger Tor 3 Kameraposition 21,47 LE Die Schülerinnen und Schüler sollen ein Gefühl für das Wesen und die Eigenschaften der Zeit gewinnen, insbesondere die Begriffe Gleichzeitigkeit und Geschwindigkeit der Zeit näher kennen lernen. die Herkunft unseres natürlichen Zeitsystems (Jahr, Monat, Tag, Stunde, Minute) und den Begriff der Weltzeit verstehen. im Rahmen einer Gruppenarbeit zum Uhrenbau die Begriffe von Zeitmessung und Uhr durchleuchten und eigene weiterführende Ideen verwirklichen. mithilfe des Computers den Uhrenbau dokumentieren und den Mitschülerinnen und Mitschülern vorstellen (zum Beispiel mit einer PowerPoint-Präsentation). die Uhren testen und die Ergebnisse auswerten und beurteilen. einen kurzen Einblick in das Thema "Relativität der Zeit" erhalten, die mit einem Java-Applet veranschaulicht werden kann (Klasse 8). Thema Was ist Zeit? Wie messe ich sie? Autorinnen Ulrike Endesfelder, Kirsten Kalberla Fach Naturwissenschaften, Physik, Technik, Projektarbeit/Projekttag Zielgruppe Klasse 5-8 Zeitraum etwa 2 Doppelstunden Die Unterrichtseinheit zum Uhrenbau eignet sich für den Unterricht im Fach Naturwissenschaften oder Physik, aber zum Beispiel auch für Projekttage. Sie basiert auf einem Angebot der flowventure-Erlebnispädagogik. flowventure wurde im Rahmen der UN-Dekade "Bildung für nachhaltige Entwicklung" ausgezeichnet und bietet für Schulklassen kommerzielle Programme an (siehe Zusatzinformationen). Erste Doppelstunde Die Lernenden werden abwechslungsreich in die Thematik eingeführt und erstellen danach an Bastelstationen in Gruppenarbeit verschiedene Uhrenmodelle. Zweite Doppelstunde Nachdem jede Gruppe ihre Uhr vor der Klasse präsentiert hat, werden alle Uhren zeitgleich getestet. Die gesammelten Daten werden in Heimarbeit ausgewertet. Russell Standard Durch Raum und Zeit mit Onkel Albert: Eine Geschichte um Einstein und seine Theorie, Fischer Verlag (2005), ISBN-13: 978-3596800155 Urike Endesfelder ist Diplom Physikerin und Referentin bei flowventure-Erlebnispädagogik . Die Schülerinnen und Schüler sollen ohne experimentellen Beweis akzeptieren, dass die Lichtgeschwindigkeit für jeden Beobachter konstant ist (vor dieser Situation standen zunächst auch viele Naturwissenschaftler zur Zeit der Veröffentlichung der Relativitätstheorie). aus der vorgegebenen Konstanz der Lichtgeschwindigkeit in Verbindung mit geometrischen Überlegungen eine Gleichung für die Zeitdilatation herleiten (kann auch durch die Lehrerin oder den Lehrer vorgegeben werden). durch Anwendung dieser Gleichung die Auswirkung der Zeitdilatation erkennen und feststellen, dass diese bei "normalen" Geschwindigkeiten äußerst gering ist. Thema Die Einsteinsche Zeitdilatation Autor Manfred Amann Fach Physik Zielgruppe ab Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computer in ausreichender Anzahl (Einzel- oder Partnerarbeit), Internetanschluss, Java Runtime Environment , aktiviertes JavaSkript Gerald Kahan Einsteins Relativitätstheorie zum leichten Verständnis für jedermann 2004 Dumont-Verlag (Nachdruck) ISBN 3-8321-1852-7 Kahans Buch ist besser als so manche aktuelle Einsteinjahr-Literatur und sehr gut für interessierte Schülerinnen und Schüler mit mathematischen und physikalischen Grundkenntnissen geeignet. Nigel Calder Einsteins Universum 1980 Umschau-Verlag, Lizenzausgabe Deutscher Bücherbund Auch dieses Buch stellt in seinen Veranschaulichungen nach