• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Lineare Funktionen – die Funktionsmaschine

Unterrichtseinheit

In der Unterrichtseinheit "Lineare Funktionen" machen die Schülerinnen und Schüler mithilfe des mathematischen Modells der Funktionsmaschine ihre erste Bekanntschaft mit dem Funktionsbegriff. Im weiteren Verlauf der Unterrichtseinheit wird die lineare Funktion als solche anschaulich und ausführlich mit vielen interaktiven Übungen untersucht.Da der Funktionsbegriff in der weiteren Schullaufbahn der Lernenden einen hohen Stellenwert einnehmen wird, ist es von herausragender Bedeutung frühzeitig fundierte Grundlagen zu schaffen. Deshalb beginnt die Unterrichtseinheit mit dem Modell der Funktionsmaschine (Schmuckbild links bitte anklicken). Die hier vorgestellten interaktiven Übungen der Arbeitsblätter können entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten (eine Unterrichtsstunde pro Arbeitsblatt mit Vorbesprechung und Auswertung) oder bereits für die Erarbeitung des Themas "Lineare Funktionen" verwendet werden. Dabei empfiehlt sich der Einsatz eines Beamers, wenn die Lernenden die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind.Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten. Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler verinnerlichen anhand der Funktionsmaschine den Funktionsbegriff. kennen Zuordnungsvorschriften linearer Funktionen und wenden diese an. formulieren Zuordnungsvorschriften der Form y=mx+n. beherrschen das Ablesen von linearen Funktionen aus dem Koordinatensystem. beherrschen das Eintragen von linearen Funktionen in ein Koordinatensystem. erkennen Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen. lernen das grafische Lösen linearer Gleichungssysteme kennen. Das erste Online-Arbeitsblatt (funktionsmaschine.html) demonstriert den Schülerinnen und Schülern anhand einer Funktionsmaschine anschaulich, was hinter dem Begriff "Funktion" steckt und vermittelt erste Grundlagen der Begrifflichkeit (Argument, Funktionswert, … ). Alle Arbeitsblätter dieser Unterrichtseinheit stehen online zur Verfügung, können aber auch im Downloadbereich auf der Startseite des Artikels als ZIP-Ordner heruntergeladen werden. Das zweite Arbeitsblatt (funktionsmaschine_II.html) soll den Lernenden mithilfe des Modells der Funktionsmaschine erste Schritte beim Erkennen und Nachvollziehen von Zuordnungsvorschriften ermöglichen. Nach der Erarbeitung des Begriffs "lineare Funktion" kann anhand von Arbeitsblatt 3 (lineare_funktionen_I.html) mit dem Erkennen vorgegebener linearer Funktionen fortgefahren werden. Dabei erhöht sich der Schwierigkeitsgrad der Aufgaben sowie die Anforderungen bei der Beantwortung der Fragen. Das Einzeichnen von linearen Funktionen anhand der Achsenabschnitte wird bei der Bearbeitung von Arbeitsblatt 4 verlangt (lineare_funktionen_II.html). Dabei begegnen die Schülerinnen und Schüler erneut dem interaktiven Koordinatensystem, das ihnen bereits aus den Unterrichtseinheiten zur direkten und indirekten Proportionalität bekannt sein könnte (Unterrichtseinheiten Direkte Proportionalität und Indirekte Proportionalität des Autors im Fachportal Mathematik). Das fünfte Arbeitsblatt (lineare_funktionen_III.html) dient der abschließenden Untersuchung zusammenhängender linearer Funktionen. Ziel ist es, Schnittpunkte linearer Funktionen zu bestimmen - als Grundlage für das grafische Lösen linearer Gleichungssysteme.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Lineare Funktionen: Pixel auf Abwegen

Unterrichtseinheit

In dieser Unterrichtseinheit zu linearen Funktionen setzen sich die Lernenden mit dem mathematischen Funktionsbegriff auseinander und wenden ihn in einer anschaulichen Fragestellung aus der Fernerkundung an. Dabei erarbeiten sie Möglichkeiten zur Korrektur verzerrter Scannerbilder mithilfe einer linearen Funktion. Die Materialien sind auf Deutsch und auf Englisch verfügbar und somit auch im englisch-bilingualen Unterricht einsetzbar.Zentrales Element dieser Lerneinheit zu linearen Funktionen ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt "Fernerkundung in Schulen" (FIS) des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht.Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in das Computermodul Das interaktive Modul "Lineare Funktionen: Pixel auf Abwegen" gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung des interaktiven Moduls "Lineare Funktionen: Pixel auf Abwegen" genauer beschrieben. Die Schülerinnen und Schüler können die Entstehung von Scannerbildern nachvollziehen. stellen einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation her. kennen die Struktur eines digitalen Bildes und können sie auf die Problemstellung übertragen. formulieren die Anforderung an eine Funktion, welche für die Lösung der Problemstellung notwendig ist. verstehen den Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes. Nach der Weiterleitung in diesen Bereich sind in der linken Navigationsleiste drei Felder zu erkennen, über welche die Bereiche 1, 2 und 3 frei anwählbar sind. Im Aufgabenteil sollen die Schülerinnen und Schüler den Kern des Problems der Driftverzerrung erfassen und können nun interaktiv arbeiten. Bereich 1: Analyse Hier stehen den Lernenden zwei Bilder zur Verfügung. Ein unverzerrtes Vergleichsbild und das verzerrte Bild, welches im Laufe der Vorgeschichte entstanden ist. Aufgabe ist es die Unterschiede in den Bildern genau zu definieren. Dabei hilft ihnen ein Tool, mit dessen Hilfe sie in beiden Bildern einen Bildausschnitt vergrößern können. Der Button "Aufgaben" öffnet ein Feld mit den drei innerhalb dieses Bereichs zu lösenden Aufgabenstellungen. Im linken Bereich ist ein Schema abgebildet, welches alle für die Lösung der Aufgaben relevanten Angaben enthält (Abbildung 3, bitte auf den Platzhalter klicken). Ziel ist es, eine Aussage über die Anzahl der Bildspalten treffen zu können, um die die erste und die letzte Bildzeile im verzerrten Bild versetzt sind. Dazu muss der Betrag in Meter, um den das Flugzeug am Ende der Aufnahme abgewichen ist, in Pixel umgerechnet werden. Der Betrag in Bildspalten y, um den die erste, also oberste Bildzeile x versetzt ist, wird als Punkt A in das Graphenmodul auf der rechten Seite eingegeben. Punkt B setzt sich aus dem Versatz der letzten, also untersten, Bildzeile x2 um die Anzahl der Bildspalten y2 zusammen. Bei den Berechnungen wird eine Genauigkeit von zwei Nachkommastellen als ausreichend betrachtet. Dieser Bereich dient der Überprüfung der aufgestellten Funktion. Sie kann unten links in die Felder eingetragen werden. Der Button "Bild entzerren" versetzt die Bildzeilen des verzerrten Bildes entsprechend der eingegebenen Funktion. Die richtige Funktionsgleichung führt auch zum richtigen Ergebnis. Zur Überprüfung ist links noch einmal das verzerrte Bild dargestellt. Der Button mit den entgegengesetzten Pfeilen bietet die Möglichkeit, das unverzerrte Kontrollbild einzublenden. In diesem Bereich kann zum besseren Verständnis der Vorgänge auch experimentiert werden. Grundsätzlich führt eine erhöhte Steigung des durch die Funktionsgleichung beschriebenen Graphen zu einer stärkeren Verzerrung. Der y-Achsenabschnitt beschreibt einen Versatz des Bildes in positive oder negative Richtung. Das Programm beachtet dabei nur diskrete Werte. Kommastellen werden gerundet. So findet die Verschiebung nur in ganzen Pixelwerten statt. Stunde 1 Stundenziel: Der fernerkundliche Hintergrund soll verstanden werden und die Überleitung zur mathematischen Fragestellung durchgeführt werden. Feinziele (FZ): FZ 1: Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. FZ 2: Die Schülerinnen und Schüler sollen die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. FZ 3: Die Schülerinnen und Schüler sollen die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. Phase Inhalt Sozial- / Aktionsform Medien / Dateien Einführung Erläuterungen zur Fernerkundung; Abbildungen zur Entstehung von Scannerbildern; Verdeutlichung über den Startbildschirm des Computermoduls Unterrichtsgespräch Folien 1 und 2; Computer und Beamer; Startbildschirm des Computermoduls Problematisierung Einführung der Problemstellung Gruppenarbeit Computer, Punkt "Einführung" im Computermodul Erarbeitung Schülerinnen und Schüler verdeutlichen sich die Verzerrung anhand der Aufgabenstellungen im Bereich "Analyse". Gruppenarbeit Computer, Punkt "Analyse" im Computermodul Bündelung Zusammenfassen der Erkenntnisse Unterrichtsgespräch Computer und Beamer, Punkt "Analyse" im Computermodul Stunde 2 Stundenziel: Eine lineare Funktion soll aufgestellt werden, mit deren Hilfe das verzerrte Bild entzerrt werden kann. Feinziele (FZ): FZ 1: Die Schülerinnen und Schüler sollen denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Phase Inhalt Sozial- / Aktionsform Medien / Dateien Einführung Wiederholung der am Ende der letzten Stunde formulierten Anforderung an die Funktion Unterrichtsgespräch Computer und Beamer, Punkt "Analyse" im Computermodul Problematisierung 1. Es ist noch nicht bekannt, um wie viele Pixel die Bildreihen maximal verschoben sind. 2. Die Funktion selber ist noch nicht bekannt. 3. Die Funktion muss auf das Bild angewendet werden. Gruppenarbeit Computer, Punkt "Funktion" im Computermodul Erarbeitung Schülerinnen und Schüler erarbeiten sich anhand der Aufgabenstellungen im Bereich "Funktion" die Funktion und testen sie im Bereich "Entzerrung". Gruppenarbeit Computer, Punkte "Funktion" und "Entzerrung" im Computermodul Bündelung Zusammenfassen der Erkenntnisse, auch durch die Möglichkeit mithilfe beliebiger Funktionen das Bild zu verzerren Unterrichtsgespräch Computer und Beamer, Punkt "Entzerrung" im Computermodul Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit "Lineare Funktionen: Pixel auf Abwegen" bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Computermoduls "Lineare Funktionen: Pixel auf Abwegen" wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abbildung 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abbildung 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter.

  • Mathematik / Rechnen & Logik / Geographie / Jahreszeiten / Informatik / Wirtschaftsinformatik / Computer, Internet & Co.
  • Sekundarstufe I

Lineare Funktionen: Hilfe für den Nikolaus

Unterrichtseinheit

In dieser Unterrichtseinheit wird das Nikolausfest als Kontext für die Erarbeitung von Funktionsgleichungen aus zwei Punkten einer Geraden genutzt. Dazu kommt die kostenlose Mathematiksoftware GeoGebra zum Einsatz, mit der ein direkter Zusammenhang zwischen Funktionsgleichung und Graphen der Funktion visualisiert werden kann.Die Lernenden sollen dem Nikolaus, der wahlweise für den jeweiligen Jahresanlass zum Beispiel auch als Schneemann oder Osterhase abgeändert werden kann, bei seinen Problemstellungen behilflich sein. Die Schülerinnen und Schüler sollen am Beispiel des Nikolaushauses das Aufstellen linearer Funktionen vertiefen und mit Definitions- und Wertemengen arbeiten. Durch die eigenständige Überprüfung der Arbeitsergebnisse mit GeoGebra werden Erfolgserlebnisse und das Vertrauen in die eigenen mathematischen Fähigkeiten bei den Lernenden gestärkt.Die Software GeoGebra bietet die Möglichkeit einen direkten Zusammenhang zwischen Funktionsgleichung und Graphen der Funktion zu visualisieren. Änderungen an der Funktionsgleichung im Algebrafenster wirken sich in Echtzeit auf den Funktionsgraphen im Geometriefenster aus. Ebenso ist es möglich, durch manuelle Verschiebung von Funktionsgraphen mit der Maus, die Auswirkung auf die Funktionsgleichung zu beobachten. Zusätzlich bietet GeoGebra den Vorteil, dass es auch für die Lernenden kostenlos verfügbar ist und eine Client-Installation durch den Einsatz von Java-Applets bei Vorhandensein einer Java-Runtime-Umgebung (Standard) entfällt. Unterrichtsablauf Die Aufteilung in Partnergruppen und der Einsatz der Materialien werden hier detailliert für die skizzierte Unterrichtseinheit beschrieben. Fachkompetenz Die Schülerinnen und Schüler üben und vertiefen das Aufstellen linearer Funktionsgleichungen aus zwei Punkten einer Geraden. festigen ihre Kompetenz, lineare Funktionen aufzustellen und mit Definitions- und Wertemengen zu arbeiten. erfahren, dass ein Werk (in diesem Falle das Nikolaushaus) aus Bausteinen einzelner Teams entstehen kann und somit ihre Erfahrungen zu arbeitsteiligen Prozessen erweitern. Medienkompetenz Die Schülerinnen und Schüler erweitern ihre Fähigkeiten im Umgang mit der dynamischen Mathematik-Software GeoGebra und erkennen und bewerten die Vorteile. Als Einstieg in den Unterricht dient der Auftritt des Nikolauses, der die Lernenden um Unterstützung beim Bau seines neuen Nikolaushauses bittet. Er hat das Problem, dass seine Architekten mit der Skizze nichts anfangen können und eine mathematische Beschreibung erwarten. Es ist davon auszugehen, dass die Schülerinnen und Schüler dem Nikolaus, der positive Assoziationen aus der Kindheit hervorruft, gerne helfen. Positiv verstärkend wirkt auch die Situationskomik, wenn die Lehrkraft als Nikolaus die Klasse betritt. Es kann natürlich auch eine andere Identifikationsfigur gewählt werden, dann müssen allerdings die Arbeitsmaterialien darauf abgestimmt werden. Der Nikolaus verlässt die Klasse und die Lehrkraft kommt zurück in den Klassenraum und lässt sich das Problem nochmals von den Schülerinnen und Schülern beschreiben. Die Lernenden sollen erkennen, dass dem Nikolaus mit linearen Funktionen geholfen werden kann. Ihre Vorgehensweise halten sie an der Tafel fest. Die Teams für die Partnerarbeit werden nach dem Zufallsprinzip zusammen gesetzt. Die Erfahrung mit eventuell unbekannten Partnern zusammenzuarbeiten ist wichtig, da die Auszubildenden auch im späteren Berufsleben häufig so agieren müssen. In der Partnerarbeit werden die Lernenden die Aufgabe intensiver analysieren und bearbeiten. Pro Paar wird nur ein Aufgabenblatt verteilt, wobei Abstimmungen mit arbeitsgleichen Teams möglich sind. Sollten Paare bei der Bearbeitung wesentlich schneller voranschreiten, so können weitere Strecken des Nikolaushauses berechnet werden. Nach der Arbeitsphase präsentieren die Schülerinnen und Schüler ihre Ergebnisse am Overhead-Projektor und diskutieren sie im Plenum. Vier Präsentationen werden durchgeführt, wobei die arbeitsgleichen Teams die zusätzliche Schwerpunktaufgabe der Ergebnisüberprüfung übernehmen. Danach geben die Teams ihre Funktionsgleichungen und die dazugehörigen Intervalle in den Lehrerrechner ein. Die Lernenden können beobachten, wie sich das Haus vom Nikolaus aus Einzelergebnissen aufbaut. Abschließend wird die arbeitsteilige Vorgehensweise unter Einsatz der dynamischen Mathematiksoftware GeoGebra gemeinsam diskutiert. Als Hausaufgabe sind durch die Schülerinnen und Schüler die Abszissen- und Ordinatenschnittpunkte ihrer Geraden unter D = R zu berechnen. Die Stunde abschließend könnte sich der Nikolaus für die Hilfe der Klasse mit Schokoladennikoläusen bedanken.

