Bestimmung der Erdbeschleunigung mit dem Mobiltelefon
Unterrichtseinheit
Die Unterrichtseinheit stellt eine computergestützte Bestimmung der Erdbeschleunigung vor, für die ausschließlich Gegenstände aus dem Alltag benötigt werden: Zum Einsatz kommen neben einem Smartphone ein Mikrofon beziehungsweise ein Headset, ein weiches Kissen, ein Computer mit Soundkarte sowie kostenfreie Tonanalysesoftware.Bewegt sich eine Schallquelle relativ zu einem Beobachter, so nimmt dieser eine Frequenzverschiebung wahr. Der nach dem österreichischen Forscher Christian Andreas Doppler (1803-1853) benannte Effekt kann unter Verwendung von Alltagsgegenständen dazu genutzt werden, um die Erdbeschleunigung g mit guter Genauigkeit zu bestimmen. Hierzu lässt man ein Handy, welches einen Ton konstanter Frequenz emittiert, frei fallen und registriert den Frequenzverlauf mithilfe eines Mikrofons. Die beobachtbare Frequenzverschiebung nimmt mit der Fallgeschwindigkeit des Handys zu. Dieser Effekt lässt sich mit Freeware-Programmen auswerten und ermöglicht unter Berücksichtigung des Geschwindigkeit-Zeit-Gesetzes für gleichförmig beschleunigte Bewegungen die Berechnung der Erdbeschleunigung. Ein Stück Lebenswelt im Physikunterricht - das Smartphone Die Physik wird vonseiten der Schülerinnen und Schüler oftmals als eine Wissenschaft angesehen, die ausschließlich im Physiksaal wirkt und mit dem täglichen Leben nichts zu tun hat. Ursache hierfür ist eine zu geringe Anbindung der Lerninhalte an der Lebenswelt der Schülerinnen und Schüler. Für sie ist der traditionelle Unterricht geprägt von Handlungen, die im Alltag keine Rolle spielen sowie von Begriffen und Experimentiergeräten, die im täglichen Leben nicht benötigt werden. Um der beschriebenen Situation ein Stück weit entgegenzuwirken, wird durch das hier vorgeschlagene Experiment versucht, ein bei den Lernenden im Allgemeinen sehr beliebtes Medium sinnvoll in den Physikunterricht zu integrieren. Verknüpfung von Lerninhalten Dadurch, dass die Bestimmung der Erdbeschleunigung wie auch die Untersuchung des Dopplereffekts (optisch wie akustisch) völlig zu Recht schon seit langer Zeit den ihnen gebührenden Platz im Physikunterricht der gymnasialen Oberstufe gefunden haben, ermöglicht der hier beschriebene Versuch darüber hinaus eine vertikale Verknüpfung von Lerninhalten im Sinne eines spiralartig aufgebauten Curriculums: Der freie Fall und somit die Erdbeschleunigung werden in der Regel zu Beginn des Oberstufenunterrichts im Zuge der Kinematik behandelt, der Dopplereffekt dagegen erst am Ende des Mechanikunterrichts bei der Erarbeitung des Themas " Schwingungen und Wellen ". Aufbau und theoretischer Hintergrund des Experiments Der Versuchsaufbau und die mathematischen Zusammenhänge werden dargestellt. Ein Messbeispiel wird vorgestellt und die Nutzung der Software beschrieben. Fachkompetenz Die Schülerinnen und Schüler sollen wissen, dass die bei einer Relativbewegung von einer tonaussendenden Quelle und einem Empfänger wahrnehmbare Frequenzverschiebung von der Ausgangsfrequenz f0 und der Relativgeschwindigkeit v abhängt. wissen, dass zwischen der Dopplerverschiebung ?f und der Ausgangsfrequenz f0 beziehungsweise der Relativgeschwindigkeit v ein proportionaler Zusammenhang besteht. Kenntnis darüber haben, dass die Dopplerverschiebung ?f - unabhängig davon, ob sich der Sender oder der Empfänger bewegt - näherungsweise mit der Gleichung ?f = f0 v/c beschrieben werden kann. ein Experiment zur Bestimmung der Erdbeschleunigung beschreiben und durchführen können. das Geschwindigkeits-Zeit-Gesetz für gleichförmig beschleunigte Bewegungen ohne Anfangsgeschwindigkeit wiedergeben können. den Literaturwert der Erdbeschleunigung (g ? 