meinem Empfinden einen Großteil der aktuellen Einsteinliteratur in den Schatten, ist aber leider nur noch antiquarisch erhältlich, zum Beipsiel über amazon.de. Die Grundzüge der Speziellen Relativitätstheorie (SRT) basieren auf einer einfachen Formel. Nein, nicht E = mc², sondern v = s/t. Ausgehend von zwei einfachen Annahmen lieferten revolutionäre Gedankenexperimente über die Laufzeit von Licht, gemessen von zueinander bewegten Beobachtern, verblüffende neue Erkenntnisse über Raum und Zeit. Und mithilfe des guten alten Pythagoras (Link zur Lernumgebung "Die Satzgruppe des Pythagoras" des Autors bei Geogebra.org) sind auch die zugehörigen Formeln für die Zeitdilatation und die Längenkontraktion schnell hergeleitet. In der Lernumgebung zur Kinematik der Speziellen Relativitätstheorie können Lehrende und Schülerinnen und Schüler mithilfe der Maus am Monitor Darstellungen und Konstellationen kontinuierlich verändern. Bestimmte Fragestellungen lassen sich so dynamisch verfolgen und überprüfen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den physikalischen Sachverhalten. So wird die Relativität der Gleichzeitigkeit am Beispiel der Beobachtung eines Lichtblitzes erkundet, der in der Mitte einer fliegenden Rakete gezündet wird. Die Geschwindigkeit des Raumschiffs können die Lernenden dabei variieren. Die Schülerinnen und Schüler sollen die Bedeutung der Postulate der Speziellen Relativitätstheorie verstehen. die Notwendigkeit einer präzisen Definition von Ort und Zeit eines Ereignisses einsehen. die Relativität der Gleichzeitigkeit als zwingende Konsequenz der Postulate erkennen. die Formel für die Zeitdilatation herleiten und anwenden können. die Formel für die Längenkontraktion herleiten und anwenden können. die Zitate aus Originalarbeiten richtig deuten und dem Gelernten zuordnen können. Thema Kinematik der Speziellen Relativitätstheorie Autor Claus Wolfseher Fach Physik Zielgruppe Oberstufe Zeitraum mindestens 5 Unterrichtsstunden oder freie Zeiteinteilung bei selbstständiger Bearbeitung außerhalb des Unterrichts Technische Voraussetzungen Internetbrowser mit aktiviertem JavaScript, Java Runtime (JRE Version 1.4 oder höher, kostenfrei) Kinematik der SRT - prägnant und kompakt Weder für die Lehrkraft noch für die interessierten Schülerinnen und Schüler ist es befriedigend, wenn Formeln vom Himmel fallen, insbesondere wenn es um die populäre Relativitätstheorie geht. Andererseits sehen zeitlich knapp kalkulierte Lehrpläne meist nur eine Mitteilung oder einen Hinweis auf die Gleichungen der Zeitdilatation oder der Längenkontraktion vor. Intention der hier vorgestellten interaktiven Lerneinheit ist es daher, die Kinematik der Speziellen Relativitätstheorie möglichst prägnant und kompakt zu erläutern, ohne auf die Herleitung der zugehörigen Formeln zu verzichten. Die Schülerinnen und Schüler erfahren dabei auch, dass mathematische Grundkenntnisse fundamental, ja hier sogar ausreichend sind, um zu neuen Erkenntnissen zu gelangen. Die erarbeiteten Formeln sollten in Anwendungsaufgaben (beispielsweise Durchqueren der Atmosphäre von Myonen oder Reise zu ?