  • Mathematik
  • Sekundarstufe I, Sekundarstufe II, Berufliche Bildung

Parameter linearer Funktionen mit GEONExT

Unterrichtseinheit

Eine mithilfe der kostenfreien Mathematiksoftware GEONExT erstellte Lernumgebung ermöglicht die dynamische Erarbeitung der Bedeutung der Parameter linearer Funktionen.Die hier vorgestellten Materialien ermöglichen es, den Einfluss der Parameter m und t auf die Lage der Geraden mit der Gleichung y = mx + t experimentell zu entdecken. Hierbei verstärkt die Dynamik die Anschaulichkeit entscheidend und trägt so zu einem erleichterten und vertieften Verständnis dieses Funktionstyps bei. Die Schülerinnen und Schüler erarbeiten sich mithilfe eines dynamischen Arbeitsblatts den Stoff weitgehend selbstständig oder kooperativ (Einzel- oder Partnerarbeit). Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die in den Aufgaben immer wieder verlangte Dokumentation von Erkenntnissen und Ergebnissen trainiert das Verbalisieren und Fixieren mathematischer Kontexte. Hinweise zum Unterrichtsverlauf Der Einsatz dynamischer Mathematik fördert selbstständiges oder kooperatives Arbeiten sowie die Individualisierung des Unterrichts. Die Schülerinnen und Schüler sollen den Einfluss des Parameters t auf die Lage der Geraden erarbeiten. den Schnittpunkt einer Geraden mit der y-Achse bestimmen. erkennen, dass der Parameter m die Steigung der Geraden bestimmt. einüben, rechnerisch zu überprüfen, ob ein Punkt auf einer Geraden liegt. mathematische Zusammenhänge eigenständig und kooperativ erarbeiten und dokumentieren. Thema Parameter linearer Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 8 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Ideale Veranschaulichung Wird der Einfluss der Parameter m und t auf die Lage von Graphen linearer Funktionen an der Tafel oder auf Folie entwickelt, so werden meist mehrere Graphen mit unterschiedlichen Parameterwerten in ein Koordinatensystem eingetragen. Dabei ergibt sich immer das Problem, dass zu viele Graphen die Darstellung unübersichtlich erscheinen lassen. Sind jedoch wenig Graphen eingezeichnet, so ist der Einfluss des jeweiligen Parameters nur noch schwer erfassbar. Dieses Dilemma wird durch die dynamische Darstellung aufgelöst und es entsteht eine ideale Veranschaulichung linearer Funktionen und ihrer Parameter (siehe Abb. 1 bis 3 unten). Selbstständiges oder kooperatives Arbeiten Die Schülerinnen und Schüler erarbeiten sich mithilfe eines dynamischen Arbeitsblatts den Stoff weitgehend selbstständig oder kooperativ (Einzel- oder Partnerarbeit). Die Lehrerin oder der Lehrer tritt dabei in den Hintergrund und greift nur unterstützend beziehungsweise Impuls gebend ein. Die in den Aufgaben immer wieder verlangte Dokumentation von Erkenntnissen und Ergebnissen trainiert das Verbalisieren und Fixieren mathematischer Kontexte. Individualisierung des Unterrichts Durch den bewusst offen gehaltenen Umfang der Übung am Ende des dynamischen Arbeitsblatts wird das jeweilige Lerntempo der Schülerinnen und Schüler berücksichtigt. Daraus resultiert eine Individualisierung des Unterrichts. Der Parameter t Zunächst verändern die Schülerinnen und Schüler den Parameter t und stellen fest, dass damit eine Parallelverschiebung des Graphen einher geht (Abb. 1, Platzhalter bitte anklicken). Durch die Bestimmung mehrerer Schnittpunkte von Graphen mit der y-Achse und dem Vergleich mit der zugehörigen Geradengleichung erkennen die Lernenden, dass die allgemeinen Koordinaten dieses Schnittpunkts (0/t) lauten. Der Parameter m Anschließend wird der Parameter m untersucht. Dabei wird deutlich, dass damit die Steigung des Graphen festgelegt wird. Viele Schülerinnen und Schüler entdecken auch, dass der Neigungswinkel der Geraden von m abhängt. Durch den Spurmodus des Java-Applets wird veranschaulicht (Abb. 2), dass die Gerade - bei einer Veränderung von m - um den Schnittpunkt mit der y-Achse gedreht wird beziehungsweise dass dieser Schnittpunkt von m unabhängig ist. Anwendung des Gelernten Abschießend folgen Übungen, in denen die Schülerinnen und Schüler das neu erworbene Wissen anwenden müssen. Da die Punkte B und C dieselbe x-Koordinate haben (Abb. 3), kann kein Graph gefunden werden, der durch sie verläuft. Dadurch wird die Definition von Funktionen als eindeutige Zuordnung wiederholt. Der Umfang dieser Übungen ist nicht begrenzt, so dass auch leistungsstarke Schülerinnen und Schüler ausreichend Möglichkeiten haben, Aufgaben zu bearbeiten.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Lineare Funktionen: Wiederholung

Kopiervorlage / Interaktives

Dieses Arbeitsblatt eignet sich hervorragend, um Lineare Funktionen zu wiederholen. Entweder am Ende der Einheit oder zur späteren Wiederholung (zum Beispiel vor der Einführung von quadratischen Funktionen). Das Arbeitsmaterial basiert auf einem zweiseitigen Arbeitsblatt. Mit diesem können alle Unterthemen des Oberbegriffs "Lineare Funktionen" wiederholt werden. Der Fokus liegt dabei auf der allgemeinen Funktionsgleichung, der Steigung und dem y-Achsenabschnitt, dem Ablesen dieser Parameter und dem Aufstellen der Funktionsgleichung. Des Weiteren wird das Ablesen von Punkten, das Ergänzen einer Wertetabelle und die Punktprobe wiederholt. Lediglich das Zeichnen sowie das Schneiden zweier Geraden ist für dieses Material nicht vorgesehen, kann jedoch ganz einfach ergänzt werden. Bevor das Arbeitsblatt ausgeteilt wird, kann Vorwissen zum Thema "lineare Funktionen" gesammelt werden. Dafür eignet sich die Think-Pair-Share-Methode. Die Lernenden schreiben zuerst in Einzelarbeit auf, was ihnen zum Thema "lineare Funktionen" einfällt, anschließend wird sich in Paararbeit ausgetauscht. Zuletzt werden alle Ideen an der Tafel gesammelt. Das Arbeitsblatt kann sowohl in Einzel- als auch in Paararbeit bearbeitet werden. Lösungen können entweder ausgehängt oder zwischendurch besprochen werden. Für die Überprüfung der Aufgaben zwei bis vier können die Schülerinnen und Schüler die GeoGebra-Datei verwenden (jede/r öffnet die Datei auf einem Endgerät). Die Aufgabe fünf kann in Gruppen mit der Geogebra-Datei bearbeitet werden. Im Anschluss an dieses Arbeitsmaterial bietet sich das Thema "Funktionen im Vergleich" an, bei dem eine lineare und eine quadratische Funktion miteinander verglichen werden. Fachkompetenz Die Schülerinnen und Schüler beschreiben eine lineare Funktion anhand ihrer Eigenschaften. gehen mit linearen Funktionen um (Wertetabelle erstellen, Punktprobe durchführen). Medienkompetenz Die Schülerinnen und Schüler können mithilfe des Programms GeoGebra Fragen zu linearen Funktionen nachgehen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Funktionen im Vergleich