9,81 ms-2) kennen. Medienkompetenz Die Schülerinnen und Schüler sollen unter Nutzung einer geeigneten Tongeneratorsoftware Töne konstanter Frequenz erzeugen und als WAV-Datei speichern können. WAV-Dateien mittels Bluetooth oder USB-Kabel von einem Computer auf ein Smartphone übertragen können. mit der Tonanalysesoftware SPEAR erzeugte Spektrogramme (dynamische Spektren) interpretieren können. einen speziellen Frequenzverlauf mithilfe der Software SPEAR selektieren und als TXT-File exportieren können. Sozialkompetenz Die Schülerinnen und Schüler sollen in Kleingruppen zielgerichtet arbeiten können. Thema Bestimmung der Erdbeschleunigung mit dem Mobiltelefon Autoren Dr. Patrik Vogt , Dr. habil. Jochen Kuhn, Sebastian Müller Fach Physik Zielgruppe Qualifikationsphase Zeitraum 1 Stunde Technische Voraussetzungen Computer/Laptop mit Soundkarte, Handy mit MP3-Funktion, Software zur Tongenerierung (zum Beispiel Audacity , kostenfreier Download) und zur Tonanalyse (zum Beispiel SPEAR , kostenfreier Download) Dengler, R. (2003) Mobile Kommunikation - Experimente rund um eine weit verbreitete Hochfrequenztechnik. In: V. Nordmeier (2003), Didaktik der Physik. Beiträge zur Frühjahrstagung der DPG - Augsburg 2003. Berlin: Lehmanns. Falcão, A. E. G. Jr.; Gomes, R. A.; Pereira, J. M.; Coelho, L. F. S.; Santos, A. C. F. (2009) Cellular Phones Helping To Get a Clearer Picture of Kinematics. The Physics Teacher, 47, Seite 167-168 Hammond, E. C.; Assefa, M. (2007) Cell Phones in the Classroom. The Physics Teacher, 45, Seite 312 Müller, S., Vogt, P. & Kuhn, J. (zur Veröffentlichung eingereicht) Das Handy im Physikunterricht: Anwendungsmöglichkeiten eines bisher wenig beachteten Mediums. In: PhyDid B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung, Hannover 2010 Villa, C. (2009) Bell-Jar Demonstration Using Cell Phones. The Physics Teacher, 47, Seite 59 PD Dr. habil. Jochen Kuhn ist als akademischer Oberrat in der Lehreinheit Physik der Universität Koblenz-Landau/Campus Landau tätig und habilitierte im Fachgebiet Didaktik der Physik. Seine Arbeitsgebiete in der Physikdidaktik sind die Entwicklung einer neuen Aufgabenkultur und fächerübergreifender Unterrichtskonzeptionen zum Physikunterricht sowie die theoriegeleitete empirische Lehr-Lern-Forschung in Schule und Hochschule. In jüngster Zeit beschäftigt er sich darüber hinaus mit der theoriegeleiteten Entwicklung neuer Schulversuche für die Sekundarstufe I und II. Sebastian Müller studiert die Fächer Physik und Mathematik für das Lehramt an Realschulen. Im Rahmen seiner Staatsexamensarbeit hat er sich mit Einsatzmöglichkeiten des Mobiltelefons im Physikunterricht beschäftigt und dabei insbesondere eine Reihe von Handyexperimenten entwickelt. Handy, Kissen, Computer und Freeware Emittiert ein frei fallendes Mobiltelefon einen Ton konstanter Frequenz f 0 , so lässt sich über die auftretende und mit der Fallgeschwindigkeit zunehmende Dopplerverschiebung die Erdbeschleunigung g recht genau bestimmen. Der Ton lässt sich mit einer geeigneten Software generieren - zum Beispiel mit Audacity oder Test-Tone-Generator (siehe "Internetadressen") - und via Bluetooth oder USB-Kabel auf das Handy übertragen. Das Mikrofon kann durch ein Headset oder ein weiteres Handy mit Diktierfunktion ersetzt werden. Zu beachten ist, dass das Mikrofon unmittelbar neben dem Auftreffpunkt des Handys positioniert sein muss und der freie Fall - um eine Schädigung des Geräts zu vermeiden - durch ein weiches Kissen abgefangen wird. Mathematischer Hintergrund Für die auftretende und mit dem