-Centauri) gefestigt werden. In der Unterrichtspraxis führte die Lerneinheit stets automatisch zu Diskussionen, die auf das Zwillingsparadoxon, das Hafele-Keating-Experiment und die Kausalitätsproblematik abzielten und von der Lehrkraft aufgenommen werden konnten. Anknüpfungspunkt für die Dynamik der SRT Auf diese Weise erhalten die Lernenden trotz der Einschränkungen des alltäglichen Unterrichtbetriebs einen über bloße Mitteilungen hinausgehenden Einblick in die SRT, der als Basis für weiterführende, eigenständige Forschungen und als Anknüpfungspunkt für die Dynamik der SRT dienen kann. Einsatzmöglichkeiten und Aufbau der Materialien Die Konzeption der Texte, Zusatzinformationen, Lösungen und die Interaktivität der Lernumgebung werden hier skizziert. Die Schülerinnen und Schüler sollen die Axiome der Speziellen Relativitätstheorie kennen. die Galilei-Transformation rechnerisch und grafisch anwenden und interpretieren können. Raum-Zeit-Diagramme konstruieren und interpretieren können. die Lorentz-Transformation rechnerisch und grafisch anwenden und interpretieren können. die wichtigsten Phänomene der SRT wie Längenkontraktion und Zeitdilatation angeben und interpretieren können. Geschwindigkeiten relativistisch addieren können. die relativistische Massenzunahme wiedergeben und in Beispielen anwenden können. die Beziehung von Masse und Energie in Einsteins berühmter Äquivalenzformel deuten und die Abhängigkeit der Gesamtenergie und der kinetischen Energie von der Geschwindigkeit beschreiben können. die Äquivalenz von Masse und Energie und die Möglichkeiten der Anwendung verstehen. Thema Online-Kurs "Spezielle Relativitätstheorie" mit GeoGebra Autor Andreas Lindner Fach Physik Zielgruppe Jahrgangsstufe 12 Zeitraum 4-6 Stunden (bei Vertiefung entsprechend mehr) Technische Voraussetzungen Internetbrowser, Java Runtime (JRE Version 1.4 oder höher, kostenfrei); die Mathematiksoftware GeoGebra ist zum Betrachten der Arbeitsblätter nicht Voraussetzung, kann aber zum Erstellen eigener Konstruktionen kostenfrei aus dem Internet heruntergeladen werden. Der Onlinekurs besteht (zurzeit) aus 25 HTML-Seiten mit 13 interaktiven GeoGebra-Applets. Eine ausführliche Besprechung der Kursinhalte würde den hier gegebenen Rahmen sprengen. Aus diesem Grund beschränken wir uns auf allgemeine Hinweise zum Einsatz der Materialien. Generell eignet sich der Online-Kurs zum Einzelstudium, als Ergänzung des traditionellen Unterrichts oder als zusammenfassende Wiederholung des Unterrichtsthemas. Abhängig von dem zur Verfügung stehenden Zeitrahmen bewährt sich neben der Nutzung der Applets ein händisches Rechnen von Aufgabenstellungen, zum Beispiel im Bereich der Längenkontraktion oder der Zeitdilatation. Anschließend können die Ergebnisse mit den interaktiven Arbeitsblättern des Online-Kurses verglichen werden, um die Einsicht zu vertiefen. Auch bei einer intensiveren Auseinandersetzung mit den Minkowski-Diagrammen sollte ein händisches Konstruieren oder ein Konstruieren am Computer durch die Schülerinnen und Schüler angestrebt werden. Gestaltung, Nutzung und Inhalte des SRT-Kurses Hier finden Sie Hinweise zur formalen Aufbereitung der GeoGebra-Applets, zur Nutzung des Online-Kurses sowie eine Übersicht der einzelnen Kapitel und Unterkapitel. Fast alle Zugänge zur Lorentztransformation im Unterricht arbeiten mit einem exzessiven Vorlauf an geometrischen Betrachtungen von Minkowskidiagrammen. Dieser Beitrag stellt eine bedenkenswerte Alternative vor. Computergenerierte Bildsequenzen und Filme, die relativistische Effekte simulieren, bieten in Verbindung mit Java-Applets und interaktiven JavaScript-Messtools faszinierende Möglichkeiten, um nicht