Kopiervorlage / Interaktives

Dieses Arbeitsmaterial eignet sich, um eine lineare und eine quadratische Funktion miteinander zu vergleichen. Das Arbeitsblatt ist so aufbereitet, dass es als Einstieg in das Thema "quadratische Funktionen" genutzt werden kann. Dieses Arbeitsmaterial hat zum Ziel, dass die Schülerinnen und Schüler durch Ausprobieren und Aufstellen von Vermutungen die Funktionsgleichung einer (verschobenen) Normalparabel selbständig herausfinden oder zumindest erkennen, dass die Quadratzahl des x-Werts immer der dazugehörige y-Wert ist. Nachdem die Schülerinnen und Schüler Aufgabe drei vom Arbeitsblatt fertig bearbeitet haben, kann die allgemeine Funktionsgleichung einer (verschobenen) Normalparabel durch die Lehrkraft eingeführt werden (wenn diese nicht bereits von den Lernenden herausgefunden wurde). Im Anschluss werden dann die Aufgaben vier und fünf des Arbeitsblatts bearbeitet, wobei Aufgabe vier der Sicherung des bereits erarbeiteten Wissens dient. Die Schülerinnen und Schüler füllen dazu einen Lückentext aus. Zur weiteren Vertiefung wird im Anschluss mit der dazugehörigen GeoGebra-Datei gearbeitet (jede/r öffnet die Datei auf einem Endgerät). Durch spielerisches Entdecken anhand des bereits angehefteten Punktes können die Schülerinnen und Schüler die Fragen des Arbeitsblatts beantworten. Außerdem können sie sich eigene Fragen überlegen oder weitere Graphen einzeichnen. Es bietet sich an, im Vorhinein das Arbeitsmaterial "Lineare Funktionen: Wiederholung" zu bearbeiten, damit die Schülerinnen und Schüler optimal vorbereitet sind, um eine lineare Funktion mit einer quadratischen Funktion zu vergleichen. Fachkompetenz Die Schülerinnen und Schüler können eine quadratische Funktion anhand ihrer Eigenschaften beschreiben und von einer linearen Funktion unterscheiden. lernen mit linearen sowie quadratischen Funktionen umzugehen. Medienkompetenz Die Schülerinnen und Schüler können mithilfe des Programms GeoGebra Fragen zu quadratischen Funktionen nachgehen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Rechnen in Restklassen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Rechnen in Restklassen stellen die Schülerinnen und Schüler nach einer Einführung Multiplikationstafeln modulo n auf und färben diese ein – sowohl von Hand als auch mithilfe einer programmierten Excel-Tabelle. Anhand der Farbmuster der Tabellen lassen sich spielerisch Strukturen der Multiplikationstafeln entdecken und analysieren. Erkenntnisse über Besonderheiten der zu n teilerfremden Reste führen hin auf das reduzierte Restsystem und die Eulersche phi-Funktion. In einer Fortsetzung der Unterrichtsreihe können später auch Potenzen modulo n in analoger Weise mit gefärbten Tabellen untersucht werden. In der Unterrichtseinheit "Rechnen in Restklassen" arbeiten die Schülerinnen und Schüler überwiegend in Kleingruppen. Wichtigstes Medium sind die hier bereitgestellten Arbeitsblätter, die zur Diskussion und Sicherung der Ergebnisse auch als Folien vorliegen sollten. Um die Vorwegnahme von Ergebnissen zu vermeiden, dürfen nicht alle in einer Datei enthaltene Arbeitsblätter gleichzeitig ausgegeben werden. Die zentralen Teile 2 und 3 dieser Unterrichtsreihe wurden für eine Arbeitsgemeinschaft begabter Schülerinnen und Schüler der Klassen 7-8 konzipiert. Der vorbereitende Teil 1 wurde in derselben Lerngruppe bereits in Klasse 5 behandelt. Hinweise zum Unterrichtsverlauf und Materialien Die Einheit besteht aus drei Teilen: (1) Einführung in Restklassen, (2) Multiplikationstafeln modulo n und ihre Symmetrien, (3) Werteverteilung von a x mod n, lineare Kongruenzen, phi-Funktion. Die Schülerinnen und Schüler kennen grundlegende Begriffe und Rechenregeln für das Rechnen in Restklassen und wenden sie an. stellen Multiplikationstafeln für Restklassen auf und beschreiben deren Strukturen, zum Beispiel Symmetrien, mithilfe von Einfärbungen erkunden und für andere verständlich. beschreiben Symmetrien von quadratischen Matrizen ("Tabellen") formal. entwickeln Argumentationen und elementare zahlentheoretische Beweise. erkunden die Werteverteilung von a x mod n (bei festem a und n) mithilfe der eingefärbten Multiplikationstafeln, beschreiben sie und beweisen die Aussagen formal. lösen lineare Kongruenzen. bestimmen Multiplikationstafeln für das reduzierte Restsystem erzeugen und phi(n) für kleine n. Begriffe und Regeln für das Rechnen in Restklassen Im ersten Teil der Unterrichtsreihe (zwei Zeitstunden) lernen die Schülerinnen und Schüler in Analogie zur Unterscheidung von geraden und ungeraden Zahlen die Begriffe "Restklasse", "Modul", "Kongruenz" sowie elementare Regeln für das Rechnen in Restklassen anhand von Arbeitsblättern kennen (restklassen_1.pdf; im Download-Paket der Startseite befinden sich neben den PDFs auch alle Dateien im editierbaren RTF-Format). Einfärbung der Multiplikationstafeln von Hand Im zweiten Teil (zwei bis drei Zeitstunden) stellen die Lernenden zunächst selbst Multiplikationstafeln modulo n auf. In einem weiteren Arbeitsblatt (alle Arbeitsblätter siehe restklassen_2.pdf) färben sie die bereits fertig ausgedruckten Multiplikationstafeln bis n = 12 von Hand ein (gleiche Reste - gleiche Farben). Dadurch wird der Blick auf die Struktur der Tabellen gelenkt und eine spielerische Analyse ihrer Eigenschaften eingeleitet, die durch ein Arbeitsblatt zur formalen Beschreibung der Symmetrieeigenschaften vertieft wird. Durch die Einfärbung der Multiplikationstafeln von Hand haben die Schülerinnen und Schüler Zeit und sind gehalten, sich eingehend mit den Tafeln und ihrer Struktur zu beschäftigen. Einige interessante Schülerbeobachtungen aus diesem Teil der Unterrichtsreihe sind dokumentiert (restklassen_2_schuelerbeitraege.pdf). Automatische Einfärbung mit Excel Erst nach der händischen Arbeit mit den Tabellen kommt die Excel-Datei (produkte_in_restklassen.xls) zum Einsatz, um bei der systematischen Erforschung schnell zwischen verschiedenen, auch größeren, Moduln wechseln zu können. Bei Eingabe des Moduls erfolgt die Einfärbung automatisch. Bei kleinen Lerngruppen reicht es, die Datei auf einem Rechner mit angeschlossenem Beamer auszuführen und den jeweils gewünschten Modul auf Zuruf einzugeben. Ergänzend dazu erhalten die Schülerinnen und Schüler ein Arbeitsblatt mit fertig eingefärbten Tafeln bis n = 10. Besser ist es jedoch (vor allem in Teil 3), wenn die Schülerinnen und Schüler eigene Rechner benutzen und verschiedene Moduln selbst eingeben können. Fortführung der Untersuchung der Multiplikationstafeln Im dritten Teil (zwei bis drei Zeitstunden) wird die systematische Untersuchung der Multiplikationstafeln fortgesetzt. Die zugehörigen Arbeitsblätter (restklassen_3.pdf) enthalten engere Fragestellungen, die auf die Anzahl und die Verteilung der in einer Tabellenzeile auftretenden Farben beziehungsweise Reste in Abhängigkeit von der Zeilennummer abzielen, also auf die Werteverteilung von a x mod n bei festem a und n. Dabei ist insbesondere der Fall ggT(a,n) = 1 von Interesse. Die Antworten werden mithilfe der Excel-Datei (produkte_in_restklassen.xls) zunächst empirisch gefunden und dann bewiesen. Lineare Kongruenzen, reduziertes Restsystem, phi-Funktion Die Ergebnisse führen auf die Lösung von linearen Kongruenzen, das reduzierte Restsystem und die Eulersche phi-Funktion, die aber im hier dargestellten Rahmen nur ansatzweise behandelt wird. Die praktischen Anwendungen in Form von "handfesten" Rechenaufgaben (lineare Kongruenzen) wurden von den Schülerinnen und Schülern dankbar angenommen. Bei der Bestimmung von phi(n) leistet die Excel-Datei wieder gute Dienste, da man mit der Tastenkombination Strg+R zum reduzierten Restsystem übergehen kann. Auch hier gilt: Computer nicht zu früh einsetzen! Beobachtungen und Beweise Die intendierten Beobachtungen und die zugehörigen Beweise werden hier ebenfalls zum Download angeboten (restklassen_3_beobachtungen.pdf). Die Beweise können in dieser Form auch der Lerngruppe zum Nacharbeiten zur Verfügung gestellt werden, zumal unter Umständen nicht alle im Unterricht vollständig ausgeführt werden können.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Flächenberechnung mit TurboPlot

Unterrichtseinheit

Die Schülerinnen und Schüler entdecken in einer Doppelstunde am Beispiel der Berechnung von Blumenbeetgrößen den Zusammenhang zwischen Flächengrößen und dem Verfahren der Integration. Da die Berechnung verschiedener Ober- und Untersummen arbeits- und zeitintensiv ist, wird bei der Visualisierung die kostenlose Software TurboPlot als „Zeichenknecht“ eingesetzt.Zu Beginn des Unterrichts wird zunächst auf grundlegende mathematische Kenntnisse aus dem Bereich der Flächenberechnung zurückgegriffen, mit deren Hilfe dreieckige Flächengrößen ermittelt werden. Durch eine gezielte Anweisung zur Berechnung der bestimmten Integrale können die Schülerinnen und Schüler schließlich eine Vermutung über den Zusammenhang zwischen Integral und Flächengröße formulieren. Im Rahmen der Flächenberechnung eines nicht linear umrandeten Blumenbeetes erfolgt anschließend die Verallgemeinerung der Thematik auf nichtlineare Funktionen. Dabei wird der Schwerpunkt auf die Visualisierung gelegt, um den Zusammenhang zwischen Flächengrößen und Integration zu verdeutlichen. Auf dessen konkrete mathematische Herleitung wird jedoch verzichtet. Dies kommt dem Unterricht in Grundkursen und Lernenden mit schwächerem Leistungsniveau entgegen.Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen.Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Zu Beginn der Doppelstunde werden die Schülerinnen und Schüler anhand eines Plakats sowie durch einen kurzen Lehrervortrag mit einer Problemstellung konfrontiert: Sie sollen die Flächengrößen verschiedener Blumenbeete berechnen. Nachdem in einem Unterrichtsgespräch Möglichkeiten zur Messung der Flächengröße genannt worden sind und die Berechnung von Dreiecksflächen thematisiert wurde, setzen sich die Lernenden in arbeitsteiliger Gruppenarbeit mit der konkreten Berechnung von zwei dreieckigen Flächen auseinander. Diese ermitteln sie zunächst mithilfe ihrer Kenntnisse aus der Sekundarstufe I. Anschließend werden sie dazu angeleitet, das bestimmte Integral der zugehörigen linearen Funktion zu berechnen. Anhand des Vergleichs der beiden Ergebnisse formulieren sie dann eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Die Lernenden erhalten zur Gruppenarbeit eines der beiden Arbeitsblätter und je Gruppe eine Skizze der Blumenbeete. Die Musterlösungen können Sie sich hier ebenfalls herunterladen. Im Anschluss an eine kurze Präsentation der Ergebnisse mithilfe von Plakaten am Ende der ersten Stunden und dem Austausch der Vermutungen der Gruppen bezüglich des Zusammenhangs zwischen Integral und Flächeninhalt wird die Berechnung des Sonnenblumenbeetes, das durch eine Parabel begrenzt wird, thematisiert. Mithilfe des in der ersten Stunde gelernten Verfahrens sollen die Lernenden zunächst gemeinsam die zugehörige quadratische Funktion integrieren und eine Vermutung über die Größe der Fläche äußern. Um die Vermutung jedoch zu bestätigen, wird die Problematik der Flächenberechnung anhand des Funktionsgraphen einer Funktion vierter Ordnung verallgemeinert. Fragend-entwickelnd werden hierzu Möglichkeiten der Flächenberechnung erarbeitet, bevor die Veranschaulichung der Bildung von Unter- und Obersummen mithilfe von Folien schrittweise verdeutlicht wird. Bevor das Integral unter der Parabelfläche ausgerechnet wird, wird die Folie mit der Fläche gezeigt und die Funktion angegeben. Dann berechnen die Schüler gemeinsam das bestimmte Integral und äußern die Vermutung über die Fläche (tafelbild_sonnenblumenbeet.pdf). Die Grafen (grafen.pdf) werden dann mithilfe von Folien nacheinander auf den OHP gelegt, um die Annäherung der Ober- und Untersummen an die Fläche zu verdeutlichen und die Begriffe zu erläutern. Zur wertmäßigen Bestätigung der Vermutung setzen sich die Schülerinnen und Schüler in Partnerarbeit mit der quadratischen Funktion auseinander, durch die das dritte bearbeitete Blumenbeet (Begrenzung durch eine Parabel) abgegrenzt wird (partnerarbeit_turboplot.pdf). Hierzu wird die Software TurboPlot eingesetzt (partnerarbeit_turboplot_anleitung.pdf; siehe auch Internetadresse), in welche die Lernenden die Funktionsgleichung eingeben und sich dann schrittweise verschiedene Unter- und Obersummen anzeigen lassen. Bei TurboPlot handelt es sich um ein kostenloses Programm aus dem Internet. Da die explizite Berechnung verschiedener Ober- und Untersummen mit hohem Rechenaufwand verbunden ist und viel Unterrichtszeit in Anspruch nehmen würde, wird in dieser Phase, in der der Schwerpunkt auf Visualisierung liegt, die Software als Zeichenknecht eingesetzt. Die Sozialform der Partnerarbeit wird hierbei verwendet, damit sich die Lernenden im Umgang mit der Software unterstützen und ihre Beobachtungen diskutieren. Die mithilfe von TurboPlot gemachten Beobachtungen werden auf Arbeitsblättern festgehalten und können anschließend im Rahmen einer kurzen Präsentationsphase mithilfe von Folienabschnitten verglichen werden. Hierbei soll insbesondere die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen führen und den Zusammenhang zwischen Flächeninhalt und Integral begründen (partnerarbeit_turboplot.pdf). Zur allgemeinen Formulierung und Einführung der mathematischen Schreibweise des bestimmten Integrals wird am Ende ein kurzer Lückentext im Klassengespräch ergänzt (partnerarbeit_turboplot.pdf, Seite 3). Abschließend erhalten die Schülerinnen und Schüler eine Übungsaufgabe, die zur Vertiefung des Erlernten dient (arbeitsblatt_vertiefung.pdf).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Das Baumhaus-Projekt – tragfähiger Einstieg in funktionale Zusammenhänge

