• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Einführung der Eulerschen Zahl

Unterrichtseinheit

In dieser Unterrichtseinheit zur Einführung der Eulerschen Zahl bestimmen und begründen die Schülerinnen und Schüler mithilfe eines Java-Applets und rechnerischer Umformungen die Ableitung der Exponentialfunktion analytisch und zugleich anschaulich.Die barometrische Höhenformel, das Bevölkerungswachstum und der Zerfall von Bierschaum: Als Einstieg in diese Unterrichtseinheit wurden Wachstums- und Zerfallsvorgänge durch die Behandlung von anwendungsorientierten und alltagsbezogenen Aufgaben aufgegriffen. Dies diente zum einen dazu, dass die Schülerinnen und Schüler lernten und übten, Funktionsterme für Exponentialfunktionen aufzustellen. Zum anderen sollten sie erkennen, welche Bedeutung der Wachstumsfaktor und der Streckfaktor für den Grafen einer Exponentialfunktion haben.Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". "Geh weg oder ich differenzier dich!" Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler können für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen. können den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern. können analytisch und geometrisch begründen, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. können eine geeignete Basis a bestimmen, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. kennen die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion. Exponentialfunktionen sind in der Sekundarstufe II ein von den Schülerinnen und Schülern dankbar aufgenommenes Thema. Kommt man doch dabei nach der Behandlung der gebrochen-rationalen "Kurvendiskutiererei" endlich wieder zu Funktionen, die die Lehrkraft mit anschaulichen Anwendungsinhalten füllen kann. Man sollte dabei jedoch die Balance zwischen reinen Anwendungen und analytischen Begründungen bewahren. So ist es wichtig, die Bedeutung der einzelnen "Faktoren" einer Exponentialfunktion immer wieder mit grafischen Inhalten zu füllen. Zu diesem Zweck haben die Lernenden zunächst Exponentialfunktionen zu verschiedenen Inhalten aufstellen und lösen müssen (barometrische Höhenformel, Bevölkerungswachstum, Zerfall von Bierschaum - entnommen aus diversen Lehrbüchern). Als Einstieg in die Ableitung der Exponentialfunktion haben die Schülerinnen und Schüler eine Folie mit dem wohl ältesten Mathematikerwitz, "Geh weg oder ich differenzier dich!", zu sehen bekommen und sollten sich zu dieser Aussage äußern. Dabei wurden zum Beispiel folgende Vermutungen genannt: "Die Exponentialfunktion muss wohl eine besondere Funktion sein." "Die Funktion kann man nicht differenzieren." "Man kann die Funktion unendlich oft differenzieren." Die Schülerinnen und Schüler sollten zunächst der Vermutung nachgehen, dass man die Exponentialfunktion nicht ableiten könne. Mithilfe des TI-83-Taschenrechners leiteten sie verschiedene Exponentialfunktionen ab und erkannten, dass diese Vermutung nicht zutreffen kann (Arbeitsblatt, siehe Download auf der Startseite des Artikels). Dann sollte die Sekantensteigung für eine Exponentialfunktion der Form f(x) = a x aufgestellt werden, wobei die Sekante durch die Punkte P (x / a x ) und Q (x+h / a x+h ) verläuft. Nach einigen analytischen Umformungen, die wegen der Nichtpräsenz der Potenzgesetze immer wieder schwer fielen, stießen die Lernenden auf den Streckfaktor, der bei den bisher mit dem Taschenrechner bestimmten Ableitungen festlegt, welchen Schnittpunkt der Graf der jeweils abgeleiteten Exponentialfunktion mit der y-Achse hat und der dafür