nur Interesse für dieses Teilgebiet der modernen Physik zu wecken, sondern auch Kernaussagen der Speziellen Relativitätstheorie anschaulich zu vermitteln. Die naive Annahme, dass bei hohen Geschwindigkeiten alle Körper nur lorentzkontrahiert erscheinen, wird durch einen simulierten Flug durch ein fiktives Brandenburger Tor widerlegt. Ein Klick auf die Grafik mit der gewohnten Ansicht des Gebäudes (oben links) zeigt weitere geometrische Effekte, die durch Retardierung und Lichtaberration zustande kommen. Schülernahe Erklärungen sind möglich. Der modulare Aufbau der Unterrichtseinheit, die in drei verschiedenen Level durchgeführt werden kann, bietet interessante methodische Differenzierungsmöglichkeiten. Eine kurze Übersicht liefert dieses Die Lorentztransformation - Fundament der SRT . Die Autorin dankt Prof. Dr. Hanns Ruder von der Theoretischen Astrophysik der Universität Tübingen und seinen Mitarbeiterinnen und Mitarbeitern, insbesondere Frau PD Dr. Ute Kraus und Herrn Thomas Müller, die die Originaldateien der Simulationsfilme für diese Unterrichtseinheit zur Verfügung gestellt zu haben. Da die Unterrichtseinheit inhaltlich einen weiten Bogen spannt, von der Galileitransformation über die Ableitung der Lorentztransformation bis hin zu Zeitdilatation und Längenkontraktion, beschränkt sich die folgende Liste auf Groblernziele, die jedoch levelabhängig (schnell, genauer, exakt) mit unterschiedlichen Feinlernzielen zu belegen und daher in unterschiedlicher Intensität zu realisieren sind. Die Schülerinnen und Schüler sollen die Galileitransformation verstehen. das Relativitätsprinzip der klassischen Mechanik kennen (Galileisches Relativitätsprinzip). erkennen, dass die Galileitransformation modifizierungsbedürftig ist. in der Lage sein, die Position eines ruhenden Objektes aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchfluges durch ein Tor mit nichtrelativistischer Geschwindigkeit; siehe Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ). Einblick in Retardierungseffekte gewinnen (Level 1: Modul 3.1 Grundlagen, Zentralperspektive, klassische Retardierung , Level 2 und 3: Module 3.1 Grundlagen, Zentralperspektive, klassische Retardierung und 3.2 Frontaler Anflug auf ein Objekt, klassische Retardierung ). Einblick in den Effekt der Lichtaberration erhalten (nur Level 3: Modul 3.3 Seitlicher Vorbeiflug an einem Objekt, Aberration ). wissen, das Einsteins erstes Postulat eine lineare Gestalt der speziellen Lorentztransformation (bezüglich x und t ) erzwingt (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). erkennen, wie die Postulate Einsteins in die Herleitung der speziellen Lorentztransformation eingehen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). eine elementarisierte Ableitung der Lorentztransformation kennen (siehe Modul 5. Ableitung der speziellen Lorentztransformation ). die Begriffe Punktereignis, Abstand und Gleichzeitigkeit verstehen (nur Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). den Begriff des Raum-Zeit-Kontinuums verstehen (erkennen, das räumliche und zeitliche Abstände nicht als voneinander unabhängig angesehen werden können; Level 1: Module 6.1 Punktereignisse und ihre Transformation und 6.2 Zeitdilatation , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). die Begriffe Längenkontraktion und Zeitdilatation kennen und die Fähigkeit erlangen, die entsprechenden mathematischen