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Funktionen entdecken die Schülerinnen und Schüler in kleinen hands-on-Experimenten mit Alltagsmaterial lineare, quadratische und variierende funktionale Zusammenhänge. Mit dazu passenden GeoGebra-Aktivitäten erarbeiten sie sich dynamisch das Änderungsverhalten der beteiligten Größen und deren Zusammenhang. Die Unterrichtseinheit dient als Einstieg in das Thema Funktionen (Leitidee funktionaler Zusammenhang) und entwickelt für das Funktionen-Konzept notwendige Grundvorstellungen. Dabei wird von Beginn an insbesondere das Änderungsverhalten ins Zentrum gestellt. Die Schülerinnen und Schüler helfen als Architektinnen und Architekten oder Ingenieurinnen und Ingenieure in dieser Unterrichtseinheit Sarah und Max bei deren Projekt, ein Baumhaus zu bauen. Sie erkunden in Partnerarbeit in drei Kontexten Zusammenhänge zwischen zwei Größen mithilfe von Alltagsmaterialien und GeoGebra-Aktivitäten. Dabei erarbeiten die Schülerinnen und Schüler zunächst eine verbale Beschreibung des Zusammenhangs und des Änderungsverhaltens. Die GeoGebra-Aktivitäten ermöglichen die visuelle Verknüpfung der Situation zum Graph und schließlich zur Tabelle. Der Arbeitsablauf ist in allen drei Kontext identisch (siehe Unterrichtsablauf unten) und füllt jeweils etwa zwei Unterrichtsstunden. Die Tipps im Hilfeheft ermöglichen eine eigenständige Bearbeitung der Lerneinheit. Ergänzt werden die Erarbeitungsphasen durch Glühbirnen-Aufgaben zum Austausch und zur Verallgemeinerung, die von zwei unterschiedlichen Zweierteams (Baumhaus-Ingenieurinnen und -Ingenieure plus Baumhaus-Architektinnen und -Architekten) als Vierergruppe zu bewältigen sind. Die Baumhaus-Architektinnen und Architekten sowie Baumhaus-Ingenieurinnen und -Ingenieure arbeiten an unterschiedlichen, aber verwandten Kontexten (erst linear, dann quadratisch, schließlich variierend). In den Austauschphasen werden so durch Vergleich und Abgleich der Entdeckungen Gemeinsamkeiten identifiziert und verallgemeinerte Vorstellungen des Änderungsverhalten entwickelt. Das Thema "Funktionale Zusammenhänge" im Mathematik-Unterricht Funktionale Zusammenhänge bereiten Schülerinnen und Schülern viele Schwierigkeiten. Vor allem das Konzept des Änderungsverhaltens, also die simultane Änderung der beiden in Zusammenhang stehenden Größen ist schwer zugänglich. Hier helfen kleine Experimente, den funktionalen Zusammenhang zu begreifen, jedoch ist auch beim Experimentieren einiges zu beachten. Der Fokus sollte nicht zu numerisch sein, was durch Messen und Protokollieren beim Experimentieren schnell geschehen kann. Vorkenntnisse der Schülerinnen und Schüler Voraussetzung für die Unterrichtseinheit sind ein erlernter Umgang mit einem Koordinatensystem, das Anlegen von Tabellen mit Wertepaaren, das Ablesen von Punkten im Koordinatensystem, sowie das Messen von Längen. Digitale Kompetenzen, die Lehrende zur Umsetzung der Unterrichtseinheit benötigen Die Lehrkräfte müssen lediglich die Lernenden dabei unterstützen, die auf GeoGebra basierenden Simulationen im Webbrowser aufzurufen und deren vorkonfigurierte Bedienelemente zu nutzen. Bei der Nutzung der Lernumgebung als GeoGebra Classroom sollte die Lehrkraft im Umgang mit solchen vertraut sein. Ein Online-Tutorial dazu finden sie hier . Didaktische Analyse Die Schwierigkeiten mit dem Änderungsverhalten liegen einerseits am ohnehin schwierigen Variablenkonzept, das dieser sogenannten Kovariation zugrunde liegt. Darüber hinaus erschwert jedoch der Einstieg in das Thema über Wertepaare und Tabellen einen angemessenen Konzepterwerb. Dies hat mehrere Gründe: Die Idee einer Funktion als Zuordnung von einem Wert der Eingangsgröße zu einem Wert der Ausgangsgröße erzeugt eine statische Sicht auf den Zusammenhang, also eine Auflistung von Zuständen. Für Schülerinnen und Schüler ist es auch nicht nachvollziehbar beziehungsweise notwendig, für diese Wertepaare einen neuen mathematischen Begriff einzuführen. Die Zuordnung von einzelnen Werten zueinander wirkt für Lernende künstlich. Demgegenüber stellen (mehr oder weniger) gezielte Veränderungen einer Größe und die Beobachtung der Auswirkungen ein vertrautes Vorgehen dar. Der Messprozess und aufwendiges Protokollieren können diese Variation und Beobachtung überlagern und unproduktiv für das Funktionenkonzept machen. Simulationen, die Kontexte modellieren, schaffen in dieser Unterrichtseinheit Abhilfe und machen die simultane Änderung der beiden Größen erkennbar. Sie eröffnen eine dynamische Sicht auf den Zusammenhang. Durch die Bearbeitung eines linearen, eines quadratischen, sowie eines variierenden Zusammenhangs entsteht ein breites Konzept von funktionalen Zusammenhängen, das typischen Fehlvorstellungen der Lernenden (zum Beispiel Illusion der Linearität) entgegenwirkt. Die Austauschphasen zu verwandten Kontexten (lineare, quadratische beziehungsweise variierende Zusammenhänge) ermöglichen eine Verallgemeinerung der Vorstellung vom Zusammenhang über den erfahrenen Kontext hinaus. Methodische Hinweise Die inhaltliche Erarbeitung findet in allen drei Kontexten (linearer, quadratischer sowie variierender Zusammenhang) analog statt. Pro Kontext wird in etwa eine Doppelstunde benötigt, die wie im Unterrichtsverlauf beschrieben durchgeführt wird. Aufgaben zum Weiterdenken puffern unterschiedliches Arbeitstempo vor den Glühbirnen-Aufgaben. Da es sich um eine Selbstlernumgebung handelt, können die Schülerinnen und Schüler in ihren Teams die Kontexte eigenständig nacheinander bearbeiten. Die Glühbirnen-Aufgaben eignen sich auch als Plenumsphasen: Dazu empfiehlt sich dann für die Tabellen ein Think-Pair-Share Setting. Sie können diese Lerneinheit auch im Distanz-Unterricht durchführen. Wenn Sie die bereitgestellten GeoGebra-Bücher (siehe Internetlinks unten) nutzen, können Sie jeweils einen GeoGebra-Classroom erzeugen, in dem sich die individuellen Bearbeitungsstände Ihrer Schülerinnen und Schüler nachvollziehen lassen. Die Gruppenarbeit kann parallel in einer Videokonferenz mit Breakout-Räumen initiiert werden. Die Glühbirnen-Aufgaben eignen sich auch hier als Sammlungsphasen im Plenum. Fachkompetenz Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge. erkennen und beschreiben funktionale Zusammenhänge und stellen diese in sprachlicher, tabellarischer oder graphischer Form dar. analysieren, interpretieren und vergleichen unterschiedliche Darstellungen funktionaler Zusammenhänge. Medienkompetenz Die Schülerinnen und Schüler verarbeiten Informationen, Inhalte und vorhandene digitale Produkte weiter und integrieren diese in bestehendes Wissen. kennen GeoGebra als digitales Mathematikwerkzeug und wenden es (in vorgegebenen Aktivitäten) an. kommunizieren mithilfe verschiedener digitaler Kommunikationsmöglichkeiten, insofern die Unterrichteinheit im Distanz-Unterricht durchgeführt wird. Sozialkompetenz Die Schülerinnen und Schüler dokumentieren Überlegungen, Lösungswege beziehungsweise Ergebnisse gemeinsam, stellen sie verständlich dar und präsentieren sie, auch unter Nutzung geeigneter Medien. erfahren, dass alle Lernenden ihre individuellen Stärken einbringen können. reflektieren, dass gelungene Kooperation und Kommunikation auch inhaltlich weiterhilft (vor allem in den Glühbirnen-Aufgaben). 21th-Century-Skills Die Schülerinnen und Schüler können mit verschiedenen Repräsentationen von Daten umgehen. können verschiedene Zusammenhänge untersuchen, verbal und grafisch beschreiben und systematisieren. können Hypothesen zu Zusammenhängen bilden, diese miteinander kommunizieren und überprüfen.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Algebra

