• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Flächen und Umfänge von geometrischen Formen

Unterrichtseinheit

In dieser Unterrichtseinheit zu Geometrie betrachten die Lernenden Größen wie den Flächeninhalt und den Umfang der geometrischen Figuren Rechteck, Parallelogramm, Dreieck, Trapez und Kreissektor. Mithilfe von GeoGebra lassen sich die Berechnungsideen sehr anschaulich darstellen. In der Geometrie werden zur Beschreibung von Flächen Größen wie der Flächeninhalt und der Umfang betrachtet. In dieser Unterrichtseinheit erstellen die Schülerinnen und Schüler mithilfe von GeoGebra dynamisches Material zu Rechtecken, Parallelogrammen, Dreiecken, Trapezen und Kreissektoren sowie dessen geometrische Zusammenhänge für Flächeninhalte und Umfänge. Zuvor haben sie stets die Möglichkeit an sehr anschaulichen vorbereiteten GeoGebra-Dateien zu experimentieren, um Erfahrungen zu sammeln und Gesetzmäßigkeiten zu erkennen. Durch die Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Die Schülerinnen und Schüler entdecken außerdem Möglichkeiten, mithilfe von GeoGebra die Anschaulichkeit zu erhöhen. Lehrpläne sehen es vor, dass Schülerinnen und Schüler Flächeninhalte unterschiedlicher geometrischer Figuren ihrer Lebenswelt vergleichen, messen und schätzen. Mit GeoGebra lassen sich derartige Figuren einfach erstellen. Die Schülerinnen und Schüler können sich die Zusammenhänge für Fläche und Umfang für die grundlegenden Formen selbst erarbeiten und visualisieren, so dass ein besseres Verständnis für verschiedene Problemlösestrategien (beispielsweise Zerlegen, Auslegen von fremden Formen mit bekannten Flächentypen) entsteht, diese verwendet und eingeübt werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler produzieren und präsentieren. analysieren und reflektieren ihre erstellten GeoGebra Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). arbeiten im Team und geben Hilfestellungen. stoßen durch offene Fragestellungen auf neue Ideen und zeigen Engagement und Motivation.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit Geogebra arbeiten – Grundlagen Teil 3

Unterrichtseinheit

Für den Mathematikunterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometriesoftware GeoGebra. Die Schülerinnen und Schüler üben in dieser Unterrichtseinheit das computergestützte Konstruieren, Verstehen und Reflektieren geometrische Zusammenhänge und Erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Diese Unterrichtseinheit baut auf der Einheit "Mit GeoGebra arbeiten – Grundlagen Teil 2" auf und handelt vom Konstruieren und Messen im zweidimensionalen Raum mit Hilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um die Konstruktion von Dreiecken. So werden beispielsweise gleichschenklige und gleichseitige Dreiecke mithilfe von Schiebereglern konstruiert. Auch die Konstruktionsbeschreibung mithilfe des Textwerkzeuges und die Möglichkeit der Integration von gemessenen Werten (Variablen) in Texte wird thematisiert. Auf dem zweiten Arbeitsblatt werden neben der Konstruktion von rechtwinkligen Dreiecken und Ellipsen das Anzeigen von Spuren erkundet, indem Spuren von Punkten und Flächen entdeckt werden. Abschließend werden an zwei Experimentierdateien "Thaleskreis_und_mehr" sowie "Winkelbetrachtungen" besondere geometrische Eigenschaften dynamisch wiederholt. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paar-Arbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paar-Arbeit weitere Grundlagen der dynamischen Geometriesoftware, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg individuell im Umgang mit GeoGebra ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, so dass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Zusammenhänge an den Feuerbachpunkten entdecken