Relationen aus der speziellen Lorentztransformation herzuleiten (Level 1: Module 6.2 Zeitdilatation und 6.3 Längenkontraktion , Level 2 und 3: Module 6.1 Punktereignisse und ihre Transformation , 6.2 Zeitdilatation und 6.3 Längenkontraktion ). in der Lage sein, die Lorentzkontraktion einer schnell bewegten Kamera aus ausgewähltem Datenmaterial zu bestimmen (Computersimulation: Virtuelle Realität des Durchflugs durch ein Tor mit relativistischen Geschwindigkeiten; nur Level 3, Modul 6.4 Analyse der Bildgröße eines schnell bewegten Objektes ). Thema Die Lorentztransformation - Fundament der Speziellen Relativitätstheorie Autorin Dr. Sigrid M. Weber Fach Physik Zielgruppe Sek II Zeitraum variabel, je nach Vertiefung und medientechnischen Vorkenntnissen der Schülerinnen und Schüler; als Anhaltspunkt für Level 1: mindestens 6 Stunden plus Hausaufgabenphase (zur Bearbeitung der Aufgaben in Modul 1. Einstieg in das Thema und 3.1 Grundlagen, Zentralperspektive, klassische Retardierung ) Technische Voraussetzungen Computer in ausreichender Anzahl für Einzel oder Partnerarbeit, ggf. Beamer, Browser mit Java -Plugin und Plugin zum Abspielen von MP4-Filmen ( QuickTime Player ) sowie aktiviertem JavaSkript. Alternativ zu den Plugins: Plattformabhängige Applikationen zum Ausführen von Java-Applets (Java Engine mit Appletviewer) und zum Abspielen von MP4-Filmen ( QuickTime Player ). Unterrichtsplanung Das Die Lorentztransformation - Fundament der SRT verschafft Ihnen einen Überblick über die möglichen unterschiedlichen Anforderungsniveaus der Unterrichtseinheit, das sind die Level "schnell", "genauer", "exakt", sowie die in den jeweiligen Modulen eingesetzten digitalen Medien. Die Schülerinnen und Schüler sollen das Computeralgebrasystem Derive als universelles mathematisches Werkzeug kennen lernen. mit Derive eine Anleitung für die Erzeugung von Minkowski-Diagrammen entwickeln. Aufgaben aus der Relativitätstheorie sowohl grafisch als auch rechnerisch mit Derive lösen können. die Bedeutung von Minkowski-Diagrammen erkennen. erkennen, dass die Erhaltungssätze der Mechanik in der Relativitätstheorie eine neue Bedeutung bekommen. Thema Minkowski-Diagramme mit Derive Autor Rainer Wonisch Fach Physik Zielgruppe Jahrgangstufe 12 oder 13, Grund- oder Leistungskurs Zeitraum 10-12 Stunden Technische Voraussetzungen Computer mit Beamer (Lehrerdemonstration), Rechner in aus reichender Anzahl für Partner- oder Gruppenarbeit Software Derive; Infos zur Software finden Sie in der (debug link record:lo_unit_subpage:tx_locore_domain_model_unitsubpages:355022) im Mathematik-Portal von Lehrer-Online Die hier beschriebene Unterrichtseinheit setzt voraus, dass der Unterricht zur Relativitätstheorie bereits bis hin zu den Minkowski-Diagrammen gediehen ist. Auch eine zeichnerische Umsetzung ist schon durchgeführt worden, so dass die ersten Teile der Unterrichtseinheit aus physikalischer Sicht eine Wiederholung sind. Es wird nicht vorausgesetzt, dass die Schülerinnen und Schüler reichlich Übung im Umgang mit dem Computeralgebrasystem (CAS) Derive haben, obwohl dies nicht schaden könnte. Lehrkräften, die im Umgang mit Derive noch nicht so geübt sind, wird die Erstellung von Minkowski-Diagrammen mithilfe einer Anleitung im PDF-Format Schritt für Schritt erläutert. Die an die Schülerinnen und Schüler gestellten Anforderungen sind auch von einem Grundkurs zu bewältigen. Wenn man