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Algebra: Rechnen in Zahlenbereichen, Zuordnungen, Gleichungen und Ungleichungen, lineare Funktionen, quadratische Funktionen, Potenzfunktionen, ganzrationale Funktionen, Exponentialfunktionen und Begabtenförderung. Das Wilhlem-Ostwald-Gymnasium nutzt ab der 8. Klasse Note- und Netbooks im Unterricht. So können die Kosten für teure CAS-Systeme gespart werden, die nur für den Mathematik-Unterricht genutzt werden könnten. Mit freier Software können die Schülerinnen und Schüler alle im Lehrplan geforderten Themen im Mathematikunterricht bearbeiten. Die Geräte können darüber hinaus aber auch in anderen Fächern eingesetzt werden. In diesem Webtalk stellt Henrik Lohmann eine Unterrichtsreihe vor, die exemplarisch zeigt, wie mobile Geräte und digitale Arbeitsmaterialien genutzt werden. Die Materialien zum Thema "Quadratische Gleichungen und Funktionen" stehen unten zum Download bereit. Thema Stationenlernen mit Netbooks: "Quadratische Gleichungen und Funktionen" Autor Henrik Lohmann Anbieter Universität Duisburg Essen - learning lab, MINTec Fächer Informatik, Mathematik Zielgruppe Sekundarstufe I und II, Material erprobt in Jahrgangsstufe 9 Technische Voraussetzungen Computer mit Geogebra und Maxima, Internetzugang mit Schulplattform Materialien zur Informationstechnischen Grundbildung Beiträge und Resultate aus den vielfältigen Aktivitäten des nationalen Excellence-Schulnetzwerks MINT-EC und seiner Netzwerkschulen werden in der Schriftenreihe "Materialien zur Informationstechnischen Grundbildung" zusammengeführt und veröffentlicht. In verschiedenen Themenclustern erarbeiten MINT-EC-Lehrkräfte und Schulleitungen Schul- und Unterrichtskonzepte, entwickeln diese weiter und nehmen dabei neue Impulse aus Wissenschaft und Forschung und aus aktuellen Herausforderungen der schulischen Praxis auf. Das learning lab der Universität Duisburg Essen befasst sich seit Jahren mit der Konzeption und Entwicklung innovativer Lösungen für das Lernen insbesondere mit digitalen Medien. Im IT-Cluster des MINT-EC arbeitet eine Gruppe von Schulleitung und Medienbeauftragten aus dem Netzwerk von über 180 Gymnasien bundesweit zusammen, um die Potentiale digitaler Medien für den Unterricht systematisch nutzbar zu machen. Die Kopiervorlagen lassen sich einfach und schnell individualisieren und an die jeweiligen schulischen Erfordernisse anpassen - und Sie gehen als Lehrkraft stets bestens gerüstet in Ihren Unterricht. Der Mathelehrer Algebra unterstützt Sie mit allem, was Sie zur Unterrichtsvorbereitung brauchen. Hier wird das gesamte Algebra-Wissen der Unter- und Mittelstufe vermittelt - und zwar vollständig vertont. 80 spannende Themenaufgaben helfen den Schülerinnen und Schülern, den Unterrichtsstoff zu begreifen. Druckbare Darstellungen und viele Beispiele machen den trockenen Algebra-Stoff zum leicht verständlichen Lernerlebnis. Die vielen Beispielaufgaben mit Lösungen schaffen abwechslungsreiche Übungsmöglichkeiten. Auch Eltern profitieren von der Lernsoftware - als Nachschlagewerk, Übungsquelle und Unterstützung beim gemeinsamen Lernen mit den Schülerinnen und Schülern. Empfehlen Sie als Mathelehrkraft den Eltern Ihrer Schülerinnen und Schüler diese Software, damit diese auch in ihren Familien die optimale Lernunterstützung erhalten. Die Mappe im praktischen DIN-A4-Format enthält: Lernsoftware für das Fach Algebra 133 Kopiervorlagen mit allen lehrplanrelevanten Themen Alle Kopiervorlagen zum Drucken und Editieren in elektronischer Form Auszeichnung: CLEVER 2009 für Mathelehrer Algebra! CLEVER ist das Prüfsiegel für empfehlenswerte Software, das die ZUM (Zentrale für Unterrichtsmedien) und die Redaktionsagentur S@M Multimedia Services gemeinsam herausgeben. Die hier vorgestellte dynamische Veranschaulichung wurde mit der kostenlosen Mathematiksoftware GeoGebra erstellt und in eine interaktive Webseite eingebunden. Dies ermöglicht es den Schülerinnen und Schülern zu probieren, zu beobachten und ihre Vermutungen einer Prüfung zu unterziehen. Direkte Rückmeldungen unterstützen die Lernenden auf dem Weg, die Rechenregeln für die Addition ganzer Zahlen zu finden, sowie bei der Anwendung und Festigung der erworbenen Kenntnisse. Durch den Einsatz interaktiver dynamischer Arbeitsblätter erfährt das selbstverantwortete Lernen eine methodische Bereicherung. Die Schülerinnen und Schüler sollen durch Experimentieren die unterschiedlichen Regeln für die Addition ganzer Zahlen selbstständig finden. die Regeln für die Addition ganzer Zahlen verbal beschreiben und die erworbenen Kenntnisse auf unterschiedliche Beispiele anwenden können. Thema Addition ganzer Zahlen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Addition ganzer Zahlen Die mit der kostenlosen Mathematiksoftware GeoGebra erstellte dynamische Veranschaulichung ermöglicht es Schülerinnen und Schülern, den Zusammenhang zwischen der Addition und der Subtraktion ganzer Zahlen und somit die Regel für die Subtraktion ganzer Zahlen durch angeleitetes, systematisches Probieren selbstständig zu finden. Die direkten Rückmeldungen des interaktiven Arbeitsblattes begleiten die Lernenden auf ihrem individuellen Lernweg, auf dem sie das Lerntempo und den Grad der Veranschaulichung selbst bestimmen. Sie gelangen so durch Veranschaulichung zu der Einsicht, dass man die Subtraktion ganzer Zahlen auf die Addition der Gegenzahl zurückführen kann. Die Schülerinnen und Schüler sollen erkennen, dass zwischen der Addition und Subtraktion ganzer Zahlen ein Zusammenhang besteht. erkennen, dass man die Subtraktion ganzer Zahlen durch die Addition der Gegenzahl ersetzen kann. die gewonnenen Erkenntnisse auf unterschiedliche Aufgabenstellungen anwenden können. Thema Subtraktion ganzer Zahlen mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 5-6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Java Runtime Environment ( kostenloser Download ) Planung Verlaufsplan: Subtraktion ganzer Zahlen Die Schülerinnen und Schüler sollen im Lernbereich "Natürliche Zahlen" die Begriffe Teilbarkeit, Vielfache und Teiler sowie Mengen kennen (Klasse 5). im Wahlpflichtbereich "Wie die Menschen Zählen und Rechnen lernten" Einblick gewinnen in das Zählen und in die Schreibweisen von Zahlen in einem anderen Kulturkreis (Klasse 5). sich im Rahmen der Prüfungsvorbereitung mit den Begriffen Teiler- und Vielfachmengen sowie mit Stellenwertsystemen auseinandersetzen (Klasse 10). Thema Zahlen und Kalender der Maya Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 5 (natürliche Zahlen, Schreibweisen von Zahlen) Klasse 10 (Prüfungsvorbereitung) Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit) Einführung der Lernumgebung per Beamer Schülerinnen und Schüler der Klasse 5 sind den Einsatz interaktiver Arbeitsblätter oft noch nicht gewohnt. Daher sollte der Umgang damit zunächst von der Lehrperson per Beamer gezeigt werden. Auch die Steuerung einer VRML-Animation sollte demonstriert werden. Die 3D-Animationen der Lernumgebung zum Maya-Kalender sorgen für Anschaulichkeit und vereinfachen die Visualisierung von Aufgabenstellungen und Zusammenhängen. Alle animierten GIFs und Videos der Lernumgebung wurden vom Autor mithilfe des 3D-CAD-Programmes FluxStudio 2.0 erzeugt. Hinweise zum Einsatz der Übungen Ein Hinweis auf die Notwendigkeit einer korrekten Zahleneingabe bei den Übungen führt zu erhöhter Konzentration und damit zu weniger Frusterlebnissen. Diese entstehen, wenn Fragen inhaltlich richtig, aber formal fehlerhaft (zum Beispiel durch Leerstellen) in die Arbeitsblätter eingegeben werden. Die Angaben werden dann als falsch bewertet. Auch Partnerarbeiten zwischen Schülerinnen und Schülern mit guten Deutschkenntnissen und Lernenden, denen die deutsche Sprache schwer fällt (Integrationskinder), kann zur Vermeidung von Frusterlebnissen beitragen. Inhalte der Lernumgebung Schülerinnen und Schüler lernen die Maya-Ziffern kennen. Zahnrad-Modelle veranschaulichen die Kalenderzyklen bis hin zum "Long Count", der 2012 enden wird. Die Schülerinnen und Schüler sollen eigene Vorstellungen zu den verschiedenen Grundvorstellungen der Bruchzahlen entwickeln. ihre eigenen Vorstellungen von Bruchzahlen verbalisieren können. Bruchzahlen als wichtige Bestandteile in ihrer Umwelt identifizieren und Verständnis für Sinn und Bedeutung der einzelnen Aufgaben entwickeln. an die Bedeutung von Bruchzahlen intuitiv herangehen und ein eigenes Verständnis für diese entwickeln, ohne die Begriffe Zähler und Nenner zu benutzen. die Aufgaben nach Abschluss des jeweiligen Entdeckerarbeitsblattes selbst erarbeiten können. Thema Schulung der Grundvorstellung von Bruchzahlen Autor Katrin Hausmann unter Mithilfe von Thomas Borys Fach Mathematik Zielgruppe Klasse 5 oder 6 Zeitraum 2 Stunden Technische Voraussetzungen Computerraum, Software: Excel Innerhalb der gesamten Anwendung wurde das Konzept verfolgt, zu den Grundvorstellungen spezielle Übungsaufgaben (im Hauptmenü grün gefärbt) und eine zugrunde liegende Erklärung - oder Entdeckungsseite (gelb gefärbt) - anzubieten. Die Entdeckungsseiten sollen für unerfahrene Schülerinnen und Schüler einen ersten Zugang liefern. Sie verfügen über ein Textfeld, in das die Lernenden ihre Beobachtungen und ersten Versuche zur Beschreibung der verschiedenen Grundvorstellungen der Bruchzahlen schreiben können. Die Texte können nach Ende der Bearbeitung von der Lehrkraft in dem Tabellenblatt "Beobachtungen" eingesehen werden. Damit die Excel-Arbeitsblätter richtig funktionieren, müssen Makros aktiviert sein und die Sicherheitsstufe auf "mittel" eingestellt werden. Hinweise zur Durchführung im Unterricht Die interaktive Excel-Lernumgebung ermöglicht den Schülerinnen und Schülern ein selbstständiges Entdecken der Lerninhalte. Thomas Borys ist Gymnasiallehrer für Mathematik und Physik. Er arbeitet als Studienrat im Hochschuldienst an der Pädagogischen Hochschule Karlsruhe am Institut für Mathematik und Informatik. Die Subtraktion gemischter Zahlen ist einer der Bereiche der Bruchrechnung, der sich durch eine hohe Fehlerquote bei Schülerinnen und Schülern auszeichnet. Grund dafür ist nicht selten die Tatsache, dass die Lernenden über unzureichende Grundvorstellungen verfügen. So ist es oftmals im Unterricht verwunderlich, dass Aufgaben wie zum Beispiel "1 minus 3/5", die allein auf der anschaulichen Ebene ohne jedes formale Rechenkalkül zu lösen wären, zu Fehlern führen. Die hier vorgestellte Lernumgebung möchte Wege aufzeigen, wie Schritt für Schritt Grundvorstellungen aufgebaut werden können, um Aufgaben des Typs "3 2/7 minus 1 4/7" auf der anschaulichen und bildlichen Ebene zu lösen. So erzeugte Grundvorstellungen können ein nachhaltiges Lernen fördern. Die Verwendung von interaktiven dynamischen Arbeitsblättern unterstützt die Lernenden und ermöglicht ihnen einen individuellen und eigenständigen Zugang zu Grundvorstellungen. Alle dynamischen Darstellungen wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um algebraische Zusammenhänge dynamisch zu veranschaulichen. Die Schülerinnen und Schüler sollen natürliche Zahlen als Scheinbrüche in die Bruchzahlen einordnen können. Brüche von natürlichen Zahlen und gemischten Zahlen anschaulich und symbolisch subtrahieren können. die Subtraktion einer gemischter Zahl als Subtraktion einer natürlichen Zahl und eines Bruchs verstehen lernen. die Subtraktion gemischter Zahlen symbolisch ausführen können. Thema Gemischte Zahlen anschaulich subtrahieren Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 2-3 Stunden Technische Voraussetzungen Mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; für die Nutzung der dynamischen Materialien benötigen Sie das kostenlose Plugin Java Runtime Environment (Version 1.4 oder höher), Javascript muss aktiviert sein. Planung Gemischte Zahlen anschaulich subtrahieren Die geometrische Veranschaulichung des Erweiterns anhand der Verfeinerung der Unterteilung eines gegebenen Rechtecks wird mithilfe von GeoGebra realisiert. Neben der dynamischen Veranschaulichungs- und Experimentierumgebung bietet die Unterrichtseinheit eine javascript-basierte algebraische Übungsmöglichkeit zur Individualisierung und Differenzierung des Unterrichts. Eine zusätzliche, nicht zu unterschätzende, Motivation während dieser Übungs- und Vertiefungsphase bietet ein Wettbewerb, bei dem die Schülerinnen und Schüler die von Ihnen erreichte Punktzahl in eine Bestenliste eintragen können. Die Schülerinnen und Schüler sollen erkennen, dass für eine Bruchzahl unterschiedliche Darstellungen möglich sind. durch Experimentieren das Erweitern eines Bruchs visuell erfahren. das Erweitern eines Bruchs durch das Multiplizieren von Zähler und Nenner mit der gleichen Zahl selbstständig entdecken. die erworbenen Kenntnisse über das Erweitern von Brüchen auf unterschiedliche Beispiele anwenden. Thema Erweitern von Brüchen - eine interaktive Einführung Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-2 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript; Java Runtime Environment (kostenloser Download) Unterrichtsplanung Erweitern von Brüchen - eine interaktive Einführung In dieser Unterrichtseinheit werden drei unterschiedliche Übungsmöglichkeiten vorgestellt, mithilfe derer das Rechnen mit ganzen Zahlen vertieft werden kann. Anhand von zwei Übungen soll dabei zuerst das Ausgangsniveau gesichert werden. Darin werden noch einmal die Kenntnisse zur Addition und Multiplikation von ganzen Zahlen auf einen aktuellen Stand gebracht. Durch die Verwendung von variablen Rechenbäumen werden in einem zweiten Schritt die Rechenarten miteinander verbunden. Abschließend wird das bereits im Bereich der Dezimalzahlen behandelte arithmetische Mittel in Verbindung mit dem Rechnen mit ganzen Zahlen aufgefrischt und in einen Anwendungskontext, der Ermittlung von Durchschnittstemperaturen, gestellt. Die Schülerinnen und Schüler sollen ihre Kenntnisse im Bereich der Addition und Multiplikation ganzer Zahlen vertiefen. durch die Kombination von Grundrechenarten im Bereich der ganzen Zahlen Sicherheit im Rechnen erlangen. das arithmetische Mittel auf ganze Zahlen anwenden können. mithilfe des arithmetischen Mittels auf Ausgangswerte schließen können. Thema Ganze Zahlen - Grundrechenarten verbinden und anwenden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schüler oder Schülerinnen; Software: Java , Version 1.4 oder höher, kostenfreier Download Interaktive dynamische Arbeitsblätter können durch die automatische Kontrolle der Ergebnisse und Rückmeldungen, die den Schülerinnen und Schülern eine eigenständige Fehleranalyse ermöglichen, einen wertvollen Beitrag zur Vertiefung der erworbenen Kenntnisse leisten. Hinweise zum Einsatz im Unterricht Aufbau und Funktionsweise der interaktiven Arbeitsblätter werden erläutert. Die Lernenden können eigenständig mit ihnen arbeiten. Erste Unterrichtsstunde In der einführenden Stunde lösen die Lernenden Aufgaben zur Multiplikation und Addition positiver und negativer ganzer Zahlen. Zweite Unterrichtsstunde Anhand von variablen Rechenbäumen sollen die Schülerinnen und Schüler drei fehlende ganze Zahlen ermitteln. Dritte Unterrichtsstunde Das Rechnen mit positiven und negativen ganzen Zahlen wird in einen Anwendungskontext zur Ermittlung von Durchschnittstemperaturen gestellt. Bei der Einführung des Termbegriffs gilt es, Kontexte zu finden, die es den Schülerinnen und Schülern ermöglichen, Grundvorstellungen auszubilden. Die Länge eines Zugs ist abhängig von der Länge der Lokomotive und der Länge sowie der Anzahl der Waggons. Anhand dieses konkreten Kontexts werden in dieser Unterrichtseinheit die Begriffe Term und Termwert anschaulich eingeführt. Ein wesentliches Element dieser kontextorientierten Einführung ist die enge Verknüpfung von bildlicher, symbolischer und nummerischer Darstellung, die durch die Verwendung der dynamischen Mathematiksoftware GeoGebra möglich wird. Für die sich anschließende Übungsphase werden Aufgaben bereitgestellt, die ein individualisiertes und differenziertes Lernen ermöglichen. Die Schülerinnen und Schüler sollen erkennen, dass die Länge eines Zugs von der Länge der Lokomotive, der Länge und der Anzahl der Waggons abhängt. erkennen, dass die Zuglänge, abhängig von der Anzahl der Waggons, mithilfe von Tabellen dargestellt werden kann. Einsicht gewinnen, dass Zuglängen mit Termen beschrieben werden können. Tabellen analysieren und fehlende Termwerte ergänzen können. ausgehend von tabellarischen Darstellungen Terme selbstständig entwickeln können. Thema Terme - eine kontextorientierte Einführung mit GeoGebra Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 6-7 Zeitraum circa 2-3 Stunden Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Software: Java , Version 1.4 oder höher, kostenfreier Download Planung Terme - eine kontextorientierte Einführung mit GeoGebra Die Schülerinnen und Schüler sollen den Dreisatz für die direkte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen. Zuordnungsvorschriften der Form y=mx formulieren. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen direkt proportionaler Zuordnungen ansteigende Geraden ergeben, die durch den Koordinatenursprung verlaufen. Thema Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Zeitraum 1-3 Unterrichtsstunden Technische Voraussetzungen Computerarbeitsplatz (am Besten ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten Die Unterrichtseinheit zielt in erster Linie auf das Übertragen von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können die interaktiven Übungen der Arbeitsblätter entweder nach der Behandlung des Themas im Unterricht zur selbstständigen Schülertätigkeit angeboten werden (eine Unterrichtsstunde), oder bereits für die Erarbeitung des Themas "Darstellung der direkten Proportionalität im Koordinatensystem" verwendet werden (drei Unterrichtsstunden). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Schülerinnen und Schüler sollen den Dreisatzes für die indirekte Proportionalität richtig anwenden. Wertetabellen richtig ausfüllen können. Zuordnungsvorschriften der Form y=m/x formulieren können. das Eintragen von Wertepaaren in ein Koordinatensystem beherrschen. erkennen, dass die Graphen indirekt proportionaler Zuordnungen keine ansteigende Geraden mehr ergeben, sondern bestimmte Arten von Kurven: Hyperbeläste (ohne den Begriff zu kennen). Thema Indirekte Proportionalität Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 6 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Kind), Browser mit aktiviertem Javascript Einsatzmöglichkeiten und Voraussetzungen Die Unterrichtseinheit zielt in erster Linie auf das Üben des Übertragens von Werten aus einer Wertetabelle in ein Koordinatensystem. Dazu können diese interaktiven Übungen bereits bei der Behandlung dieses Themas im Unterricht als selbstständige Schülertätigkeit angeboten werden. Voraussetzung dafür ist allerdings, dass die direkte Proportionalität bereits auf diese Weise bearbeitet wurde (siehe Unterrichtseinheit Direkte Proportionalität ). In Klasse 6 empfiehlt sich der Einsatz eines Beamers, wenn die Kinder die Arbeit mit interaktiven Arbeitsblättern noch nicht gewohnt sind. Die Verwendung webbasierter interaktiver Arbeitsblätter zum Thema Gleichungen und Ungleichungen ermöglicht Schülerinnen und Schülern in dieser Unterrichtseinheit einen neuen Umgang mit Fehlern. Die eingesetzten Online-Arbeitsblätter sind Bestandteil der umfangreichen Unterrichtsmaterialien von realmath.de . Bei der Bearbeitung des ersten Arbeitsblattes analysieren die Schülerinnen und Schüler die Hausaufgaben des fiktiven Geschwisterpaares Paul und Paula, suchen Fehler und beschreiben deren Ursachen. Anschließend begegnen sie in einem zweiten Online-Arbeitsblatt Aufgabenstellungen, bei denen sie ihre Fehleranalyse produktiv umsetzen können: Sie bauen ganz bewusst Fehler in Gleichungen ein, die ihre Partnerin oder ihr Partner dann korrigieren soll. Die hier vorgestellte Unterrichtseinheit entstand im Rahmen der Mitarbeit am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung webbasierter Arbeitsblätter umgesetzt werden können (Modul 3: Aus Fehlern lernen). Die Schülerinnen und Schüler sollen Fehler in bearbeiteten Gleichungen und Ungleichungen finden. Fehler und deren Ursachen beschreiben. das Wissen über Fehler kreativ und produktiv umsetzen. Thema Gleichungen und Ungleichungen - Fehler produktiv nutzen Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 7-8 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler; Browser mit aktiviertem Javascript; Beamer Unterrichtsplanung Verlaufsplan Gleichungen und Ungleichungen der Unterrichtseinheit Das Lösen von Gleichungen und Ungleichungen durch Äquivalenzumformungen sowie das Inversions- und Distributivgesetz müssen bereits besprochen und an Beispielen behandelt worden sein. Die Unterrichtseinheit selbst basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Methodische Vorgehensweise Wie können die negativen Vorerfahrungen der Schülerinnen und Schüler mit dem Begriff ?Fehler? ins Positive gewendet werden? Unterrichtsverlauf "Gleichungen und Ungleichungen" Beschreibung der Unterrichtsphasen, Hinweise zum Einsatz der Arbeitsmaterialien und Screenshots der Online-Arbeitsblätter Bezug der Unterrichtseinheit zu SINUS-Transfer Aus Fehlern lernen - Schwerpunkt von SINUS-Modul 3 ist die Rehabilitierung des Fehlers als Lerngelegenheit. Zentrales Element dieser Lerneinheit ist das Beispiel eines Flugzeugs, das für Scanneraufnahmen über eine Landschaft fliegt und durch eine Windböe vom geraden Kurs abkommt. Die dadurch auf dem Scannerbild entstandene Verzerrung können die Schülerinnen und Schüler durch eine Funktion korrigieren. Zusätzlich zum Verständnis der mathematischen Inhalte lernen die Schülerinnen und Schüler