Unterrichtseinheit

Sind bei den Feuerbachpunkten und den Eulerpunkten auf und in einem beliebigen Dreieck mathematische Gesetzmäßigkeiten zu entdecken? Welche sind es? Welche Systematik lässt sich herauslesen? Haben die Vermutungen und Entdeckungen mathematischen Bestand?Der Blick auf die Feuerbachpunkte, die auf und in einem beliebigen Dreieck liegen, führt zu vertiefenden durch Entdeckung gewonnenen geometrischen Vermutungen und Erkenntnissen, die durch die Behandlung von drei verschiedenen Beweistypen, abbildungsgeometrisch, kinematisch und ?elementar?, begründet werden können. Es bietet sich an, diese mit einer dynamischen Geometriesoftware, hier GeoGebra, nachzukonstruieren und zu beweisen. Das Konzept lässt sich aber auch ohne den Einsatz Dynamischer Mathematiksoftware durchführen. Behandlung des Feuerbachkreises Den Feuerbachkreis kann man im Unterricht auf unterschiedliche Art behandeln: Der Feuerbachkreis eines Dreiecks berührt seine drei Ankreise und seinen Innenkreis. Der Feuerbachkreis kann als geometrischer Ort definiert werden. Der Zusammenhang des durch die Feuerbachpunkte belegten Feuerbachkreises mit einem Dreieck und seinem Umkreis können untersucht werden. Formulierung und Beweis des Feuerbachsatzes Die zweite und dritte Alternative werden hier vorgestellt. Durch die Vorgabe der Feuerbachpunkte und der Eulerpunkte eines Dreiecks mit seinem Umkreis (Datei: "feuerbach-Euler-Punkte.ggb") wird eine offene Situation geschaffen, in der überraschende Entdeckungen gemacht und vielseitige Vermutungen aufgestellt werden können. Möglich - aber nicht erforderlich - ist es, die Eulerpunkte vorher behandelt zu haben. Die Vermutungen und Entdeckungen führen auf die Formulierung des Feuerbachsatzes, den es zu beweisen gilt. Je nach den Ideen der Schülerinnen und Schüler führt dies zu einem abbildungsgeometrischen, kinematischen und / oder "elementaren" Beweis. Das soll offen gelassen werden. Man kann sich mit der Behandlung eines Beweistyps begnügen. Bei unterschiedlichen Beweisansätzen der Lernenden können sich auch Schülergruppen bilden, die jeweils einen Beweistyp weiter verfolgen, erarbeiten und vorführen. Das Projekt wurde mit begabten Schülerinnen und Schülern in Jahrgangsstufe 8/9 erfolgreich durchgeführt und bei der MNU-Tagung in Köln 2008 von den Lernenden vorgestellt. Hinweis zum Unterrichtsverlauf und Materialien Die Unterrichtseinheit besteht aus drei Teilen: 1. Entdeckung an den Feuerbachpunkten und Formulierung des Satzes über den Feuerbachkreis, 2. Vorbereitung der Beweise, 3. Beweis des Satzes über den Feuerbachkreis. Die Schülerinnen und Schüler sollen Muster und Beziehungen bei den Feuerbachpunkten untersuchen und Vermutungen aufstellen (Lage auf einem Kreis, mathematische Eigenschaften der Punkte). geeignete Werkzeuge zum Erkunden und zur Festigung ihrer Vermutungen wählen (Bleistift und Papier, Dynamische Geometriesoftware). jeweils gleiche Probleme (Höhenfußpunkte, Seitenmitten und Höhenabschnitte) in Teilprobleme zerlegen. aus der Lage der Feuerbachpunkte ihre geometrischen Eigenschaften im Zusammenhang von Vielecken (Dreiecken, Vierecken) und Kreisen (Umkreis, Feuerbachkreis) erkennen (unter anderem elementare geometrische Eigenschaften, Ähnlichkeitsbeziehungen, geometrischer Ort) und diese im Rahmen des Problemlösens zur Begründung der Sachzusammenhänge nutzen. Lösungsansätze vergleichen und bewerten und bei gleichen Lösungsansätzen Beweise in Gruppenarbeit entwickeln (abbildungsgeometrisch, elementar, kinematisch). Lösungswege, Argumentationen und Darstellungen in kurzen vorbereiteten Beiträgen präsentieren. Thema Mathematische Zusammenhänge an den Feuerbachpunkten entdecken Autor Wolfgang Piechatzek Fach Mathematik Zielgruppe Klasse 8-9, begabte Schülerinnen und Schüler, Mathematik-AG Zeitraum 6-8 Zeitstunden Technische Voraussetzungen Je ein Computer für 1-2 Lernende, es reicht auch ein Präsentationsrechner mit Beameranschluss; gegebenenfalls Dynamische Geometriesoftware ( GeoGebra , kostenfrei) Im ersten Teil der Unterrichtsreihe (zwei Stunden) sollen die Schülerinnen und Schüler (gegebenenfalls mithilfe einer Dynamischen Geometriesoftware, hier GeoGebra) die Gesetzmäßigkeiten der Lage der Feuerbachpunkte und der Eulerpunkte (Abb. 1) entdecken und formulieren. Die neun Feuerbachpunkte liegen vermutlich auf einem Kreis, dem Feuerbachkreis. Jeweils drei Punkte haben die gleiche Eigenschaft: Drei Punkte liegen auf den Seitenmitten. Drei Punkte liegen auf den Höhenfußpunkten. Drei Punkte liegen auf den Mitten zwischen dem Höhenschnittpunkt und den Ecken des Dreiecks. Damit lässt sich die Aussage des Satzes von Feuerbach formulieren. Abb. 1a (Screenshot der GeoGebra-Datei "feuerbach_euler_punkte.ggb") zeigt alle Feuerbachpunkte und die Punkte zur Eulergeraden, wie sie den Schülerinnen und Schülern vorgelegt wird. Außerdem gibt es noch vier Punkte, die auf einer Geraden liegen, der Eulergeraden (Abb. 1b, Screenshot der GeoGebra-Datei "euler_gerade.ggb"). Suche nach Beweisansätze in Arbeitsgruppen Im zweiten Teil der Unterrichtsreihe (eine Stunde) wird nach Beweisansätzen gesucht. Die Klassifizierung der Punkte (Seitenmitten, Höhenfußpunkte, Punkte auf den Mitten zwischen dem Höhenschnittpunkt und den Ecken des Dreiecks) führt nicht direkt weiter, da die dadurch entstandenen Kreise nicht identisch sein müssen. Abb. 2 (Screenshot der Datei "loesung_feuerbach_euler_punkte.ggb") zeigt, wie die Schülerinnen und Schüler mit Bleistift und Papier oder mit GeoGebra die Feuerbachpunkte konstruieren und somit den mathematischen Hintergrund entdecken können. Sinnvolle "regelmäßige" Figuren sind meist Hilfen für einen Beweisansatz in Geometrie. Deshalb suchen die Schülerinnen und Schüler nach weiteren sinnvollen Figuren innerhalb der Feuerbachpunkte, die für einen Beweis nützlich sein könnten [Abb. 3: Screenshots der Dateien "(MaMbMc)abb.ggb" und "(A'B'C')abb.ggb"; Abb. 4: "beweis_feuerbach_kreis.ggb"]. Einsatz der Materialien Die Unterrichtsreihe soll für die Schülerinnen und Schüler ganz offen gelassen werden, das heißt, die Arbeitsmaterialien müssen in einer starken Lerngruppe gar nicht zum Einsatz kommen. Die Materialien haben zwei Funktionen: Sie dienen zur Information der Lehrperson und kommen dann zum Einsatz (gegebenenfalls nach Entscheidung der Lehrperson auch nur Teile des Materials), wenn die Schülerinnen und Schüler nicht weiter kommen. Ebenso ist mit den vorgegebenen Lösungsansätzen zu verfahren. Will man alle Beweisideen weitertreiben, können entsprechende Arbeitsgruppen gebildet werden. 1. Materialien zur Vorbereitung des abbildungsgeometrischen Beweises Die Lernenden können spezielle Vielecke entdecken, die sich aus Feuerbachpunkten zusammensetzen. Das können zum Ursprungsdreieck ähnliche Dreiecke sein, Rechtecke oder Parallelogramme. Ähnliche Dreiecke führen auf einen abbildungsgeometrischen Beweis. 2. Materialien zur Vorbereitung des elementargeometrischen Beweises Rechtecke oder Parallelogramme führen auf einen elementaren Beweis. (Von den Parallelogrammen ist wegen der Komplexität des Beweises abzuraten.) 3. Materialien zur Vorbereitung des kinematischen Beweises Weiterhin kann eine Gruppe gebildet werden, die sich ein bewegtes GIF (2_2_animation_gross.gif) anschaut, das auf die Definition des Geometrischen Ortes des Feuerbachkreises und einen kinematischen Beweis führt. Beweis und Präsentation Die Beweise werden eigenständig oder auf der Grundlage der Arbeitsmaterialien in Gruppen erarbeitet (zwei bis drei Stunden) und präsentiert (ein bis zwei Stunden).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Vektorrechnung – Anwendung