sorgt, dass manche Grafen abgeleiteter Exponentialfunktion oberhalb beziehungsweise unterhalb der Ausgangsfunktionen liegen. Den Lernenden war dann aber relativ schnell klar, dass hinter der Aussage "Geh weg oder ich differenzier dich!" noch mehr stecken muss. Schließlich konnte man die Ableitung einer Exponentialfunktion bestimmen. So ging man der Frage nach, ob es nicht vielleicht eine Funktion gäbe, die mit ihrer Ausgangsfunktion übereinstimmt. Wenn es eine solche Ableitung geben sollte, dann müsse der Streckfaktor gleich 1 sein beziehungsweise die Tangente an der Stelle x = 0 die Steigung 1 haben. Die Schülerinnen und Schüler sollten dann mit dem Taschenrechner experimentell eine geeignete Basis a finden, für die der Graf der Ableitungsfunktion mit dem Graf der Ausgangsfunktion übereinstimmt. Relativ schnell wurde dann die Zahl a = 2,71 entdeckt. Das Java-Applet hat das experimentelle Finden der Zahl e in jeder Hinsicht positiv unterstützt. Es muss aber ganz deutlich gesagt werden, dass das Applet von Franz Embacher und Petra Oberhuemer ein durchaus anspruchsvolles Tool ist! So wird von der Tangente f(x) = 1 + x (für die die Steigung an der Stelle x = 0 gleich 1 ist) ausgegangen. Die Veränderung der Sekanten bei veränderten Basen a wird dynamisch dargestellt. Dieser Sachverhalt ist manchen Schülerinnen und Schülern zunächst nicht klar gewesen. Eine gute und in jeder Hinsicht auch mathematisch eindeutige Vorbereitung ist hier erforderlich.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Rechnen in Restklassen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Rechnen in Restklassen stellen die Schülerinnen und Schüler nach einer Einführung Multiplikationstafeln modulo n auf und färben diese ein – sowohl von Hand als auch mithilfe einer programmierten Excel-Tabelle. Anhand der Farbmuster der Tabellen lassen sich spielerisch Strukturen der Multiplikationstafeln entdecken und analysieren. Erkenntnisse über Besonderheiten der zu n teilerfremden Reste führen hin auf das reduzierte Restsystem und die Eulersche phi-Funktion. In einer Fortsetzung der Unterrichtsreihe können später auch Potenzen modulo n in analoger Weise mit gefärbten Tabellen untersucht werden. In der Unterrichtseinheit "Rechnen in Restklassen" arbeiten die Schülerinnen und Schüler überwiegend in Kleingruppen. Wichtigstes Medium sind die hier bereitgestellten Arbeitsblätter, die zur Diskussion und Sicherung der Ergebnisse auch als Folien vorliegen sollten. Um die Vorwegnahme von Ergebnissen zu vermeiden, dürfen nicht alle in einer Datei enthaltene Arbeitsblätter gleichzeitig ausgegeben werden. Die zentralen Teile 2 und 3 dieser Unterrichtsreihe wurden für eine Arbeitsgemeinschaft begabter Schülerinnen und Schüler der Klassen 7-8 konzipiert. Der vorbereitende Teil 1 wurde in derselben Lerngruppe bereits in Klasse 5 behandelt. Hinweise zum Unterrichtsverlauf und Materialien Die Einheit besteht aus drei Teilen: (1) Einführung in Restklassen, (2) Multiplikationstafeln modulo n und ihre Symmetrien, (3) Werteverteilung von a x mod n, lineare Kongruenzen, phi-Funktion. Die Schülerinnen und Schüler kennen grundlegende Begriffe und Rechenregeln für das Rechnen in Restklassen und wenden sie an. stellen Multiplikationstafeln für Restklassen auf und beschreiben deren Strukturen, zum Beispiel Symmetrien, mithilfe von Einfärbungen erkunden und für andere verständlich. beschreiben Symmetrien von quadratischen Matrizen ("Tabellen") formal. entwickeln Argumentationen und elementare zahlentheoretische Beweise. erkunden die