auch Aspekte der Fernerkundung kennen. Das Projekt FIS des Geographischen Institutes der Universität Bonn beschäftigt sich mit den Möglichkeiten zur Einbindung des vielfältigen Wirtschafts- und Forschungszweiges der Satellitenfernerkundung in den naturwissenschaftlichen Unterricht der Sekundarstufen I und II. Dabei entstehen neben klassischen Materialien auch Anwendungen für den computergestützten Unterricht. Die Schülerinnen und Schüler sollen die Entstehung von Scannerbildern nachvollziehen können. einen klaren Bezug zwischen den mathematischen Inhalten und der realen Situation herstellen können. die Struktur eines digitalen Bildes kennen und auf die Problemstellung übertragen können. die Anforderung an eine Funktion formulieren, welche für die Lösung der Problemstellung notwendig ist. denn Sinn und die Arbeitsweise von Funktionen anhand des zu entzerrenden Bildes verstehen. Thema Pixel auf Abwegen Autoren Dr. Kerstin Voß, Henryk Hodam Fach Mathematik Zielgruppe Klasse 8 Zeitraum 2 Stunden Technische Voraussetzungen Adobe Flash-Player (kostenloser Download) Planung Pixel auf Abwegen Ziel der Unterrichtseinheit ist es, Aufgaben und die Mechanismen einfacher linearer Funktionen zu verstehen. Durch die praktische Anwendung sollen mögliche Verständnisbarrieren frühzeitig überwunden werden und den Lernenden ein klarer Bezug der mathematischen Inhalte zu realen Situationen aufgezeigt werden, in diesem Fall zur rechnerischen Entzerrung von Scannerbildern. Schülerinnen und Schüler sollen mithilfe des Moduls vielmehr das Verständnis für den Sinn und die Charakteristik von einfachen Funktionen festigen, bevor es lehrplangemäß zur Vertiefung dieser Thematik kommt. Es ist jedoch denkbar, Themen wie den Aufbau einer Funktionsgleichung oder die Herleitung einer Funktionsgleichung aus zwei Punkten eines Graphen an das Modul anzulehnen und sich im regulären Unterricht sukzessive die Werkzeuge zur Lösung des Moduls zu erarbeiten. Die mathematische Auseinandersetzung mit dem Funktionsbegriff ist zentrale Aufgabe des Moduls. Zusätzlich lernen die Schülerinnen und Schüler Aspekte der Fernerkundung kennen. Einführung in die Thematik Das interaktive Modul gliedert sich in ein Startmenü, eine Einleitung und den in drei Bereiche unterteilten Aufgabenteil. Aufgabenteil im Computermodul Hier wird der Aufgabenteil mit den drei Bereichen Analyse, Funktion und Entzerrung genauer beschrieben. Henryk Hodam studierte Geographie an der Universität Göttingen. In seiner Diplomarbeit setzte er sich bereits mit der multimedialen Vermittlung räumlicher Prozesse auseinander. Zurzeit arbeitet Herr Hodam als wissenschaftlicher Mitarbeiter im Projekt "Fernerkundung in Schulen". Um den Kern der Problematik im Modul erfassen zu können, ist eine kurze Erklärung notwendig, denn die hier behandelte Verzerrung ist nur charakteristisch für Scannerbilder. Die Beispiele aus den Hintergrundinformationen und vor allem die interaktive Animation am Anfang des Moduls sollen hier behilflich sein. Folie 1 zeigt klar den Unterschied zwischen einem normalen Luftbild und einem Scannerbild auf. Um zu verdeutlichen, wo die Vorteile eines Scannerbildes liegen, kann Folie 2 gezeigt werden. Die Unterrichtseinheit bedient sich der Möglichkeiten des Computers, um die Thematik durch Animation und Interaktion nachhaltig zu vermitteln. Darüber hinaus ist die durchgeführte Bildkorrektur nur mithilfe eines Rechners durchführbar. Ein Umstand, der den Schülerinnen und Schülern das Medium Computer nicht als reines Informations- und Unterhaltungsgerät, sondern auch als Werkzeug näher bringt. Das Modul ist ohne weiteren Installationsaufwand lauffähig. Es wird durch Ausführen der Datei "FIS_Pixel auf Abwegen.exe" gestartet. Dazu ist ein Adobe Flash Player notwendig. Der erste Bereich des Moduls wird nach dem Start automatisch geladen. Die Animation verdeutlicht die Arbeitsweise eines flugzeuggestützten Scanners. Das Flugzeug scannt dabei eine Landoberfläche ab, gleichzeitig wird auf der rechten Seite der gescannte Bildbereich Reihe für Reihe, der aktuellen Flugzeugposition entsprechend, aufgebaut. Abb. 1 verdeutlicht dies (Platzhalter bitte anklicken). Die mittig angeordneten Pfeile dienen der Beeinflussung des Flugverhaltens. Das gescannte Bild reagiert dabei auf die ausgelösten Manöver und die entstandene Verzerrung wird angezeigt. Wird eine Seitwärtsbewegung ausgelöst, erscheint ein Button. Ein Klick auf den Button "Driftverzerrung bearbeiten" leitet über zum nächsten Menüpunkt. Zur Anpassung der Animation an geringere Rechnerleistung kann die Qualität mithilfe des Buttons im oberen linken Fensterbereich angepasst werden. Der zweite Bereich bietet eine animierte Einführung, in der ein Flugzeug über eine Landschaft fliegt. Abb. 2 gibt einen Eindruck dieser Animation (bitte auf den Platzhalter klicken). Eine semi-fiktionale Geschichte erzählt kurz, wie es zur Situation der Driftverzerrung gekommen ist, die es auf mathematischem Weg zu lösen gilt. Die "Weiter"-und "Zurück"-Buttons navigieren durch die beiden Abschnitte dieses Bereichs und leiten zum dritten Bereich, dem Aufgabenteil, weiter. Die Besonderheit der Übungen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass von Schülerinnen und Schülern erstellte Zeichnungen per Computer analysiert und bewertet werden. Somit muss sich die Lehrkraft nicht mehr mit der unmittelbaren Korrektur der Schülerarbeiten befassen, sondern kann sich in einer differenzierten Unterrichtssituation leistungsschwächeren Schülerinnen und Schülern zuwenden und diesen bei auftretenden Schwierigkeiten helfend und erklärend zur Seite stehen. Alle dynamischen Zeichnungen innerhalb der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch ihr Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich diese Software in besonderer Weise, um interaktive dynamische Lernumgebungen zu erstellen. Die Schülerinnen und Schüler sollen erkennen, dass die Steigung einer Geraden durch das Steigungsdreieck eindeutig festgelegt ist. die Gleichung von Ursprungsgeraden anhand der Steigung bestimmen können. Ursprungsgeraden nach einer gegebenen Gleichung zeichnen können. die Gleichung von Ursprungsgeraden aus den Koordinaten eines Punktes bestimmen können. Thema Steigung einer Geraden - mit GeoGebra entwickeln Autor Dr. Andreas Meier Fach Mathematik Zielgruppe 8. und 9. Klasse Zeitraum 2-3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Lernende, Browser mit aktiviertem Javascript, Java Runtime Environment (kostenloser Download) Planung Steigung einer Geraden - mit GeoGebra entwickeln In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes (von der Website realmath.de ), das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Schülerinnen und Schüler sollen Texte grafischen Darstellungen zuordnen. Informationen aus grafischen Darstellungen entnehmen und interpretieren. selbstständig Texte zu grafischen Darstellungen erstellen. eigene grafische Darstellungen zu Sachverhalten entwerfen. Thema Lineare Funktionen - grafische Darstellungen interaktiv erkunden Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 8-9 Zeitraum 1-2 Stunden Technische Voraussetzungen Ein Computer mit Internetzugang für je zwei Schülerinnen oder Schüler, Browser mit aktiviertem Javascript, Beamer, OHP Unterrichtsplanung Lineare Funktionen der Unterrichtseinheit Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Das ?ICH-DU-WIR?-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf "Lineare Funktionen" Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen anhand der Funktionsmaschine den Funktionsbegriff verinnerlichen. Zuordnungsvorschriften linearer Funktionen kennen und anwenden können. Zuordnungsvorschriften der Form y=mx+n formulieren können. das Ablesen von linearen Funktionen aus dem Koordinatensystem beherrschen. das Eintragen von linearen Funktionen in ein Koordinatensystem beherrschen. Achsenabschnitte als Hilfsmittel zur Darstellung linearer Funktionen erkennen. das grafische Lösen linearer Gleichungssysteme kennen lernen. Thema Lineare Funktionen - die Funktionsmaschine Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 7 oder 10 Zeitraum etwa 4 Stunden bei der Erarbeitung in Klasse 7; etwa 2 Stunden beim Einsatz als Prüfungskomplex in Klasse 10 Technische Voraussetzungen Computerarbeitsplatz (im Idealfall ein Computer pro Schülerin/Schüler), Flash-Player (kostenloser Download aus dem Internet), Browser mit aktiviertem Javascript Die Unterrichtseinheit dient der Erarbeitung des Funktionsbegriffs. Da sehr viele Schülerinnen und Schüler Schwierigkeiten haben, den Funktionsbegriff zu verinnerlichen, wird gerade auf die anschauliche Darstellung der Funktion als Maschine, die Zahlen verändert, Wert gelegt. Das Modell der Funktionsmaschine hat sich in der Mathematik-Didaktik als sehr anschaulich und einprägsam für die Lernenden erwiesen. Die auf dem ersten Arbeitsblatt verwendete Animation soll einen Beitrag zur weiteren Erhöhung dieser Anschaulichkeit leisten! Damit die Animation richtig angezeigt wird, muss ein Flash-Player für den Browser installiert sein und interaktive Webinhalte müssen zugelassen werden. Einsatz der Materialien Hinweise zum Einsatz der Arbeitsblätter, Links zu den Onlinematerialien und Screenshots. Die Schülerinnen und Schüler sollen die Bedeutung des Vorfaktors a in der Funktionsvorschrift f(x) = ax 2 + bx + c erkennen und benennen können. erkennen, dass ein negatives (positives) Vorzeichen des Vorfaktors b eine Verschiebung der Parabel nach rechts (links) bewirkt, vorausgesetzt der Vorfaktor a ist positiv (negativ). den Einfluss des Vorfaktors c auf die Lage der Parabel angeben können. anhand vorgegebener Funktionsvorschriften angeben können, wie die Parabel geöffnet und verschoben ist. Thema Untersuchung von Parabeln mit Excel Autorin Sandra Schmidtpott Fach Mathematik Zeitraum 1-2 Unterrichtsstunden (je nach Excel-Vorkenntnissen) Zielgruppe Klasse 9 technische Voraussetzungen Rechner in ausreichender Menge für Partnerarbeit, Beamer Software Excel Die Schülerinnen und Schüler sollen Quadratische Funktionen in der Normalform erkennen und zeichnen können. Quadratische Funktionen in der Scheitelpunktform erkennen und zeichnen können. Quadratische Funktionen von der Scheitelpunktform in die Normalform überführen können und umgekehrt. das Lösen Quadratischer Gleichungen beherrschen. das Lösen von Sachaufgaben mittels Quadratischer Gleichungen beherrschen. Thema Quadratische Funktionen und Gleichungen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 9 oder 10 Zeitraum 7 Stunden Technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Flash-Player , Java Runtime Environment , Browser mit aktiviertem Javascript, Excel (für die Nutzung einer Hilfedatei zur Lösung Quadratischer Gleichungen); im Idealfall Beamer Die Schülerinnen und Schüler sollen die Problematik der Konstruktionen mit Zirkel und Lineal bewältigen. das Rechnen mit komplexen Zahlen üben. Funktionen mit zwei Variablen und deren Darstellung als Flächen im Raum kennen lernen. den Einsatz von Funktionen und Ortslinien in GeoGebra trainieren. Die Schülerinnen und Schüler sollen im Umgang mit verschiedenen Software-Programmen vertraut werden. die Mathematiksoftware wxMaxima anwenden. die Mathematiksoftware GeoGebra anwenden. Thema Quadratische Gleichung Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 3 Stunden Technische Voraussetzungen ein Rechner pro Schülerin und Schüler, die (kostenfreie) Software GeoGebra und wxMaxima sollte installiert sein. Auf zwei verschiedene Arten sollen diese komplexen Lösungen sichtbar gemacht werden. Zum Einsatz kommen dabei die frei zugänglichen Mathematik-Programme GeoGebra und wxMaxima. Unterrichtsverlauf "Nullstellen" Hier sind die Voraussetzungen und die verwendeten Materialien für diese Unterrichtseinheit genauer beschrieben. Anregungen und Erweiterungen Weitere Vorschläge zu Anwendungen mit höhergradigen Polynomen sind hier aufgeführt. Literatur Richard Courant, Herbert Robbins Was ist Mathematik?, 5. Auflage Springer 2000, ISBN 3-540-63777-X, Seite 204 Am Beispiel der Einführung in die Potenzfunktion mit ganzzahligem Exponent soll aufgezeigt werden, wie Schülerinnen und Schüler sich die Eigenschaften dieser Funktionen durch Experimentieren und Beobachten erarbeiten können. Durch die mit GeoGebra erzeugten dynamischen Veranschaulichungen werden sie in die Lage versetzt, sich ihrem eigenen Lerntempo entsprechend mit den Eigenschaften von Potenzfunktionen aktiv auseinander zu setzen. Die inhaltliche Aufbereitung der einzelnen interaktiven dynamischen Arbeitsblätter bietet eine Vorstrukturierung der zu erarbeitenden Unterrichtsinhalte. So leitet die Unterteilung in geradzahlige und ungeradzahlige Exponenten sowie die Vorgabe von jeweils neun zu prüfenden Aussagen zu zielgerichtetem Experimentieren an und unterstützt den individuellen Lernprozess. Die Zahl n als Exponent steht im Folgenden in allen Funktionsgleichungen stets für eine natürliche Zahl. Die Schüler und Schülerinnen sollen erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax n auf den Verlauf des Graphen beschreiben können. erkennen, dass die Eigenschaften von Potenzfunktionen mit der Gleichung y = x -n für gerade und ungerade Exponenten unterschiedlich sind und diese benennen können. den Einfluss des Parameters a in der Funktionsgleichung y = ax -n auf den Verlauf des Graphen beschreiben können. anhand vorgegebener Graphen deren Gleichung ermitteln können. Thema Potenzfunktion - Graphen analysieren, Eigenschaften entdecken Autor Dr. Andreas Meier Fach Mathematik Zielgruppe Klasse 10 Zeitraum etwa 3 Stunden Technische Voraussetzungen mindestens ein Computer mit Internetzugang und aktiviertem Javascript für je zwei Lernende, Java Plugin (1.4.2 oder höher, kostenloser Download) Planung Potenzfunktion - Graphen analysieren Die Schülerinnen und Schüler sollen Potenzfunktionen erkennen und in ein Koordinatensystem einzeichnen können. Potenzfunktionen mithilfe von Funktionsplottern darstellen können. das Berechnen von Wertetabellen für Potenzfunktionen beherrschen. den Einfluss des Koeffizienten a auf den Verlauf der Potenzfunktionen y = f(x) = ax n erarbeiten. Wurzelfunktionsgraphen erkennen und beschreiben können. Thema Potenzfunktionen Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 2 Stunden technische Voraussetzungen Computerarbeitsplätze, im Idealfall ein Rechner pro Person; Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript; eventuell Beamer Die Vorteile von Netbooks für den schulischen Einsatz liegen auf der Hand: Sie sind klein, leicht und deutlich preiswerter als herkömmliche Laptops. Die vorliegende Unterrichtseinheit zeigt Einsatzmöglichkeiten digitaler Medien für den Mathematikunterricht, ohne dass dafür der Computerraum aufgesucht werden muss. Vielmehr dienen die Netbooks dazu, im eigenen Klassenraum die fachlichen Inhalte mithilfe digitaler Medien noch anschaulicher zu vermitteln. Die Schülerinnen und Schüler sollen die mathematischen Inhalte der Kurvendiskussion erfassen und anwenden können. die mathematische Software (GeoGebra, wxMaxima) bedienen können. die verschiedene Software entsprechend ihrer Vorteile unterscheiden und zielgerichtet einsetzen können. Thema Nullstellen ganzrationaler Funktionen in Netbook-Klassen Autor Dr. Karl Sarnow Fach Mathematik Zielgruppe Klasse 10 im G8 Zeitraum 7 Stunden Technische Voraussetzungen Netbooks, Mathematiksoftware GeoGebra und wxMaxima (beides kostenfrei erhältlich) Hintergrund Einordnung der Unterrichtseinheit in den schulischen Kontext mit einer Verkürzung der Gymnasialzeit auf acht Jahre Unterrichtsverlauf 1. bis 3. Stunde Die ersten Stunden dienen dazu, dass sich die Lernenden beim ersten Einsatz von Netbooks mit den Geräten vertraut machen können. Unterrichtsverlauf 4. bis 6. Stunde Die Nullstellen einer Gleichung 3. Grades werden mit wxMaxima untersucht und anschließend mit dem konventionellen Ansatz begründet. Unterrichtsverlauf 7. Stunde Thema der letzten Stunde ist die Untersuchung der Nullstellen ganzrationaler Funktionen mit wxMaxima. Das Ergebnis wird im Nullstellensatz zusammengefasst. Die Schülerinnen und Schüler sollen im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a* x n kennen lernen. Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. die Nutzung von Funktionsplottern üben. Die Schülerinnen und Schüler sollen im Lernbereich "Wachstumsvorgänge und periodische Vorgänge" Einblick in verschiedene Wachstums- und Zerfallsprozesse gewinnen. die Begriffe unbeschränktes Wachstum (zum Beispiel linear und exponentiell) und beschränktes Wachstum (zum Beispiel logistisch) verstehen. ihre Kenntnisse auf Exponentialfunktionen und auf Wachstumsvorgänge übertragen. die exponentielle Regression unter Verwendung von Hilfsmitteln nutzen. im Lernbereich "Funktionale Zusammenhänge" Potenzfunktionen mit der Gleichung y = a * x n und Exponentialfunktionen mit der Gleichung y = c* a x kennen lernen. Thema Die Exponentialfunktion und die "Unendlichkeitsmaschine" Autor Jens Tiburski Fach Mathematik Zielgruppe Klasse 10 Zeitraum 1-2 Stunden Technische Voraussetzungen Computerarbeitsplätze in ausreichender Zahl (Einzel- oder Partnerarbeit), VRML-Plugin (blaxxun Contact, Cortona3D Viewer) In der Unterrichtseinheit kommt eine interaktive Lernumgebung zum Einsatz. Wenn die Schülerinnen und Schüler die Arbeit mit dynamischen Arbeitsblättern nicht gewohnt sind, hat sich eine Einführung der Materialien per Beamer bewährt. Auch der Umgang mit einem VRML-Plugin sollte über den Beamer demonstriert werden. Hinweise zur Technik und zum Unterrichtsverlauf Das 3D-Modell der Unendlichkeitsmaschine soll die Motivation der Lernenden steigern, sich mit der Exponentialfunktion auseinanderzusetzen. Die Schülerinnen und Schüler sollen den Unterschied zwischen Linearen Funktionen und Exponentialfunktionen kennen. die Begriffe Wachstumsrate und Wachstumsfaktor kennen und anwenden können. den Unterschied zwischen Linearem Wachstum und Exponentiellem Wachstum (Zerfall) kennen und aus Anwendungsbezügen das entsprechende Wachstumsmodell bestimmen können. die Begriffe Anfangswert und Wachstums-(Zerfalls-)faktor kennen und anwenden können. den Einfluss des Wachstumsfaktors a beziehungsweise des Zerfallsfaktors 1/a auf den Graphen der Exponentialfunktion kennen. die Eigenschaften der Exponentialfunktionen kennen. verschiedene Wachstums-(Zerfalls-)faktoren bestimmen und Funktionsvorschriften angeben können. Thema Einführung der Exponentialfunktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 10 Zeitraum 6-8 Unterrichtsstunden Technische Vorraussetzungen Computer in ausreichender Anzahl (Partner- oder Kleingruppenarbeit), Beamer, GeoGebra, Java-Plugin Von der GeoGebra-Homepage können Sie die dynamischen Arbeitsblätter der Unterrichtseinheit in zwei Paketen (ZIP-Archive) herunterladen: Das Bevölkerungsmodell von Malthus sowie die Materialien zur Verzinsung und Exponentialfunktion . Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen magische Quadrate als solche erkennen können. magische "4 x 4"-Quadrate auf weitere Eigenschaften hin untersuchen können. aus bereits bekannten magischen Quadraten neue erstellen können. ein magisches Geburtstagsquadrat erstellen können. Hypothesen aufstellen und überprüfen. weitgehend eigenverantwortlich und kooperativ arbeiten. magische Quadrate mit den Zahlen 1 bis 16 erzeugen können (eine nicht ganz einfache Krönung der Arbeit). Thema Magische Quadrate Autorin Dr. Renate Motzer Fach Mathematik Zielgruppe begabte Schülerinnen und Schüler ab Klasse 5 Zeitraum 2-10 Stunden, je nachdem wie viele Fragestellungen bearbeitet werden Technische Voraussetzungen Computer mit Tabellenkalkulationssoftware (hier Microsoft Excel) Die vorliegende Unterrichtseinheit beschäftigt sich mit magischen "4 mal 4"-Quadraten, wie sie von der Grundschule bis zur gymnasialen Oberstufe untersucht werden können. Schülerinnen und Schüler können sich oder Freunden ein magisches Geburtstagsquadrat errechnen, sobald ihnen negative Zahlen vertraut sind. Es sind auch schon gute Erfahrungen mit Lernenden in der Primarstufe gesammelt worden, die sich, so weit es bei ihren Daten nötig war, auch an negative Zahlen herangewagt haben. Für Schülerinnen und Schüler höherer Jahrgangsstufen gibt es weiterführende Aufgabenstellungen, die zum einen mit dem Lösen von Gleichungssystemen, zum anderen mit Matrizenaddition und skalarer Multiplikation zu tun haben. Oberstufenschülerinnen und -schüler können mit den Eigenschaften von Vektorräumen arbeiten. Auch in niedrigeren Jahrgangsstufen kann man sich mit manchen Vektorraumeigenschaften - ohne die zugehörigen Begrifflichkeiten - auseinandersetzen. Unterrichtsverlauf und Materialien Neben der Addition der Linearkombinationen von Grundquadraten können magische Quadrate auch auf anderen Wegen gefunden werden. Die Schülerinnen und Schüler sollen sich magischen Quadraten auf spielerische Weise nähern. die grundsätzlichen Eigenschaften magischer Quadrate kennen lernen. Thema Magisches Quadrat digital Autoren Elfi Petterich Fach Mathematik, auch für Vertretungsstunden geeignet Zielgruppe ab Klasse 5 (für alle Klassenstufen als spielerische Ergänzung zu magischen Quadraten) Zeitraum weniger als 1 Stunde Technik Computerarbeitsplätze zur Nutzung des Computermoduls, Lautsprecher müssen aktiviert sein. Das Programm ist im Grunde altersstufenunabhängig. Es ist ab der Klasse 5 einsetzbar, kann aber ebensogut auch bei älteren Schülerinnen und Schülen genutzt werden. Nutzung und Anpassung des magischen Quadrates Hier finden Sie Erläuterungen zur Funktionsweise des Programms sowie zur Möglichkeit der Darstellung eigener magischer Quadrate.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Lineare Funktionen interaktiv erkunden