Interaktives

Dieses Arbeitsmaterial zur Vektorrechnung thematisiert die Anwendungen in der räumlichen Geometrie.Das Arbeitsmaterial "Anwendung" beinhaltet die interaktive Lösung eines Problems, das in der Praxis häufig vorkommt: die Berechnung des Flächeninhalts eine Dreiecks im Raum. Die Schülerinnen und Schüler werden schrittweise zur Lösung der Aufgabe geführt: Von der Erstellung der Ortsvektoren sowie der Richtungsvektoren des Dreieckes über die Berechnung des Kreuzproduktes bis hin zur Berechnung des Flächeninhaltes sind die Lernenden angehalten, die Aufgabe in kleineren Teilschritten selbstständig zu lösen. Die GeoGebra 3D-Animation zeigt auch hier wieder deutlich den Zusammenhang zwischen den Punktkoordinaten und dem Flächeninhalt des aufgespannten Dreiecks. Durch die Veränderung der Lage der Punkte wird simultan der entsprechende Flächeninhalt berechnet und angezeigt. Durch die freie Wahl der Lage der Dreiecksebene wird klar, dass diese Zusammenhänge wirklich für jedes räumliche Dreieck gelten müssen. Die Lernenden können die Arbeitsblätter in Einzel- oder Partnerarbeit nutzen. Die im Material integrierten GeoGebra-Dateien stehen für Sie als Lehrkraft zusätzlich als Download zur Verfügung. So können die Dateien auch über die interaktiven Arbeitsblätter hinaus verwendet werden. Weitere Materialien des Autors zum Themenbereich Vektorrechnung finden Sie hier: Einführung des Vektorbegriffs Addition und Subtraktion von Vektoren Multiplikation von Vektoren und das Skalarprodukt Kreuzprodukt von Vektoren Spatprodukt von Vektoren Vorwissen und technische Voraussetzungen Bei der Einführung des interaktiven Arbeitsblattes sollte der Umgang mit GeoGebra erläutert werden, falls die Software den Lernenden nicht bekannt ist. Diese kann zum Beispiel mithilfe eines Beamers durchgeführt werden. Für die Nutzung der Übungen zur Einführung der Vektorrechung bedarf es Tablets oder Computer mit einer Internetverbindung, da die Informationstexte, Grafiken, Videos, Applets und 3D-Animationen in einer HTML-Seite eingebunden sind. Alle 3D-Konstruktionen (die mit dem 3D Rechner von GeoGebra erstellt worden sind) können mit der GeoGebra-App auch in Augmented Reality betrachtet werden. So kann man diese Konstruktionen direkt in den Klassenraum holen. Fachkompetenz Die Schülerinnen und Schüler beherrschen die Addition von Vektoren. beherrschen die Subtraktion von Vektoren. Medienkompetenz Die Schülerinnen und Schüler interpretieren mithilfe des Computers räumliche Darstellungen mittels Vektorrechnung. führen mithilfe des Computers Körperberechnungen mittels Vektorrechnung durch. Sozialkompetenz Die Schülerinnen und Schüler üben Teamfähigkeit und unterstützen sich gegenseitig. erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien).

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Trigonometrie mit GeoGebra – ein variables Übungskonzept