Werteverteilung von a x mod n (bei festem a und n) mithilfe der eingefärbten Multiplikationstafeln, beschreiben sie und beweisen die Aussagen formal. lösen lineare Kongruenzen. bestimmen Multiplikationstafeln für das reduzierte Restsystem erzeugen und phi(n) für kleine n. Begriffe und Regeln für das Rechnen in Restklassen Im ersten Teil der Unterrichtsreihe (zwei Zeitstunden) lernen die Schülerinnen und Schüler in Analogie zur Unterscheidung von geraden und ungeraden Zahlen die Begriffe "Restklasse", "Modul", "Kongruenz" sowie elementare Regeln für das Rechnen in Restklassen anhand von Arbeitsblättern kennen (restklassen_1.pdf; im Download-Paket der Startseite befinden sich neben den PDFs auch alle Dateien im editierbaren RTF-Format). Einfärbung der Multiplikationstafeln von Hand Im zweiten Teil (zwei bis drei Zeitstunden) stellen die Lernenden zunächst selbst Multiplikationstafeln modulo n auf. In einem weiteren Arbeitsblatt (alle Arbeitsblätter siehe restklassen_2.pdf) färben sie die bereits fertig ausgedruckten Multiplikationstafeln bis n = 12 von Hand ein (gleiche Reste - gleiche Farben). Dadurch wird der Blick auf die Struktur der Tabellen gelenkt und eine spielerische Analyse ihrer Eigenschaften eingeleitet, die durch ein Arbeitsblatt zur formalen Beschreibung der Symmetrieeigenschaften vertieft wird. Durch die Einfärbung der Multiplikationstafeln von Hand haben die Schülerinnen und Schüler Zeit und sind gehalten, sich eingehend mit den Tafeln und ihrer Struktur zu beschäftigen. Einige interessante Schülerbeobachtungen aus diesem Teil der Unterrichtsreihe sind dokumentiert (restklassen_2_schuelerbeitraege.pdf). Automatische Einfärbung mit Excel Erst nach der händischen Arbeit mit den Tabellen kommt die Excel-Datei (produkte_in_restklassen.xls) zum Einsatz, um bei der systematischen Erforschung schnell zwischen verschiedenen, auch größeren, Moduln wechseln zu können. Bei Eingabe des Moduls erfolgt die Einfärbung automatisch. Bei kleinen Lerngruppen reicht es, die Datei auf einem Rechner mit angeschlossenem Beamer auszuführen und den jeweils gewünschten Modul auf Zuruf einzugeben. Ergänzend dazu erhalten die Schülerinnen und Schüler ein Arbeitsblatt mit fertig eingefärbten Tafeln bis n = 10. Besser ist es jedoch (vor allem in Teil 3), wenn die Schülerinnen und Schüler eigene Rechner benutzen und verschiedene Moduln selbst eingeben können. Fortführung der Untersuchung der Multiplikationstafeln Im dritten Teil (zwei bis drei Zeitstunden) wird die systematische Untersuchung der Multiplikationstafeln fortgesetzt. Die zugehörigen Arbeitsblätter (restklassen_3.pdf) enthalten engere Fragestellungen, die auf die Anzahl und die Verteilung der in einer Tabellenzeile auftretenden Farben beziehungsweise Reste in Abhängigkeit von der Zeilennummer abzielen, also auf die Werteverteilung von a x mod n bei festem a und n. Dabei ist insbesondere der Fall ggT(a,n) = 1 von Interesse. Die Antworten werden mithilfe der Excel-Datei (produkte_in_restklassen.xls) zunächst empirisch gefunden und dann bewiesen. Lineare Kongruenzen, reduziertes Restsystem, phi-Funktion Die Ergebnisse führen auf die Lösung von linearen Kongruenzen, das reduzierte Restsystem und die Eulersche phi-Funktion, die aber im hier dargestellten Rahmen nur ansatzweise behandelt wird. Die praktischen Anwendungen in Form von "handfesten" Rechenaufgaben (lineare Kongruenzen) wurden von den Schülerinnen und Schülern dankbar angenommen. Bei der Bestimmung von phi(n) leistet die Excel-Datei wieder gute Dienste, da man mit der Tastenkombination Strg+R zum reduzierten Restsystem übergehen kann. Auch hier gilt: Computer nicht zu früh einsetzen! Beobachtungen und Beweise Die intendierten Beobachtungen und die zugehörigen Beweise werden hier ebenfalls zum Download angeboten (restklassen_3_beobachtungen.pdf). Die Beweise können in dieser Form auch der Lerngruppe zum Nacharbeiten zur Verfügung gestellt werden, zumal unter Umständen nicht alle im Unterricht vollständig ausgeführt werden können.