• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Beobachtung der Internationalen Raumstation (ISS)

Fachartikel

Dieser Fachartikel gibt Tipps zur Beobachtung der Internationalen Raumstation (ISS) und stellt die Webseite "Heavens Above" als Online-Werkzeug vor. "Raumstation" hört sich sehr weit weg an, irgendwo da oben… Dabei zieht die ISS nur 330 bis 400 Kilometer über unseren Köpfen ihre Bahn. Sie bietet sich als Objekt für Himmelsbeobachtungen im astronomischen Sommerloch der kurzen Nächte an, da sie sich bereits in der Dämmerung zeigt.Ein ruhig strahlendes Objekt, das in etwa vier Minuten aus südöstlicher Richtung in nordwestlicher Richtung fliegt und im Gegensatz zu Flugzeugen nicht blinkt, ist ein guter Kandidat für die ISS. Etwa eineinhalb Stunden benötigt die ISS für eine Runde um unseren Planeten. Sie ist allerdings nur in der Abend- oder Morgendämmerung sichtbar, wenn sie von der Sonne angestrahlt wird. Als Beobachtungszeitfenster kommen nur etwa zwei Stunden vor Sonnenaufgang und zwei Stunden nach Sonnenuntergang infrage. Nicht immer kommt die ISS gerade zu diesen Stunden bei uns vorbei. Man muss aber nicht auf eine Zufallsbeobachtung warten: Auf der englischsprachigen Website "Heavens Above" können Sie herausfinden, wann genau die ISS am Himmel über Ihnen zu sehen ist.

  • Geographie / Jahreszeiten / Physik / Astronomie
  • Primarstufe, Sekundarstufe I, Sekundarstufe II