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema Trigonometrie bietet durch dynamische Arbeitsblätter ein differenziertes Übungsumfeld zu Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dadurch werden die aktuellen Kenntnisse und Fertigkeiten aller Schülerinnen und Schüler berücksichtigt. Die Besonderheit der Lernumgebung zur Trigonometrie "Sinus, Kosinus und Tangens im rechtwinkligen Dreieck" besteht darin, dass sie in jeder Phase des Unterrichts flexibel eingesetzt werden kann. Die dynamischen Arbeitsblätter eignen sich sowohl für die Erarbeitung der trigonometrischen Zusammenhänge im rechtwinkligen Dreieck, als auch für eine differenzierte Übungs- und Anwendungsphase. Die Lernumgebung bietet dynamische Veranschaulichungen sowie einfachere und komplexere Übungen und ermöglicht so den Lernenden eine eigenständige und selbstverantwortliche Wissenserweiterung. Die zu bearbeitenden Aufgaben werden per Computer analysiert und bewertet. Deshalb kann sich die Lehrkraft in der Übungsphase individuell leistungsschwächeren Lernenden zuwenden und gemeinsam mit ihnen Probleme analysieren. So wird eine gezielte Förderung möglich. Das Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck (grüner Kasten auf der rechten Seite). Dazu kommen sechs Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen (blauer Kasten auf der rechten Seite) sowie drei variable Übungen zur Unterrichtsdifferenzierung (gelber Kasten auf der rechten Seite). Die Navigation der Lernumgebung befindet sich rechts neben der dynamischen Darstellung. Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Die Schülerinnen und Schüler lernen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen. beheben erkannte Defizite im Bereich dieser Zusammenhänge selbstständig. können die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden. Das hier vorgestellt Übungskonzept setzt voraus, dass die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck bereits im vorhergehenden Unterricht formuliert wurden. Da die Lernumgebung aber flexibel einsetzbar ist, können diese auch innerhalb der Lernumgebung selbstständig erarbeitet werden. Im Rahmen der Unterrichtseinheit werden acht HTML-Seiten genutzt, die mit jedem Internet-Browser (zum Beispiel Internet Explorer oder Mozilla) dargestellt werden können. Damit die mit GeoGebra erzeugten dynamischen Veranschaulichungen realisiert werden können, muss Java 1.4.2 (oder höher) auf den Rechnern installiert und Javascript aktiviert sein. Die Lehrkraft erläutert die Navigation und den Inhalt der Lernumgebung. Diese enthält drei Einführungs- oder Erläuterungsseiten zu den trigonometrischen Zusammenhängen Sinus, Kosinus und Tangens im rechtwinkligen Dreieck. Dazu kommen drei Übungsseiten, die sich jeweils mit einem dieser Zusammenhänge beschäftigen sowie zwei variable Übungen zur Unterrichtsdifferenzierung. Die Navigation der Lernumgebung (Einführung und Erläuterung sowie Übungen) befindet sich rechts neben der dynamischen Darstellung. Übungen zur Selbstkontrolle und Leistungsbestimmung In dieser Unterrichtsphase haben die Schülerinnen und Schüler Zeit, sich mit den ersten drei Übungen zu beschäftigen und so ihre bisherigen Kenntnisse zu überprüfen. Bei allen Übungen erzeugt der Computer per Zufallsgenerator unterschiedliche rechtwinklige Dreiecke und gibt Winkelfunktion und Winkelmaß vor. Die Lernenden sollen den richtigen Quotienten ergänzen. Computer gibt Lösungshinweise Mit dem Button "prüfen" können die Schülerinnen und Schüler ihre Eingabe prüfen und sich mit "Neue Aufgabe" eine weitere Aufgabe stellen lassen. Sie erhalten auf fehlerhafte Eingaben neben der Meldung, dass ihre Eingabe falsch war, einen Lösungshinweis: "Leider falsch! Für Tangens brauchst du doch die Gegenkathete und die Ankathete im Dreieck. Also versuch's noch mal". Die Mindestbearbeitungsdauer der drei Übungen ergibt sich aus der Vorgabe "Schaffst du mehr als 199 Punkte?". Die Lehrkraft kann auch eine bestimmte Zeit für jede Übung vorgeben. Sollten die Schülerinnen und Schüler mit der Bearbeitung der ersten drei Online-Arbeitsblätter nicht zurechtkommen, können sie stets die jeweilige Erläuterungsseite verwenden und sich den einen oder anderen Zusammenhang noch einmal veranschaulichen lassen. Die Lernenden können so die noch bestehenden Defizite aufarbeiten. Die Lehrkraft wird nur dann aktiv ins Unterrichtsgeschehen eingreifen, wenn sich die Schülerinnen und Schüler auch anhand der Erläuterungsseite nicht zurechtfinden. Variation der Aufgaben Bei der ersten variablen Übung werden abwechselnd eine der drei Winkelfunktionen sin, cos, tan und ein bestimmtes Winkelmaß vorgegeben. Die Aufgabe der Schülerinnen und Schüler besteht darin, den richtigen Quotienten anzugeben. Die Funktionsweise des interaktiven Arbeitsblatts unterscheidet sich nicht von der der ersten Übungen. Mit dem Button "prüfen" wird die Eingabe kontrolliert und mit "Neue Aufgabe" werden weitere Aufgaben erzeugt. Die Variation der Aufgabenstellung führt zur Festigung des bisher Gelernten. Dabei besteht auch weiterhin die Möglichkeit, innerhalb der Lernumgebung zu den vorausgegangenen Übungen oder den Erläuterungsseiten zurückzukehren, um Defizite aufzuarbeiten. Differenzierung des Unterrichts Die zweite variable Übung eignet sich zur inneren Differenzierung des Unterrichts. Zu einem zufällig erzeugten Dreieck werden nun der Quotient und das Winkelmaß vorgegeben. Die Schülerinnen und Schüler sollen die zugehörige Winkelfunktion sin, cos oder tan angeben. Dazu müssen sie zuerst die jeweiligen Seitenlängen als Katheten oder Hypotenuse identifizieren und anschließend über das gegebene Winkelmaß die Katheten als An- oder Gegenkathete bestimmen. Anschließend benötigen sie die Definition des Sinus, Kosinus oder Tangens, um die Aufgabe zu lösen. Die Fülle der notwendigen Überlegungen und deren Einbindung in eine Lösungsstrategie ermöglicht ihnen eine weitere Vertiefung ihrer Kenntnisse. Abschließend bietet sich eine herkömmliche Lernzielkontrolle mit Papier und Bleistift an. Sie kann als Leistungserhebung durchgeführt werden, bei der die Inhalte der vorangegangenen Übungen abgefragt und die Leistungen der Schülerinnen und Schüler überprüft werden. Dieser Test kann aber auch als Hausaufgabe gestellt oder in Form einer Partnerarbeit im Anschluss an die Online-Arbeitsblätter bearbeitet werden. So mündet die Arbeit am Computer wieder in die "normale" Unterrichtsarbeit im Klassenzimmer. Ein wichtiger Aspekt beim Lernen mit interaktiven dynamischen Arbeitsblättern ist darin zu sehen, dass eine Interaktion zwischen dem Lernenden und dem Computer möglich wird. Diese Interaktion führt zu einem ständigen Wechsel von spannenden und entspannenden Zuständen. Nach jeder Eingabe wartet die Schülerin oder der Schüler auf die Bewertung, um sich danach sofort eine neue Aufgabe stellen zu lassen. Auf diese Weise kann die Konzentration der Lernenden über einen längeren Zeitraum aufrechterhalten werden. Die Rückmeldungen des Computers auf falsche Eingaben führen in der Lerngruppe oft zu einer regen Diskussion über die gemachten Fehler. Wo die kritische Nachfrage der Lehrkraft oft als lästig empfunden und daher möglichst ignoriert wird, akzeptieren die Schülerinnen und Schüler die Rückmeldung des Computers bereitwillig und korrigieren ihre Fehler. Im Unterricht lässt sich immer wieder beobachten, dass selbstständiges Arbeiten Begabungsunterschiede sehr deutlich hervortreten lässt. So sind oft einige Klassenmitglieder mit der Bearbeitung einer Aufgabe bereits fertig, während andere damit noch gar nicht begonnen haben. Um diesem Phänomen zu begegnen, ist ein differenziertes Angebot von Übungen erforderlich, das die Unterschiede im Arbeitstempo und in der Auffassung berücksichtigt. Im regulären Unterricht mit gewöhnlichem Material ist dies nur schwer zu realisieren. Durch die Verwendung der hier vorgestellten interaktiven dynamischen Übungsumgebung wird ein differenziertes und selbsttätiges Lernen möglich. Zudem stehen alle Übungen den Schülerinnen und Schülern - sofern sie über einen Internetzugang verfügen - auch zu Hause zur Verfügung. So können Interessierte das Angebot unbegrenzt nutzen, was die Eigenverantwortlichkeit in hohem Maße fördern kann. Ein wichtiges Element in einer Übungsphase ist die Motivation, mit der die Lerngruppe Aufgaben bearbeitet. Übungen, die die Schülerinnen und Schüler widerwillig ausführen, verfehlen ihr Ziel und sind eigentlich verlorene Zeit. Eine Intensivierung der Übungsarbeit kann durch gelegentliche Wettbewerbe und spielerische Elemente erreicht werden. Wettbewerbe bringen Abwechslung in eine Übungsphase und mobilisieren zusätzlich Motivationskräfte. Die Klasse setzt sich bei Wettbewerben im Allgemeinen in einer Weise ein, wie dies sonst kaum der Fall ist. Wer Lernen und Spielen in einem Zusammenhang nennt und dies noch mit Mathematik in Verbindung bringt, stößt bei Mathematiklehrkräften oft auf große Skepsis. Setzt man aber die bestimmenden Elemente des Spiels mit Aufgabenfunktionen sowie mit den meist vernachlässigten emotionalen Aspekten des Lernens zueinander in Beziehung, wird deutlich, dass das Spiel durchaus ein interessantes didaktisches Rahmenkonzept darstellen kann, das neue unterrichtliche Gestaltungsmöglichkeiten bietet. Für die hier vorgestellten interaktiven Übungen gilt, was für alle Arbeitsmaterialien gelten sollte, nämlich, dass sie zur Unterrichtssituation passen sowie selbsterklärend und motivierend in Form und Inhalt sind. Sie lassen sich nahtlos in einen bestehenden Mathematikunterricht einbinden. Somit wird das Lernen am Computer nicht zu einer Sonderveranstaltung, sondern zu einem weiteren Element eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Zusätzlich können die Schülerinnen und Schüler bei der Bearbeitung der interaktiven Aufgabenblätter immer erkennen, ob sie die Aufgabe korrekt gelöst haben, was in dieser Form bei herkömmlichen Unterrichtsmaterialien nicht leicht zu realisieren ist.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit GeoGebra arbeiten – Grundlagen 2