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Dodekaeder - Juwel der Symmetrie

Unterrichtseinheit

Das Dodekaeder ist einer der fünf platonischen Körper, der einzigen regelmäßigen "Vielflächner", deren Seitenflächen regelmäßige Vielecke gleicher Eckenzahl sind. Es hat seit Urzeiten die Aufmerksamkeit von Künstlern und Philosophen gefunden und ist bis heute im Fokus solcher Aufmerksamkeit geblieben. Immer noch gibt es Neues an diesem Körper zu entdecken.Symmetrien üben nicht nur einen großen ästhetischen Reiz aus, sie sind auch in der Natur - der belebten wie der unbelebten - von fundamentaler Bedeutung. Ordnung und Chaos, Symmetrie und Symmetriebrechung sind Grundkategorien in der Wahrnehmung unserer Welt. Das Periodensystem der Elemente, die Postulierung von Quarks als Grundbausteine der Materie, die Entstehung der Welt durch den Urknall - all dies sind wissenschaftliche Ergebnisse, an deren Zustandekommen Betrachtungen der Symmetrie entscheidenden Anteil hatten. So stellt Lisa Randall, theoretische Physikerin, fest: "Der Begriff Symmetrie hat für die Physiker einen heiligen Klang."In den heutigen, an den Bildungsstandards orientierten Lehrplänen, taucht "Symmetrie" als Leitidee auf. Hier wird gefordert, Symmetrien an Körpern und ebenen Figuren zu untersuchen. Dies kann in Bezug auf die platonischen Körper auf sehr unterschiedlichen Anforderungsniveaus erfolgen: Vom Herstellen eines Dodekaeders mit Papier und Schere im 5. Schuljahr über die Berechnung von Streckenlängen, Abständen und Winkeln mit Mitteln der Trigonometrie (Klasse 10) bis hin zu Untersuchungen seiner Symmetriegruppe in der Sekundarstufe II ergeben sich zahlreiche Möglichkeiten. Hinweise zum Unterrichtsverlauf Hier sind Materialien und Werkzeuge sowie Vorschläge zur Erarbeitung des Themas zusammengetragen. Die Schülerinnen und Schüler sollen erkennen, welche primären Symmetrien ein Dodekaeder besitzt und ausgehend davon elementare Größen des Dodekaeders bestimmen können. erkennen, dass aus einer Abbildung beziehungsweise aus Daten des Dodekaeders Abbilder oder Daten der restlichen vier platonischen Körper abgeleitet werden können. erkennen, dass es außer Tetraeder, Hexaeder, Oktaeder, Dodekaeder und Ikosaeder keine anderen regulären Polyeder geben kann. unter Einsatz eines Computeralgebrasystems (oder geometrischer 3D-Software) Untersuchungen zu den Symmetriegruppen der platonischen Körper durchführen können. Thema Symmetrien des Dodekaeders (und anderer platonischer Körper) Autor Rolf Monnerjahn Fach Mathematik, Bildende Kunst Zielgruppe Sekundarstufe I Zeitraum 7-9 Stunden Technische Voraussetzungen Computeralgebrasystem (MuPAD) oder dynamische 3D-Software Voraussetzungen Für den Unterricht in Mittel- und Oberstufe sollte entweder ein Computeralgebrasystem (hier verwendet: MuPAD) oder Dynamische Geometriesoftware für 3D-Konstruktionen zur Verfügung stehen, da so Symmetrien noch besser veranschaulicht werden können als durch reale Modelle - wobei auf letztere aber keinesfalls verzichtet werden soll. Das Dodekaeder sollte im Sinne