Untersuchung der ISS-Flugbahn

Unterrichtseinheit

Kerngedanke der hier vorgestellten Versuchsanordnung ist, dass mindestens zwei Schulen aus verschiedenen Regionen oder Ländern zusammenarbeiten, um die Flugbahn und Flughöhe der ISS im Rahmen einer Messreihe zu bestimmen.Das ISS-Triangulations-Experiment wurde im Rahmen der DLR-Initiative School in Space für die 10. Klasse und die Oberstufe konzipiert. Schülerinnen und Schüler ermitteln dabei selbstständig die Parameter Flugbahn, Flughöhe, Geschwindigkeit und die Umlaufzeit der ISS mit einfachen mathematischen Berechnungen und leichtem Gerät. Grundlagen sind die Trigonometrie und die Tatsache, dass die ISS unter bestimmten Bedingungen mit bloßem Auge am Himmel zu beobachten ist. Die Raumstation und die Partnerschulen bilden bei der zeitgleich durchgeführten Beobachtung ein imaginäres Dreieck (oder auch mehrere Dreiecke), dessen Winkel - und somit auch Seiten - auf Grundlage der Trigonometrie bestimmbar sind. Informationen zur Sichtbarkeit der ISS an Ihrem Standort können Sie über die vom DLR gehostete Website Heavens-Above ermitteln. Durch die Aufnahme von Messreihen an aufeinander folgenden Tagen (oder innerhalb mehrerer Tage) können Veränderung der Flughöhe nachgewiesen werden.Triangulation ist die Winkel- und Seitenlängen-Bestimmung unter Ausnutzung der bekannten geometrischen Beziehungen (Sinussatz, Cosinussatz und Tangens-Winkelbeziehung). Die Kenntnis und Beherrschung dieser Grundlagen wird für die Bearbeitung der Aufgaben vorausgesetzt. Die Beobachtungsorte zweier Partnerschulen und die ISS bilden bei beiden Methoden (Theodolit, Fotografie) das Dreieck, welches den Berechnungen zugrunde gelegt wird. Die Berechnungen gestalten sich aber aufgrund der Kugelgestalt der Erde etwas schwieriger. Ausführliche Informationen dazu finden Sie in dem Lehrerheft des DLR zum ISS-Schülerexperiment Triangulation, das von der Website School in Space als PDF heruntergeladen werden kann. Wann ist die ISS zu sehen? Die Sichtbarkeit der ISS kann mithilfe einer Website für jeden möglichen Beobachtungsstandort ermittelt werden. Durchführung des Experimentes Hinweise zur Durchführung der Messreihen und zur Nutzung von Arbeitsplattformen bei der Zusammenarbeit mit Partnerschulen. Die Schülerinnen und Schüler sollen die ISS mit eigenen Augen beobachten und sich so ihrer Existenz bewusst werden. erkennen, dass Informationen aus der hochtechnisierten Raumfahrt hinterfragt und mit einfachen Mitteln überprüft werden können. aus den Gesetzen der Trigonometrie Algorithmen zur Berechnung der Flughöhe erstellen und so Methoden der Mathematik anwendungsorientiert einsetzen. auf der Grundlage trigonometrischer Konstruktionen einfache Beobachtungsinstrumente selber bauen und gegebenenfalls ein Teleskop ausrichten (Fotografieren der Raumstation). lernen, eine Messreihe zu planen, im Team zu organisieren und sich mit anderen Partnern zu koordinieren. Thema Untersuchung der ISS-Flugbahn Autor Dr. Winfried Schmitz, Dr. André Diesel Fächer Physik, Mathematik, Astronomie-AG Zielgruppe ab Klasse 10 Zeitraum etwa 6 Stunden Vorbereitungszeit (Theorie der Trigonometrie, Bau eines Theodoliten), ein AG-Treffen für die Durchführung einer Testmessungen, etwa eine Stunde für jede Beobachtung der Messreihe; es müssen mehrere Messreihen (an aufeinander folgenden Tagen oder innerhalb mehrerer Tage) aufgenommen werden, um eine Veränderung der Flughöhe nachweisen zu können. Technische Voraussetzungen Computer mit Internetzugang für die Ermittlung der Sichtbarkeitsdaten der ISS, Kompass; Material aus dem Baumarkt für den Bau des Theodoliten (zum Beispiel Holz und Schrauben), Bohrmaschine, Säge und Akku-Schrauber; alternativ: Teleskop mit Möglichkeit zur astronomischen Fotografie oder Digitalkamera mit großer Brennweite und manueller Belichtungszeit, Kamerastativ. Dr. André Diesel ist Diplom-Biologe und Fachredakteur für Naturwissenschaften, Mathematik und Geographie bei Lehrer-Online. Die ISS ist nur bei einem wolkenfreien oder leicht bewölkten Himmel und nur bei der Abend- oder Morgendämmerung sichtbar, wenn sie von der Sonne angestrahlt wird. Als Beobachtungszeitfenster kommen also nur etwa zwei Stunden vor Sonnenaufgang und zwei Stunden nach Sonnenuntergang in Frage. Informationen zur Sichtbarkeit der ISS an Ihrem Standort können über die Website