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema "Mit GeoGebra arbeiten" üben die Schülerinnen und Schüler das computergestützte Konstruieren, verstehen und reflektieren geometrische Zusammenhänge und erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software.Für den Mathematikunterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometriesoftware GeoGebra. Diese Unterrichtseinheit baut auf der Einheit "Mit GeoGebra arbeiten – Grundlagen" auf und handelt vom Konstruieren und Messen im zweidimensionalen Raum mit Hilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um das Entdecken der verschiedenen Symbole und Auswahlmöglichkeiten von GeoGebra. So werden beispielsweise Mittelsenkrechten, Winkelhalbierende, Lote und Schnittpunkte konstruiert, um In- und Umkreise von Dreiecken zu erarbeiten. Auf dem zweiten Arbeitsblatt werden weitere Möglichkeiten beim Konstruieren erkundet, indem mit Tangenten an Kreisen gearbeitet wird. Diese werden verwendet, um ein Tangentenviereck zu konstruieren. Abschließend werden an einem Viereck besondere Eigenschaften von Vierecken dynamisch wiederholt. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paararbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paararbeit weitere Grundlagen der dynamischen Geometriesoftware, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg individuell im Umgang mit GeoGebra ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt, selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, sodass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachkompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner / auf dem Tablet dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden eine computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Mit GeoGebra arbeiten – Grundlagen

Unterrichtseinheit

Für den Mathematik-Unterricht eignet sich bei vielen Themen der Einsatz vom Computer – beispielsweise um Probleme unter einem anderen Blickwinkel zu betrachten und vielseitiger zu erforschen. In der Geometrie bewährt sich dazu die dynamische Geometrie-Software GeoGebra. Die Schülerinnen und Schüler üben in dieser Unterrichtseinheit das computergestützte Konstruieren, Verstehen und Reflektieren geometrischer Zusammenhänge und Erlernen gleichzeitig wertvolle Grundlagen im Umgang mit der Software. Diese Unterrichtseinheit handelt vom Konstruieren und Messen im zweidimensionalen Raum mithilfe der dynamischen Geometriesoftware GeoGebra. Auf dem ersten Arbeitsblatt dreht sich dabei alles um das Entdecken der verschiedenen Symbole und Auswahlmöglichkeiten von GeoGebra. So werden beispielsweise Punkte, Schnittpunkte, Strecken, Halbgeraden, Geraden, Dreiecke, Kreise und so weiter konstruiert. Auf dem zweiten Arbeitsblatt werden die verschiedenen Möglichkeiten des Messens erkundet, indem beispielsweise Flächeninhalte, Strecken, Umfänge und Innenwinkel gemessen werden. Auch wird unter Vorgabe definierter Größen konstruiert und das Verhalten bestehender Konstruktionen bei Verschiebungen von Eckpunkten untersucht. Da die Schülerinnen und Schüler unterschiedliche Voraussetzungen im Umgang mit dem Computer haben, ermöglichen die kleinschrittig konzipierten Aufgaben den Lernenden selbstständig oder in Paararbeit die Arbeitsblätter zu bearbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten bestehen, so können die Musterlösungen alternativ als Begleittexte verwendet werden. Diese enthalten detaillierte Hinweise mit Visualisierungen. Des Weiteren gibt es zu jeder Aufgabe eine fertig konstruierte GeoGebra-Datei als Download. Aufbauend auf dieser Einheit finden Sie hier den zweiten Teil "Mit GeoGebra arbeiten – Grundlagen 2" . Um mit GeoGebra arbeiten zu können, müssen die Grundelemente erlernt und eingeübt werden. Mithilfe der beiden Arbeitsblätter entdecken die Schülerinnen und Schüler in Einzel- oder Paararbeit die Grundlagen der dynamischen Geometrie-Software, indem sie einfache geometrische Figuren konstruieren, Abmessungen an ihnen vornehmen und Lagen erforschen. Zusätzlich können die Musterlösungen den Lernenden als Hilfestellung angeboten werden. Durch die freie Erarbeitungsphase hat die Lehrkraft die Möglichkeit, leistungsschwächere Schülerinnen und Schüler individuell zu unterstützen. So wird gewährleistet, dass den Lernenden der Einstieg im Umgang mit GeoGebra individuell ermöglicht wird. Durch die entstehenden Konstruktionen werden die Lernenden außerdem dazu angeregt selbst Fragestellungen zu Lageverschiebungen und neuen Konstruktionsproblemen zu entwickeln. Der Umgang mit Computern und Software ist den Schülerinnen und Schülern bekannt, so dass sie mit der Oberfläche von GeoGebra schnell vertraut werden. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen Probleme mathematisch und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler verwenden computergestützte Software zum Konstruieren und Messen. erforschen geometrische Beziehungen in interaktiven Dateien. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Kongruenzabbildungen 1