eines Spiralcurriculums an mehreren Stellen Objekt des Mathematikunterrichts sein: In der Orientierungsstufe als interessanter Körper, mit dem Schülerinnen und Schüler sich konkret handelnd auseinandersetzen: Herstellen von Kantengerüst und Faltmodell. In der Mittelstufe als Gegenstand trigonometrischer Berechnungen (Winkel und Streckenlängen). In der Oberstufe als Objekt entdeckenden Untersuchens im Hinblick auf Symmetrien und Beziehungen zu den anderen platonischen Körpern und zu den archimedischen Körpern. Arbeit mit realen Modellen Grundlage jeglicher theoretischer Beschäftigung mit den platonischen Körpern sollte ein praktisches, handlungsorientiertes Herangehen durch Herstellung von Flächen- und Kantenmodellen sein. Auch die Symmetrien der platonischen Körper sollten auf der Grundlage der Arbeitsmaterialien zunächst praktisch erkundet werden: durch Rotation der Körpermodelle und Zerschneiden der Kartonmodelle, so dass durch Auflegen auf einen ebenen Spiegel die Vervollständigung des Körpers durch die Spiegelung erfahrbar wird. Die Darstellung der Körper und der Vollzug von Kongruenztransformationen sollten in Einzel- oder Partnerarbeit durch Handhabung eines CAS oder dynamischer 3D-Geometriesoftware erfolgen. Zusammengesetzte Kongruenzabbildungen wie etwa die Drehspiegelung sind praktisch nicht realisierbar, wohl aber mit derartiger Software deutlich zu veranschaulichen. Das hier beigegebene PDF-Dokument (dodekaeder_juwel_der_symmetrie.pdf) stellt eine Auswahl von Berechnungen und Abbildungen bereit, die mit MuPAD erarbeitet wurden. Es ist als Ideensammlung, zusammenfassende Darstellung und Anregung für den Umgang mit einem CAS gedacht. Einzel-, Partner- und Projektarbeit Die Unterrichtseinheit eignet sich vor allem zur Vertiefung von im Kernunterricht erworbenem faktischen und prozeduralen Wissen und sollte daher in Formen von Einzel-, Partner- und Projektarbeit organisiert werden. Dodekaeder und platonische Körper bieten als Unterrichtsobjekt den Vorteil, dass von einfachsten bis zu höchsten Ansprüchen gestufte Problemstellungen möglich sind. Nachfolgend werden Vorschläge für Arbeitsaufträge formuliert und thematischen Blöcken zugeordnet. 1. Die Darstellung der platonischen Körper Die Eckpunktdaten der platonischen Körper nach geeignetem Einzeichnen rechtwinkliger Dreiecke in Schrägbilddarstellungen (Arbeitsblatt 11) sind durch Anwendung der Trigonometrie zu berechnen, Kantenlängen, In- und Umkugelradius, Winkel zwischen Kanten und Winkel zwischen Flächen sind zu bestimmen. 2. Symmetrien der platonischen Körper Hier sind die Spiegelungen, Rotationen und aus Spiegelungen und Rotationen zusammengesetzten Kongruenzabbildungen zu bestimmen, die die platonischen Körper in sich selbst abbilden. Damit über diese Abbildungen Aussagen formuliert werden können, sind in den beigegebenen Arbeitsblättern 1 bis 5 auf die Netze der platonischen Körper die Durchstoßpunkte der Drehachsen aufgezeichnet, Mittellinien, Mittelsenkrechte und Diagonalen der Seitenflächen eingezeichnet, alle Eckpunkte und Flächen durchnummeriert und damit benennbar. Für das Tetraeder ist im Begleitmaterial die vollständige Symmetrietabelle beigegeben (dodekaeder_juwel_der_symmetrie.pdf). Für Ikosaeder und Dodekaeder ist es nicht sinnvoll, die vollständige Symmetrietabelle zu erarbeiten, wohl aber ausgewählte, vor allem zusammengesetzte Kongruenzabbildungen exemplarisch herauszugreifen. 