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Lineare Funktionen werden durch den Einsatz interaktiver Webseiten die mathematischen Fähigkeiten ausgebildet, Sachverhalte grafisch darzustellen sowie Sachverhalte aus Graphen abzulesen und zu interpretieren. Auf diese Grundfertigkeit wird in unserer modernen Lebenswelt zurückgegriffen und sollte daher auch in einen zeitgemäßen Mathematikunterricht eingehen. In der Verbindung von Alltagssituationen mit dem Thema Lineare Funktionen soll den Schülerinnen und Schülern in dieser Unterrichtseinheit durch den Einsatz von interaktiven Webseiten ein eigenständiger Wissenserwerb ermöglicht werden. Die Unterrichtseinheit entstand im Rahmen der Mitarbeit des Autors am SINUS-Transfer -Projekt. Sie soll insbesondere aufzeigen, wie Zielsetzungen von SINUS-Transfer durch die Unterstützung von webbasierten Arbeitsblättern umgesetzt werden können. Die Unterrichtseinheit basiert auf zwei HTML-Seiten, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die Interaktivität möglich wird, muss jedoch Javascript im Browser aktiviert sein. Die Inhalte der Webseiten sind so konzipiert, dass eine Behandlung der Linearen Funktionen als Voraussetzung zur Bearbeitung der Aufgaben nicht zwingend notwendig ist. Die Aufgaben können sogar als Baustein für den Einstieg in die Thematik Lineare Funktion verwendet werden. Interaktive Arbeitsblätter Die grafische Darstellung der bei Regen steigenden Wasserhöhe in einer Regentonne in Abhängigkeit von der Zeit ist das Thema des ersten interaktiven Arbeitsblattes, das in dieser Unterrichtseinheit zum Einsatz kommt. Wird das Arbeitsblatt für den Einstieg in das Themengebiet "Lineare Funktionen" verwendet, kann hier propädeutisch der Begriff der Steigung erarbeitet werden. Kommt das Online-Arbeitsblatt erst im Verlauf des Themas zum Einsatz, so kann der mathematisch erarbeitete Begriff der Steigung mit neuer anschaulicher Bedeutung gefüllt werden. In dem darauf folgenden zweiten interaktiven Arbeitsblatt sind unterschiedliche Preisangebote eines Kartbahnbetreibers grafisch dargestellt. Es ermöglicht den Schülerinnen und Schülern, die eben erworbenen Kenntnisse in einem neuen Aufgabenumfeld anzuwenden und sich in einem Wettbewerb mit den Mitschülern zu messen. Das "ICH-DU-WIR"-Prinzip Das methodische Konzept der Schweizer Didaktiker Peter Gallin und Urs Ruf zeigt einen Weg zur nachhaltigen Anregung individueller Lernprozesse auf. Unterrichtsverlauf Hinweise zum Verlauf des Unterrichts und zum Einsatz der Arbeitsmaterialien (Arbeits- und Hausaufgabenblatt, Online-Arbeitsblätter) Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Fachkompetenz Die Schülerinnen und Schüler ordnen Texte grafischen Darstellungen zu. entnehmen und interpretieren Informationen aus grafischen Darstellungen. erstellen selbstständig Texte zu grafischen Darstellungen. entwerfen eigene grafische Darstellungen zu Sachverhalten. Medienkompetenz Die Schülerinnen und Schüler lösen Aufgaben auf interaktiven Arbeitsblättern am Computer. Sozialkompetenz Die Schülerinnen und Schüler arbeiten mit einem Partner oder einer Partnerin zusammen. Die Bearbeitung der Regentonnen-Aufgabe ist nach dem Dreischritt "ICH-DU-WIR" aufgebaut. Dies ist ein methodisches Konzept, das auf die beiden Schweizer Didaktiker Peter Gallin und Urs Ruf zurückgeht. Es zeigt einen Weg auf, wie das Lernen in der Schule organisiert und strukturiert werden kann, um individuelle Lernprozesse nachhaltig anzuregen. Dabei sind die einzelnen Elemente ICH, DU und WIR wie folgt zu verstehen: ICH bedeutet individuelles Arbeiten Die Schülerinnen und Schüler machen sich in dieser Phase eigenständig mit der Problemstellung der Regentonnen-Aufgabe vertraut, stellen Bezüge zum individuellen Vorwissen her und versuchen selbstständig, Zusammenhänge zu erkennen und Lösungen zu finden. Dabei ist darauf zu achten, dass keine Kommunikation unter den Schülerinnen und Schülern erfolgt. DU bedeutet Lernen mit dem Partner Nach der Bearbeitung der Aufgaben in Einzelarbeit tauschen sich die Schülerinnen und Schüler mit ihrer Partnerin oder ihrem Partner aus. Sie erklären sich abwechselnd ihre Ideen und Lösungsvorschläge, vergleichen diese miteinander oder vollziehen die Gedanken des anderen nach. So kann das eigene Wissen vertieft werden. In Partnerarbeit wird weiter an der vollständigen Lösung gearbeitet. WIR bedeutet Kommunikation im Klassenverband Im Rahmen dieser Phase können die Schülerinnen und Schüler ihre Lösungen im Klassenplenum präsentieren. Sollten noch Unklarheiten hinsichtlich der Aufgabenlösung bestehen, werden diese hier diskutiert. Die individuelle Korrektur der Aufgaben erfolgt dann nicht durch die Lehrkraft, sondern durch den Einsatz von Online-Arbeitsblatt 1. Die Schülerinnen und Schüler rufen erst jetzt die entsprechende Webseite auf, bearbeiten die einzelnen Aufgaben und überprüfen so ihre bisherigen Ergebnisse. Dabei kann es durchaus sein, dass sie ihre Lösungen neu überdenken müssen. Der Computer dient hier als Kontrollinstrument, das zu weiterer Diskussion des Sachverhalts anregen kann. In dieser Phase des Unterrichts sollte es die Lehrkraft vermeiden, sich in die Diskussion der Schülerinnen und Schüler einzuschalten. Ihre Aufgabe besteht ausschließlich im Beobachten, nicht im Bewerten. Die Lehrkraft projiziert die einzelnen Aufgaben des interaktiven Web-Arbeitsblattes zur Regentonne per Beamer. Dazu erläutert jeweils eine Schülerin oder ein Schüler ihre beziehungsweise seine gefundenen Lösungen vor der Klasse. Nun sind die Schülerinnen und Schüler selbst aufgefordert, in Partnerarbeit Texte zu bestehenden Graphen sowie eigene Graphen und dazugehörige Texte zu verfassen. Um eine sich anschließende Diskussion im Klassenverband anschaulich zu gestalten, sollte die Lehrkraft Folien mit den Aufgaben an die einzelnen Teams ausgeben. Anhand dieser Folien kann eine fundierte Bewertung der Ergebnisse erfolgen. Bei der Bearbeitung des interaktiven Arbeitsblattes zur Kartbahn (siehe Abb. 2, Platzhalter bitte anklicken) sollen die Schülerinnen und Schüler unterschiedliche Preisangebote drei farbigen Graphen zuordnen und anschließend unterschiedliche Aufgaben bearbeiten. Mithilfe des Buttons "Wertung" wird die Eingabe geprüft und Punkte werden vergeben. Mit "Neu fragen" werden neue Aufgaben gestellt. Als besonderer Anreiz besteht dabei die Möglichkeit, die erreichten Punkte in eine Highscore-Liste eintragen zu lassen. Die Unterrichtsstunde beendet die Hausaufgabenstellung (kartbahn_hausaufgabe.pdf), die sich an den zuletzt gestellten Aufgaben des Web-Arbeitsblattes 2 orientiert. Darüber hinaus sollen die Zusammenhänge der Aufgabenstellung, die dem Web-Arbeitsblatt 2 zugrunde liegt, verbalisiert werden. Die Lehrkraft präsentiert den Sachverhalt mithilfe des Online-Arbeitsblattes per Beamer und gibt das Arbeitsblatt (arbeitsblatt_regentonne.pdf) an die Schülerinnen und Schüler aus. Diese sollen dann die zehn darauf formulierten Aufgaben ohne Verwendung des Computers in Einzelarbeit bearbeiten. Im Anschluss daran vergleichen sie mit ihrer Partnerin oder ihrem jeweiligen Partner die gefundenen Ergebnisse, stellen Gemeinsamkeiten fest oder diskutieren unterschiedliche Standpunkte. Einsatz motivierender Medien Aufgaben spielen für die Motivierung des Lernens und für ein verständnisvolles Erschließen, Üben und Vertiefen von Wissen eine zentrale Rolle im Mathematikunterricht. Deshalb besteht gerade in der Weiterentwicklung von Aufgabenstellungen und der Form ihrer Bearbeitung ein beträchtliches Potenzial zur weiteren Optimierung des Mathematikunterrichts. Im Rahmen dieser Weiterentwicklung von Aufgaben und Aufgabenumfeldern sollte auch der Einsatz moderner, die Schülerinnen und Schüler motivierender Medien berücksichtigt werden. Spannungsfeld zwischen freiem Arbeiten und Orientierung des Unterrichts Interaktive Arbeitsblätter können durch die Variation von Aufgabenstellungen Lernräume für selbstständiges, eigenverantwortliches und kooperatives Lernen schaffen. Dabei ist jedoch stets das Spannungsfeld zwischen freiem, unabhängigem Arbeiten und der gezielten Orientierung des Unterrichts zu beachten. Einerseits sollten die Schülerinnen ein Aufgabenfeld selbstständig erkunden und so ihr eigenes Wissen und dessen Grenzen ausloten können, andererseits aber auch Rückhalt und Orientierung auf ihrem Lernweg finden. Bei der Erstellung von interaktiven webbasierten Arbeitsblättern gilt es, beides zu berücksichtigen. Weiterentwicklung der Aufgabenkultur Weitere Informationen zu Modul 1 auf der SINUS-Transfer-Website Unterricht als aktives Geschehen Lehrerzentriertes Unterrichten, das die Schülerinnen und Schüler in einer passiven Rolle des Wissensempfängers belässt, kann sehr leicht zu nachlassendem Interesse am Lerngegenstand führen. Kooperative Arbeitsformen hingegen veranlassen die Schülerinnen und Schüler, zu argumentieren, Gedachtes sprachlich verständlich zu fassen und die Perspektive des jeweils Anderen einzunehmen. Damit wird Unterricht zu einem aktiven Geschehen, das Raum für Entdeckungen aber auch Fragen lässt. Darüber hinaus kann kooperatives Lernen nach dem "ICH-DU-WIR"-Prinzip die Schülerinnen und Schüler beim Aufbau sozialer Kompetenzen unterstützen. Diskutieren, Unterstützen, Präsentieren Der Einsatz von interaktiven webbasierten Arbeitsblättern kann dazu beitragen, ein produktives, motivierendes Arbeitsklima zu schaffen. Der Unterricht erhält zudem ein neues Gestaltungselement und kann somit abwechslungsreicher organisiert werden. Aufgabe der Lehrkraft bleibt es, dafür Sorge zu tragen, dass die Schülerinnen und Schüler nicht allein vor dem Computer bleiben, sondern ihre Beobachtungen und Lösungsideen gemeinsam diskutieren, sich wechselseitig unterstützen und ihre Ergebnisse im Klassenverband präsentieren und diskutieren können. Der vorgelegte Unterrichtsentwurf soll hier eine Anregung bieten. Aufgaben für kooperatives Arbeiten Weitere Informationen zu Modul 8 auf der SINUS-Transfer-Website Üben muss mehr sein als die Anwendung von Routinen Im Mathematikunterricht werden die Schülerinnen und Schüler häufig mit anspruchsvollen Inhalten und komplexen Problemstellungen konfrontiert. Erkenntnis- und Lernfortschritte werden sie nur dann erzielen, wenn sie systematisch und konzentriert vorgehen. Um die notwendige Sicherheit zu gewinnen, muss das neu erworbene Wissen ständig wiederholt und auf unterschiedliche Aufgabenstellungen angewandt und somit geübt werden. Effektives Üben muss dabei über ein bloßes Anwenden von Routinen hinausgehen. Mehr Freiheit durch digitale Medien Der Einsatz von interaktiven Arbeitsblättern zum Interpretieren von unterschiedlichen Graphen kann Möglichkeiten für ein solches Üben bieten. Selbstständiges, nicht ständig durch die Lehrkraft kontrolliertes Bearbeiten von Aufgaben, bei dem der Hinweis auf fehlerhafte Lösungen nicht "öffentlich" wird, stärkt die Schülerinnen und Schüler im Hinblick auf ihr eigenes, selbstverantwortetes Lernen. Ein solches Arbeiten gibt den Schülerinnen und Schülern eine größere Freiheit beim Wissenserwerb, aber auch mehr Verantwortung für das eigene Lernen. Verantwortung für das eigene Lernen stärken Weitere Informationen zu Modul 9 auf der SINUS-Transfer-Website