Unterrichtseinheit

In der Unterrichtseinheit zum Thema Kongruenzabbildungen erwerben die Lernenden mithilfe anschaulicher Elemente das Verständnis zur Achsenspiegelung, zur Punktspiegelung und zur Verschiebung von Punkten, Strecken und Figuren. Dabei nutzen sie die Software GeoGebra. Im Mathematikunterricht hilft Software dabei, Aufgaben zu lösen, die man auf dem Papier nur schwer lösen kann oder um Lösungswege anschaulicher darzustellen. Lernende können dadurch einen anderen Blickwinkel auf Fragestellungen erhalten. GeoGebra eignet sich hervorragend für den Einsatz in der Geometrie, denn die Software bietet viele Möglichkeiten mit interaktiven Materialien Inhalte zu erarbeiten. Lernende gehen mit unterschiedlichen Voraussetzungen an den Umgang mit einem Rechner. Durch die sehr einfachen GeoGebra-Aufgaben, die hier genutzt werden, werden viele Schülerinnen und Schüler beim Erarbeiten der Lösungen selten Hilfe benötigen – falls doch, steht unter anderem ein Begleittext mit detaillierten Hinweisen zur Verfügung. Durch die entstandenen Dokumente und der Möglichkeit, schnell Änderungen vornehmen zu können, werden die Lernenden angeregt, selbst Fragestellungen zu ermitteln. Während der Zeit, in der viele Lernende selbständig arbeiten, können diese auch bei einfachen Fragestellungen unterstützt werden, sodass jeder und jedemm der Einstieg in den Umgang mit GeoGebra einfach und auf dem eigenen Niveau ermöglicht wird. Das Arbeitsblatt ist in vier Teile unterteilt. Im ersten Teil des Arbeitsblattes wird der Begriff der Kongruenz vorgestellt. Im zweiten Teil wird thematisiert, welche Möglichkeiten es gibt, kongruente Flächen entstehen zu lassen. Im dritten Teil werden dann die Achsenspiegelung, die Punktspiegelung und die Verschiebung mit interaktiven Experimentierdateien entdeckt. Diese unterstützen und veranschaulichen das Verständnis der Schülerinnen und Schüler im Umgang mit Kongruenzabbildungen und motivieren, selbst zu konstruieren. Außerdem wird das Konstruieren mit "Zirkel und Lineal" vorgestellt. Im letzten Abschnitt befinden sich Übungsaufgaben zum Konstruieren mit GeoGebra. Die Lernenden konstruieren dazu in der GeoGebra Software allein mit den Hilfsmitteln Zirkel und Lineal und dann mit allen Möglichkeiten, die die Software zur Verfügung stellt. Ziel des Arbeitsblattes ist es, Kongruenzabbildungen eines Kreises, eines Sterns und eines Dreiecks mithilfe der Achsenspiegelung, der Punktspiegelung und der Verschiebung zu konstruieren. Kleinschrittig konzipierte Aufgaben und Arbeitsblätter ermöglichen es den Lernenden, selbstständig oder in Paararbeit die Inhalte zu erarbeiten. Sollten bei leistungsschwächeren Schülerinnen und Schülern dennoch Schwierigkeiten auftreten, können die Musterlösungen als Begleitung verwendet werden. Zu jeder Aufgabe gibt es fertige Lösungen als Download. Lehrpläne sehen es vor, dass Schülerinnen und Schüler bestimmte Abbildungen als Kongruenzabbildungen identifizieren. Mit GeoGebra lassen sich Kongruenzabbildungen entdecken und Besonderheiten herausarbeiten. In dieser Unterrichtseinheit wird durch entdeckendes Lernen das Thema der Kongruenzabbildungen behandelt. Die Software unterstützt dabei, Hilfeleistungen individuell zu geben. Der Vergleich der Möglichkeiten des Konstruierens "mit Zirkel und Lineal" und "mit den vereinfachten Möglichkeiten von GeoGebra" erweitert zudem den Blickwinkel der Schülerinnen und Schüler über den Einsatz von GeoGebra. Fachbezogene Kompetenzen Die Schülerinnen und Schüler lernen mathematische Darstellungen kennen und verwenden diese. lösen mathematische Probleme und stellen diese am Rechner dar. modellieren mathematisch. Medienkompetenz Die Schülerinnen und Schüler erforschen geometrische Beziehungen in interaktiven Dateien. verwenden computergestützte Software zum Konstruieren und Messen. Sozialkompetenz Die Schülerinnen und Schüler erfahren Selbstwertgefühl und Eigenverantwortung (Rückmeldungen zu Lösungsstrategien). üben Teamfähigkeit und unterstützen sich gegenseitig. zeigen durch offene Fragestellungen Engagement und Motivation, Lösungen zu entwickeln.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I