3. Symmetrie als Grundlage von Emergenz Die fünf platonischen Körper sind durch Symmetrie und Dualität aufeinander bezogen. Dualität heißt, dass Hexa- und Oktaeder, Dodeka- und Ikosaeder jeweils durch Zuordnung von Ecken zu Flächenmitten aufeinander bezogen sind. Verbindet man die Flächenmitten eines Dodekaeders, so erhält man ein Ikosaeder, und verbindet man umgekehrt die Flächenmitten eines Ikosaeders, so erhält man ein Dodekaeder. Auch der Würfel ist durch Konstruktion (Aufbringen eines "Walmdachs" auf jede Fläche) zu einem Dodekaeder umzuwandeln (Arbeitsblätter 6,7, Video dodeca_cubus.wmv). Das Dodekaeder erlaubt durch seine umfassende Symmetrie die regulären Polygone Dreieck, Quadrat, Fünfeck, Sechseck und Zehneck mehrfach aus seiner räumlichen Darstellung "herauszulesen". Diese Polygone und die Polyeder sind in die Schrägbilder der platonischen Körper durch Verbinden von Ecken, Flächen- und Kantenmitten, Diagonalenmitten einzuzeichnen (Arbeitsblatt 11). Hier ist Staunen angebracht: Aus einer Konstruktion, die lediglich auf einer Figur mit Winkeln von 108° und fünf Seiten gleicher Länge beruht, gehen - sozusagen als Dreingabe - Dreiecke, Quadrate, andere Fünfecke, Sechsecke, Zehnecke und völlig unterschiedliche Körper hervor! 4. Gesetzmäßigkeiten an den platonischen Körpern Dass es nicht mehr als fünf platonische Körper geben kann (Euklid), dass für ihre Graphen der Euler'sche Polyedersatz (e + f - 2 = k) gilt, dass nur für das Oktaeder ein Euler'scher Rundweg ("Abschreiten" aller Kanten ohne Wiederholung) existiert, sind leicht zu beweisende Gesetzmäßigkeiten. Das Aufsuchen Hamilton'scher Rundwege ("Abschreiten" aller Ecken ohne Wiederholung) ist eine ohne Überforderung realisierbare Erkundungsaufgabe (Arbeitsblatt 12). 5. Archimedische Körper Verzichtet man auf die Forderung, dass der Körper nur von gleichartigen regulären Vielecken begrenzt sein soll, ergeben sich 13 weitere Körper, die archimedischen, bei denen aber auch alle Kanten die gleiche Länge haben. Sie gehen zum Teil durch Abstumpfung der Ecken aus den platonischen Körpern hervor (siehe Arbeitsblatt 11). 6. Polyedersterne Errichtet man auf den Begrenzungsflächen der platonischen Körper Pyramiden, so erhält man Polyedersterne. Es ist eine reizvolle Bastelarbeit, solche Sterne herzustellen, indem man beispielsweise die Pyramidennetze zu den in den Arbeitsblättern 1 bis 5 vorgegebenen Polyedernetzen konstruiert und die Pyramiden auf die Polyederflächen aufklebt. Arbeitsblätter Die Netze aller platonischen Körper sind hier als Schnittbogen herunterzuladen (1-5). Den Netzen sind die Nummerierungen der Ecken und Flächen sowie alle Symmetrieachsen und drehsymmetrischen Zentren der Flächen aufgedruckt. Zusätzlich ist ein Schnittbogen zur Herstellung eines Umstülpmodells Hexaeder - Dodekaeder beigegeben (6, 7). Zwei Arbeitsblätter zeigen die Zentralprojektion des Dodekaeders in verschiedenen Ansichten (10) und die zentralprojektiven Darstellungen aller platonischen Körper (11). Dabei wurden zu jeder Kante Drittelungs- und Halbierungspunkte eingezeichnet, so dass die dualen Körper und die Abstumpfungen eingezeichnet werden können. Ein Arbeitsblatt zeigt die Graphen der platonischen Körper (12), womit Hamilton'sche und Euler'sche Rundwege gesucht werden können. Monnerjahn, Rolf MuPAD im Mathematikunterricht, Verlag Cornelsen, ISBN 978-3-06-000089-0 Zum Einarbeiten in die Handhabung des CAS MuPAD Adam, Paul und Wyss, Arnold Platonische und Archimedische Körper, ihre Sternformen und polaren Gebilde, Verlag Freies Geistesleben, ISBN 3-7725-0965-7

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II
ANZEIGE
Premium-Banner