den letzten Teil der Unterrichtseinheit mit der Behandlung der Erhaltungssätze sehr ausführlich behandeln möchte, dann benötigt man zu den in der Kurzinformation angegebenen 10-12 Stunden noch etwa vier zusätzliche Unterrichtstunden. Vorgeschlagen wird eine Mischung aus lehrerzentriertem, fragend-entwickelndem und schülerzentriertem Unterricht. Vorschlag für den Unterrichtsverlauf (Teil 1) Typische Probleme der Speziellen Relativitätstheorie (Stunde 1 bis 8) Vorschlag für den Unterrichtsverlauf (Teil 2) Betrachtung der Erhaltungssätze für Impuls und Energie (Stunde 9 und 10 beziehungsweise 9 bis 12)

  • Physik / Astronomie
  • Sekundarstufe I, Sekundarstufe II

Quadratische Funktionen interaktiv erarbeiten

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Quadratische Funktionen" erarbeiten die Schülerinnen und Schüler diesen Funktionstyp über dynamische Arbeitsblätter, die mit der kostenlosen Mathematiksoftware GeoGebra erstellt wurden, und interaktiven Übungen, die mit der Software HotPotatoes angefertigt wurden.Quadratische Funktionen folgen im Lehrplan auf die linearen Funktionen. Während dort nur zwei Parameter Einfluss auf den Kurvenverlauf nehmen, spielen bei quadratischen Funktionen drei Parameter eine Rolle. Die folgende Unterrichtseinheit zeigt auf, wie der Einfluss der Parameter auf den Verlauf des Graphen von Schülerinnen und Schülern mithilfe interaktiver Arbeitsblätter weitgehend eigenständig und durch einen experimentellen Zugang erarbeitet werden kann. An die Erarbeitung schließen sich Lernkontrollen in Form von Lückentexten, Zuordnungsübungen, Kreuzworträtseln und eines Quiz an.Die Arbeit mit dynamischen und interaktiven Arbeitsblättern ermöglicht den Schülerinnen und Schülern im Sinne einer Handlungsorientierung ein experimentelles Herangehen an mathematische Fragestellungen und ein eigenständiges Entdecken von Gesetzmäßigkeiten. Die Lernenden können dabei in ihrem individuellen Lerntempo vorangehen und Übungsmöglichkeiten im Rahmen einer gesetzten Zeitspanne beliebig oft nutzen. Sie erhalten eine unmittelbare Rückmeldung über ihren persönlichen Lernerfolg und üben ihre Stärken und Schwächen selbst einzuschätzen, ohne unter ständiger Beobachtung durch die Lehrkraft zu stehen. Durch dynamische Geometriesoftware lässt sich die Bedeutung der einzelnen Parameter besser veranschaulichen als durch das Skizzieren einiger ausgewählter Funktionsgraphen im Heft. Die experimentelle Herangehensweise kann auch weniger abstrakt denkende Schülerinnen und Schüler motivieren, die sonst im Unterricht eher zurückhaltend sind. Außerdem trägt sie zu einem besseren Verständnis von Funktionen bei. Unterrichtsablauf Die Voraussetzungen für die Durchführung der skizzierten Unterrichtseinheit, der genaue Ablauf und die Einbeziehung der genannten Medien wird beschrieben. Die Schülerinnen und Schüler arbeiten die Bedeutung der Parameter a, d und e in f(x) = a(x - d)² + e heraus. erkennen, dass der Parameter e eine Verschiebung der Normalparabel nach oben/unten bewirkt. erfassen, dass der Parameter d eine Verschiebung der Normalparabel nach rechts/links zur Folge hat. begreifen, dass der Vorfaktor a eine Streckung/Stauchung der Normalparabel impliziert. lernen ein Beispiel für eine quadratische Funktion aus der Umwelt kennen. können die gewonnen Erkenntnisse auf neue Situationen und Fragestellungen anwenden. Voraussetzung für die Durchführung