Materialsammlung Trigonometrie

Unterrichtseinheit

Hier finden Sie Unterrichtseinheiten und Anregungen zum Unterricht mit digitalen Medien im Fach Mathematik zum Thema Trigonometrie. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler erarbeiten den Einstieg in die Sinusfunktion weitgehend eigenständig und kooperativ. Dynamische Arbeitsblätter helfen dabei, die jeweilige Problem- oder Aufgabenstellung zu veranschaulichen. Ein virtuelles Experiment zur Pendelbewegung stellt den Anwendungsbezug her. Wenn die Sinusfunktion im Unterricht eingeführt wird, geschieht dies meist durch Angabe des Funktionsterms, Erstellen einer Wertetabelle und die anschließende Zeichnung des Funktionsgraphen. Demgegenüber ist der Zugang durch dynamische Arbeitsblätter intuitiver und experimenteller. Die Schülerinnen und Schüler sollen die Darstellung von Sinus, Cosinus und Tangens am Einheitskreis wiederholen. die Darstellung des Bogenmaßes am Einheitskreis wiederholen. eine Einführung und Definition der Sinusfunktion erarbeiten. die Bedeutung der Sinusfunktion für die Beschreibung von Schwingungsvorgängen erkennen. eigenständig und kooperativ mathematische Zusammenhänge erarbeiten und dokumentieren. Thema Einführung der Sinusfunktion Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe Klasse 9 bis 10 Zeitraum 1 Stunde Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die Schülerinnen und Schüler sollen den Zusammenhang zwischen der Darstellung des Sinus, Kosinus und Tangens am Einheitskreis und der dazugehörigem Graphen erkennen. besondere Eigenschaften der Sinus-, Kosinus- und Tangensfunktion benennen. Thema Einführung der Sinus-, Kosinus- und Tangensfunktion Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Klasse 9 und 10 Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, idealerweise Beamer Bei der Einführung der Sinus- und der Kosinusfunktion sowie der Tangensfunktion stehen zu Beginn die Seitenverhältnisse im rechtwinkligen Dreieck im Mittelpunkt. Die Schülerinnen und Schüler lernen Berechnungen mithilfe von Sinus, Kosinus und Tangens am rechtwinkligen Dreieck durchzuführen und entdecken hierbei die Zusammenhänge zwischen den Funktionen. Mehrwert des Applets und Unterrichtsverlauf Warum Sie auf das Applet nicht verzichten sollten und wie Sie es im Zusammenhang mit einem Arbeitsblatt einsetzen können. Die Schülerinnen und Schüler sollen die Definition des Sinus, Cosinus und Tangens eines Winkels als Seitenverhältnis in einem rechtwinkligen Dreieck kennen und anwenden. die x- und y-Koordinate eines Punktes P auf dem Einheitskreis bestimmen können. begründen können, warum beim rechtwinkligen Dreieck im Einheitskreis die Katheten als Sinus (alpha) und Cosinus (alpha) bezeichnet werden. für die Winkel 0° < alpha < 90° die entsprechenden Seitenverhältnisse berechnen. besondere Seitenverhältnisse (alpha = 0°, alpha = 90°, ... ) und die Periodizität der Funktionsgrafen angeben können. Thema Vom Dreieck zur Funktion - Einführung der trigonometrischen Funktionen mit GeoGebra Autoren Sandra Schmidtpott, Markus Hohenwarter Fach Mathematik Zielgruppe Klasse 9, zur Wiederholung auch Klasse 10 Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Rechner in ausreichender Zahl für die Partnerarbeit; die Nutzung der dynamischen GeoGebra-Arbeitsblätter erfordert Java (Version 1.4 oder höher, kostenfrei) Die Schülerinnen und Schüler mussten für den Einsatz der dynamischen Arbeitsblätter nicht extra im Umgang mit dem Programm GeoGebra geschult werden. Lehrerinnen und Lehrern, die sich noch nicht mit GeoGebra auskennen, sei jedoch empfohlen, sich mit den Arbeitsblätter vor deren Einsatz im Unterricht gründlich vertraut zu machen, da die Schülerinnen und Schüler doch immer mehr entdecken, als man erwartet und dann entsprechende Fragen stellen. Durch den Einsatz der GeoGebra-Arbeitsblätter konnte dynamisch erklärt und veranschaulicht werden, wie die Funktionen entstehen und welche Eigenschaften sie besitzen. Über die Verwendung in Klasse 9 hinaus lassen sich die Materialien in Klasse 10 zur Wiederholung einsetzen, wenn die Eigenschaften der trigonometrischen Funktionen noch einmal aufgegriffen werden. Unterrichtsverlauf Hinweise zum Einsatz der Arbeitsblätter Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Er hat die dynamischen Arbeitsblätter zu dieser Unterrichtseinheit entwickelt. Die Schülerinnen und Schüler sollen ihre Kenntnisse zu den trigonometrischen Zusammenhängen im rechtwinkligen Dreieck selbstständig einschätzen lernen. erkannte Defizite im Bereich dieser Zusammenhänge selbstständig beheben. die trigonometrischen Zusammenhänge im rechtwinkligen Dreieck auf unterschiedliche Aufgabenstellungen anwenden können. Thema Trigonometrie mit GeoGebra - ein variables Übungskonzept Autor Andreas Meier Fach Mathematik Zielgruppe 9. und 10. Klasse Zeitraum 2-3 Stunden, je nach Unterrichtsintention Medien Internet Technische Voraussetzungen mindestens ein Computer mit Internetzugang für je zwei Personen, Java Runtime Environment (kostenloser Download), Browser mit aktiviertem Javascript Unterrichtsplanung Verlaufsplan: Trigonometrie mit Geogebra Alle dynamischen Darstellungen der HTML-Seiten wurden mit der kostenlosen Mathematiksoftware GeoGebra erstellt. Durch das Konzept, algebraische mit geometrischen Elementen zu verbinden, eignet sich dieses Programm sehr gut für die Erstellung interaktiver dynamischer Lernumgebungen. Für die reine Anwendung der hier vorgestellten Materialien ist die Software jedoch nicht nötig. Voraussetzungen, Einführung und Nutzung der Arbeitsblätter Auf die Warm-up-Phase mit Übungen zur Selbstkontrolle und Leistungsbestimmung erfolgt das eigenverantwortliche Aufarbeiten von Defiziten und die Festigung des Gelernten. Besonderheiten interaktiver Lernumgebungen Allgemeine Informationen zu den Vorteilen der Nutzung interaktiver Übungsumgebungen und ihrer Rolle als Elemente eines methodisch und medientechnisch abwechslungsreichen Mathematikunterrichts. Die Winkelfunktionen werden üblicherweise am Dreieck oder Einheitskreis definiert. Phänomenbetrachtungen oder Experimente sind die Ausnahme und tauchen, wenn überhaupt, erst als Anwendung auf. Im Rahmen dieser Unterrichtseinheit wird die Sinusfunktion dagegen aus der Anwendung heraus als Schwingungsfunktion eingeführt. Die Trigonometrie erscheint als Nebenprodukt dieser Schwingungsfunktion. Dabei können Computeralgebrasysteme, einfache Funktionenplotter oder geeignete Java-Applets zur schnellen Überprüfung von Hypothesen eingesetzt werden. Die Schülerinnen und Schüler "spielen" dabei mit den Parametern Amplitude, Periodenlänge oder Frequenz, während die Folgen ihrer Experimente am Bildschirm dynamisch dargestellt und analysiert werden können. Mühsame und langwierige Zeichnungen bleiben ihnen erspart. Die Schülerinnen und Schüler sollen die Bedeutung der Sinusfunktion zur Beschreibung von Schwingungen verschiedener Perioden und Amplituden verstehen. über das physikalische Phänomen Schwebung ein Additionstheorem erhören. Thema Die Sinusfunktion zur Beschreibung von Schwingungen und Schwebungen Autor Stefan Burzin Fächer