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Aufenthaltswahrscheinlichkeiten beim linearen Potentialtopf

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Aufenthaltswahrscheinlichkeiten beim linearen Potentialtopf" werden die Schülerinnen und Schüler mithilfe des Potentialtopfmodelles an die tatsächlichen Vorgänge in einem Atom herangeführt. Dabei werden die Lernenden mit quantenmechanischen Beschreibungen konfrontiert, die ein nicht unerhebliches Abstraktionsvermögen verlangen. Allerdings können die notwendigen Gleichungen in Analogie zu bereits bekannten Herleitungen aus der Mechanik beziehungsweise Elektrodynamik abgeleitet werden. Es wird für Schülerinnen und Schüler benötigt, die Physik als Leistungsfach und gegebenenfalls als Abiturfach gewählt haben. In Anlehnung an die mechanische Wellenfunktion zur Beschreibung von Seilschwingungen oder Wasserwellen werden die Schülerinnen und Schüler zur Beschreibung der quantenmechanischen Wellenfunktion mit Begriffen wie Wahrscheinlichkeitsamplitude und Aufenthaltswahrscheinlichkeitsdichte vertraut gemacht. Den Lernenden wird an konkreten Beispielen erläutert, dass man solche als Wahrscheinlichkeitswellen bezeichnete Funktionen nicht wie Wasserwellen beobachten kann, sondern nur zur mathematischen Beschreibung eines quantenmechanischen Zustandes benutzen kann. Anhand konkreter Beispiele können dann entsprechende Wahrscheinlichkeiten berechnet werden, ein in einem Potentialtopf befindliches Elektron an einer bestimmten Stelle zu finden. Aufenthaltswahrscheinlichkeit beim linearen Potentialtopf Zum Verständnis der noch folgenden Unterrichtseinheit zur quantenmechanischen Beschreibung des Wasserstoffatoms sind Kenntnisse über quantenmechanische Grundprinzipien wie Welle-Teilchen-Dualismus und Wahrscheinlichkeitsberechnungen zu Aufenthaltsorten von Elektronen notwendig. Dies kann mithilfe des linearen und dreidimensionalen Potentialtopfes den Schülerinnen und Schülern sehr gut nahegebracht werden. Vorkenntnisse Vorkenntnisse von Lernenden können kaum vorausgesetzt werden. Allerdings helfen die aus der Mechanik und Elektrodynamik bekannten Beschreibungen von mechanischen und elektromagnetischen Wellen sehr bei der Einführung der abstrakten Wahrscheinlichkeitswellen. Didaktische Analyse Bei der für die Lernenden nicht ganz einfachen Herleitung von Wahrscheinlichkeitswellen ist Abstraktionsvermögen gefragt. Deshalb müssen Lehrkräfte sehr darauf achten, durch Abbildungen und Animationen den Sachverhalt möglichst anschaulich zu gestalten. Im Übrigen sollte der anspruchsvolle Stoff den Schülerinnen und Schülern vorbehalten bleiben, die Physik als Leistungsfach beziehungsweise Abiturfach gewählt haben. Methodische Analyse In einer schrittweisen Hinführung werden die Lernenden in die Berechnungen von Aufenthaltswahrscheinlichkeiten eingeführt. Ergänzende Übungsaufgaben erläutern und verfestigen das Gelernte mit dem Ziel, damit auch die realen Vorgänge in einem Wasserstoffatom verstehen zu können. Fachkompetenz Die Schülerinnen und Schüler erkennen, dass die quantenmechanischen Vorgänge im atomaren Bereich mit den Methoden der klassischen Physik nicht beschrieben werden können. können Begriffe wie Wahrscheinlichkeitswelle und Aufenthaltswahrscheinlichkeit beschreiben. wissen, wie man Wahrscheinlichkeiten in der Quantenphysik herleitet und berechnet. Medienkompetenz Die Schülerinnen und Schüler überprüfen selbständig Fakten, Hintergründe und Kommentare im Internet. lernen die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin zu überprüfen und einzuordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Partner- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinander und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern und Freunden wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II
ANZEIGE
Premium-Banner