der beschriebenen Unterrichtseinheit ist ein genügend großer Computerraum, sodass die Lernenden einzeln oder höchstens zu zweit die Aufgabenstellungen bearbeiten können. Nur so kann ein individueller Lernprozess ermöglicht werden. Auf den Rechnern sollte ein aktueller Internet-Browser und vor allem das kostenlose Plugin Java Runtime Environment installiert sein, damit die mit GeoGebra erstellten dynamischen Arbeitsblätter (Applets) genutzt werden können. Um den organisatorischen Aufwand zu minimieren, empfiehlt es sich, die selbst erstellten Arbeitsblätter auf einem Webserver abzulegen und diese dann von den Lernenden via Internetzugang herunterladen zu lassen. Ein entsprechendes Beispiel findet man auf der Kommunikationsplattform der ARS-Limburg. Die bereitgestellten Dateien können aber auch lokal mithilfe eines Datenträgers auf jeden Rechner geladen werden. Ferner ist für eine der fakultativen Übungen am Ende das Tabellenkalkulationsprogramm MS-Excel erforderlich. Vor der Durchführung der Lerneinheit sollte die quadratische Funktion zunächst definiert und die charakteristischen Eigenschaften der Funktionsgraphen (Parabeln) an einigen Beispielen herausgearbeitet werden. So könnte man den Schülerinnen und Schülern neben der einfachsten quadratischen Funktion f(x) = x² zwei bis drei weitere Funktionsgleichungen vorgeben und die zugehörigen Graphen zeichnen lassen. Die Lernenden erkennen bereits hier, dass das Markenzeichen einer quadratischen Funktion der Parabelbogen ist und dass dieser unterschiedliche Lagen im Koordinatensystem einnehmen kann. Zur besseren Verankerung und Steigerung der Motivation kann auch ein Bezug zu Parabeln in der Umwelt (Brücken, Wurfbahn, et cetera) hergestellt werden und einige Beispiele können gezeigt werden. Nun erarbeiten die Schülerinnen und Schüler in Partner- beziehungsweise Einzelarbeit etappenweise die Bedeutung der Parameter a, d und e in f(x) = a(x - d)² + e. Hierzu öffnen Sie jeweils ein mit GeoGebra erstelltes dynamisches Arbeitsblatt. Mithilfe eines Schiebereglers können sie die Größe der jeweiligen Parameter ändern und beobachten, wie sich der Verlauf des Funktionsgraphen und die Funktionsgleichung verändern. Der detaillierte Ablauf geht aus dem Quadratische Funktionen hervor. Am Ende jedes Arbeitsblattes befindet sich ein Lückentext, der vervollständigt und zur Ergebnissicherung ins Heft übertragen werden muss. Die Lernenden haben so die Gelegenheit, Zusammenhänge zwischen Funktionsterm und -graph experimentell und weitgehend eigenständig zu entdecken. Die gewonnenen Erkenntnisse müssen im Anschluss jeweils in einer interaktiven, mit Hot Potatoes erstellten Übungseinheit auf andere Situationen übertragen werden. Die Schülerinnen und Schüler können dabei individuell nach ihrem eigenen Lerntempo vorgehen. Durch die unmittelbare Rückmeldung erhalten sie Aufschluss über ihren Lernstand und können bei Bedarf eine Übung mehrfach durchlaufen. Nachdem die Bedeutung der Parameter erarbeitet wurde, können die Schülerinnen und Schüler in einer abschließenden Übungseinheit ihr Wissen über quadratische Funktionen in zwei Lückentexten, zwei Zuordnungsübungen, einem Kreuzworträtsel und einem Quiz noch einmal unter Beweis stellen. Außerdem sollen die Anpassung einer Funktion an einen vorgegeben Brückenbogen durchgeführt werden.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II
ANZEIGE
Premium-Banner