Computer zu messende Dopplerverschiebung ? f gilt in guter Näherung ( v Fallgeschwindigkeit des Handys, c Schallgeschwindigkeit in Luft) und mit v = g ? t (? t Fallzeit). Ist die ausgesandte Frequenz konstant, so ist nach Gleichung (2) ? f näherungsweise proportional zu ? t und der Quotient kann als Steigung m einer Geraden angesehen werden. Nach Aufnahme der Messwerte und Bestimmung der Geradengleichung mittels linearer Regression kann die ermittelte Steigung zur Berechnung der Erdbeschleunigung herangezogen werden. Es gilt: Lineare Regression Im Einklang mit der Theorie ist die Frequenzänderung ? f offenkundig proportional zur Fallzeit ? t . Anwenden der linearen Regression führt auf die Geradengleichung mit einem adjustierten Bestimmtheitsmaß von 0,98 und einem Steigungsfehler von ±2 s -2 . Einsetzen der Zahlenwerte in die Berechnungsgleichung (4) ergibt mit einer Schallgeschwindigkeit in Luft von 344 Metern pro Sekunde (bei 20 Grad Celsius) die Fallbeschleunigung zu Es zeigt sich, dass mit dem beschriebenen Vorgehen die Erdbeschleunigung mit einer für den Schulunterricht ausreichenden Genauigkeit bestimmt werden kann. Der Literaturwert von 9,81 ms -2 liegt im Fehlerbereich der Messung. Auswertung ohne lineare Regression Die Durchführung einer linearen Regression bietet sich zur Auswertung des Datensatzes zwar an, allerdings wird dieses Verfahren nicht in allen Grund- und Leistungskursen eingeführt. Aufgrund der Proportionalität von Frequenzänderung und Zeit besteht jedoch die Möglichkeit, die Geradensteigung ganz elementar unter Nutzung zweier Messpunkte zu bestimmen, welche zur Verringerung des Fehlers natürlich eine möglichst große Zeitdifferenz zueinander aufweisen sollten. Im dargestellten Messbeispiel ergibt sich mit ? f 1 = 1,2 Hertz, ? f 2 = 57,9 Hertz, ? t 1 = 0,0125 Sekunden und ? t 2 = 0,5125 Sekunden die Steigung m zu woraus sich mit der zu ? f 1 gehörenden Ausgangsfrequenz von 4.014,6 Hertz die Erdbeschleunigung zu 9,7 ms -2 errechnet. Da die Dopplerverschiebung mit der Ausgangsfrequenz zunimmt (? f ~ f 0 ), sind zur Verringerung der Anforderungen an die Auswertesoftware sowie des relativen Fehlers möglichst hohe Frequenzen zu verwenden. Die Sendefrequenz wird jedoch vom Frequenzgang des Handylautsprechers und des verwendeten Mikrofons nach oben begrenzt, weshalb man sich - sofern keine Datenblätter vorliegen - experimentell an die für die Versuchsanordnung ideale Ausgangsfrequenz herantasten muss. Weitere ansprechende und für den Schulunterricht aufbereitete Handyexperimente werden von Müller, Vogt und Kuhn wie auch im Rahmen einer Serie unregelmäßig erscheinender Beiträge der amerikanischen Physikdidaktikzeitschrift "The Physics Teacher" beschrieben (siehe "Literatur"). PD Dr. habil. Jochen Kuhn ist als akademischer Oberrat in der Lehreinheit Physik der Universität Koblenz-Landau/Campus Landau tätig und habilitierte im Fachgebiet Didaktik der Physik. Seine Arbeitsgebiete in der Physikdidaktik sind die Entwicklung einer neuen Aufgabenkultur und fächerübergreifender Unterrichtskonzeptionen zum Physikunterricht sowie die theoriegeleitete empirische Lehr-Lern-Forschung in Schule und Hochschule. In jüngster Zeit beschäftigt er sich darüber hinaus mit der theoriegeleiteten Entwicklung neuer Schulversuche für die Sekundarstufe I und II. Sebastian Müller studiert die Fächer Physik und Mathematik für das Lehramt an Realschulen. Im Rahmen seiner Staatsexamensarbeit hat er sich mit Einsatzmöglichkeiten des Mobiltelefons im Physikunterricht beschäftigt und dabei insbesondere eine Reihe von Handyexperimenten entwickelt.
-
Physik / Astronomie
-
Sekundarstufe II