Heavens-Above ermitteln. Dazu müssen Sie sich zunächst registrieren. Sie können dann die Koordinaten Ihrer Position oder mehrerer Beobachtungsorte eingeben (manuell oder per Menüauswahl), für die Sie dann die Sichtbarkeitsdaten der ISS oder von Satelliten, zum Beispiel Envisat, für die jeweils nächsten zehn Tage anzeigen lassen können; bei aktuellen Space-Shuttle-Missionen kann auch dessen Sichtbarkeit am eigenen Ort abgefragt werden. Auch zu Planeten und Kometen, finden Sie hier Informationen. Die Sichtbarkeitsdaten der ISS werden als Himmelskarte und als Tabelle ausgegeben (Abb. 1, Platzhalter bitte anklicken). Der rote Pfeil markiert die Flugrichtung der Station. Zudem erhält man auch eine detaillierte Sternenkarte des am höchsten über dem Horizont liegenden Flugbahnabschnittes (nicht dargestellt). Als besonderen Service kann man auch eine "Ground Track"-Karte (Subsatellitenbahn) abrufen, die die Flugbahn der ISS über der Erdoberfläche zeigt (Abb. 2). Vom Auftauchen über dem Horizont bis zum Untergang am gegenüberliegenden Horizont beschreibt die Raumstation eine Flugbahn, bei welcher der Höhenwinkel stetig zunimmt, bis ein Maximalwert erreicht ist. Dieser Maximalwert hängt von der relativen Nähe des Beobachtungspunktes zur Subsatellitenbahn ab. Die Subsatellitenbahn ist die Spur der Satellitenbahn in senkrechter Projektion auf die Erde. Je näher der Beobachtungspunkt und die Subsatellitenbahn zusammen liegen, desto größer sind die maximalen Höhenwinkel, die beim Vorbeiflug gemessen werden können. Zieht die Spur des Satelliten direkt über den Beobachtungspunkt hinweg, dann liegt das Maximum des Höhenwinkels bei 90 Grad. Der Winkel zwischen der Bahnebene eines Satelliten und der Äquatorebene wird als Inklination bezeichnet. Der Wendepunkt einer Satellitenbahn liegt in derjenigen geographischen nördlichen und südlichen Breite, die dem Zahlenwert der Bahnneigung, also dem Winkel der Satellitenbahn beim Äquatordurchgang, entspricht. Da die Flugbahn der ISS eine Inklination von 51,57 Grad aufweist, liegt ihr nördlicher und südlicher Wendepunkt in den Breiten von jeweils 51,57 Grad. Darüber hinaus ist eine Sichtbarkeit in höheren Breiten weiterhin gegeben, allerdings nur unter maximalen Höhenwinkeln, die kleiner als 90 Grad sind. Zur Beobachtung und Vermessung der Flugbahnparameter müssen die Schülerinnen und Schüler einen Theodolit bauen. Eine Anleitung dazu finden Sie im Lehrerheft des DLR zum Triangulationsexperiment. Ist der Zeitpunkt für die Beobachtung der ISS festgelegt, beginnen die Messungen im Team an den beiden Partnerschulen. Sind die Daten von allen Teammitgliedern korrekt erfasst worden, können die Berechnungen beginnen. Gleiches gilt für die Flughöhenbestimmung mithilfe eines Fotoapparats. Folgende Aufgaben müssen bewältigt werden: Messinstrumente nach Anleitung selber (auf)bauen ISS beobachten Messwerte erfassen Werte mit der Partnerschule austauschen Berechnungen durchführen Ergebnisse auswerten und gemeinsam mit der Partnerschule publizieren Bei der Beobachtung der ISS muss der Theodolit in Richtung der Partnerschule weisen. Ein Kompass ist daher unerlässlich. Im Verlauf der Messungen wird derjenige Zeitpunkt festgehalten, zu dem der Mittelpunkt der Erde, die eigene Schule, die Partnerschule und die ISS in einer Ebene liegen. Die Flughöhe der Raumstation kann auch durch Fotografieren des Überflugs von zwei verschiedenen Standorten bestimmt werden. Eine Beschreibung dieser Methode ist dem Lehrerheft des DLR zu entnehmen. Bei der Durchführung der Messreihen wird innerhalb von acht Wochen die ISS jeweils in zwei aufeinander folgenden Wochen abends beziehungsweise morgens kurz nach beziehungsweise kurz vor Sonnenaufgang beobachtet. In diesen Zeitraum gibt es jeweils etwa acht Tage mit günstigen Beobachtungskonstellationen. Die Messungen sind witterungsabhängig. Der Zeitaufwand pro Messung (Aufbau, Justierung, Messung, Abbau, Auswertung) beträgt etwa eine Stunde. Durch die Aufnahme von Messreihen an aufeinander folgenden Tagen (oder innerhalb mehrerer Tage) können Veränderungen der Flughöhe nachgewiesen werden. Gegebenenfalls kann auch registriert werden, dass die Flugbahn der ISS nach einem Besuch des Space-Shuttles durch dessen Triebwerke wieder angehoben wurde.

  • Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe II
ANZEIGE
Premium-Banner