Mathematik, Physik (fächerübergreifend) Zielgruppe Klasse 10 Zeitraum 8 Stunden (je nach Vertiefung) Technische Voraussetzungen CAS (zum Beispiel Derive oder Maple), Funktionenplotter oder geeignete Java-Applets (für die Applets benötigen Sie einen Browser mit Java-Unterstützung, Java Runtime Environment ); idealerweise Beamer Planung Sinusfunktion - Schwingungen und Schwebungen Im herkömmlichen Unterricht wird der Sinus über Streckenverhältnisse im Dreieck eingeführt. Die Sinusfunktion wird mehr oder weniger als Erweiterung der Definitionsmenge plausibel gemacht. Dabei hat die Funktion eine sehr wichtige und auch anschauliche Anwendung: Die Beschreibung periodischer Vorgänge. Die Addition zweier Schwingungen mit geringem Frequenzunterschied kann zunächst hörbar erfahren werden (zum Beispiel durch das Überblasen zweier ähnlich gefüllter Flaschen oder mithilfe der klassischen Stimmgabeln aus der Physik). Danach experimentieren die Schülerinnen und Schüler mit einem Funktionenplotter oder einem vergleichbaren digitalen Werkzeug. Unterrichtsverlauf "Sinusfunktion" Zunächst wird als periodischer Vorgang die Sonnenaufgangskurve untersucht. Rein harmonische Schwingungen werden dann mithilfe des Computers betrachtet. Arbeitsmaterialien Experimente und alle Arbeitsblätter zu den Themen Sonnenaufgangszeiten, Frequenzen, Schwebungen und Sinusfunktionen im Überblick Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Fächergrenzen erfahrbar machen - Fachübergreifendes und fächerverbindendes Arbeiten Die Schülerinnen und Schüler sollen den Umgang mit der Sinusfunktion, ihrer Gleichung und ihren Parametern festigen. mithilfe der Parameter Amplitude, Frequenz und Nullphasenwinkel eine Sinusfunktion gezielt beeinflussen. die Sinusschwingung als ein Bindeglied der Fächer Mathematik, Physik und Musik erkennen. durch die Hörbeispiele eine direkte Verbindung zwischen den Unterrichtsfächern Musikerziehung und Mathematik kennen lernen. die mathematischen Entsprechungen der Begriffe "Tonhöhe" und "Lautstärke" kennen. den Aufbau eines Tons durch Überlagerung seiner Partialtöne kennen. das Phänomen der Schwebung kennen lernen. mit dem Prinzip der Fourier-Analyse vertraut sein und Anwendungsgebiete kennen. Thema Schwingungen in Mathematik, Musik und Physik Autorin Judith Preiner Fächer Mathematik, fächerübergreifend auch Musik, Physik Zielgruppe Gymnasium, Klasse 10; als experimentelle Idee zu den Trigonometrischen Funktionen auch Jahrgangsstufe 11 Zeitraum 6 bis 8 Unterrichtsstunden für die Bearbeitung der Unterrichtsmaterialien; bei fächerübergreifendem Unterricht erweiterbar Technische Voraussetzungen Computer in ausreichender Anzahl mit Soundkarte und Software zum Abspielen von MP3-Dateien, Lautsprecher und Kopfhörer (für Einzel- oder Partnerarbeit), ein Computer mit Beamer (für Lehrerpräsentationen) Software Internet-Browser, Java (Version 1.4.2 oder höher) zur Bearbeitung der Applets Planung Verlaufsplan Schwingungen Sie können alle Arbeitsmaterialien (sieben dynamische Arbeitsblätter) und die umfangreiche Lehrerinformation ("Lexikon" zu den Fachbegriffen, Lösungen der Arbeitsaufträge und Unterrichtsanregungen) von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die hier vorgestellte Lernumgebung bietet die Grundlage für eine Unterrichtssequenz, in der die Schülerinnen und Schüler die Bedeutung der Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d experimentell entdecken können. Insbesondere wird die Beziehung zwischen den Parameterwerten im Funktionsterm und dem Verlauf des zugehörigen Graphen sichtbar und damit erschließbar. Die Schülerinnen und Schüler können dabei weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen somit auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Bedeutung von Parametern in der Sinusfunktion experimentell entdecken. Beziehungen zwischen Funktionstermen und Funktionsgraphen erschließen. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Parameter in der Sinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 10. bis 11. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software GEONExT (kostenloser Download) Die Entwicklung allgemeiner Einsichten Welche Bedeutung haben die Parameter in der allgemeinen Sinusfunktion f(x) = a sin(b(x+c)) + d ? Wie wirken sich Veränderungen der Parameterwerte auf den Verlauf des Funktionsgraphen aus? In der Regel verläuft die Untersuchung derartiger Fragen so, dass die Schülerinnen und Schüler zunächst für einige Parameterwerte Funktionsgraphen zeichnen. Derartige Bilder finden sich in allen gängigen Schulbüchern im entsprechenden Kapitel. In einem entscheidenden nachfolgenden Schritt kommt es allerdings darauf an, dass sich die Schülerinnen und Schüler allmählich von den konkreten Parameterwerten und konkreten Funktionsgraphen lösen und allgemeine Einsichten entwickeln wie etwa: " Wird im Funktionsterm f(x) = sin(bx) der Betrag von b größer, so wird die Sinuskurve in x-Richtung gestaucht. Wird der Betrag von b kleiner, wird die Sinuskurve in x-Richtung auseinander gezogen." Dieser gedankliche Abstraktionsschritt von konkreten Zahlenwerten hin zu allgemeinen Parametern ist nicht zu unterschätzen. Dynamische Mathematiksoftware macht Prozesse sichtbar Die Schülerinnen und Schüler müssen anhand von Erfahrungen an einzelnen Graphen Vorstellungen über Veränderungsprozesse entwickeln, nämlich: Wie verändert sich der Funktionsgraph, wenn man den im Funktionsterm enthaltenen Parameter kontinuierlich variiert? An der Tafel oder auf Papier können bei der Beschäftigung mit derartigen Fragen immer nur einige wenige Graphen gezeichnet werden. Eine kontinuierliche Deformation und Verschiebung der Graphen bei Parametervariation ist mit traditionellen Unterrichtsmitteln allenfalls in der Vorstellung realisierbar. Die statischen Bilder an der Tafel und im Schülerheft gleichen dabei Momentaufnahmen eines dynamischen Prozesses. Dynamische Mathematiksoftware macht diese Prozesse sichtbar: Die kontinuierliche Variation der Parameter bewirkt kontinuierliche Streckungen und Verschiebungen der Graphen. Auf diese Weise treten die zu Grunde liegenden stetigen funktionalen Abhängigkeiten ausgesprochen deutlich hervor. Unterrichtsverlauf und technische Hinweise Die Schülerinnen und Schüler entdecken Zusammenhänge experimentell und fixieren ihre Ergebnisse. Diese werden dann im Plenum präsentiert. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Vom Lotto zum Pascalschen Dreieck

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Binomialkoeffizient führen die Schülerinnen und Schüler im Kontext des Lottospielens eine etwas andere Art der Kurvendiskussion durch, die eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herstellt.Ausgangspunkt der Unterrichtseinheit ist die Frage, ob man einen eventuellen Jackpot-Gewinn bei der ("6 aus 49"-)Lotterie bei steigender Teilnehmerzahl umso wahrscheinlicher mit anderen Gewinnerinnen und Gewinnern teilen muss. Die mathematische Modellierung der Aufgabenstellung führt zu einem Funktionsterm, dessen Diskussion zu einem tieferen Verständnis von Exponentialfunktion und Binomialkoeffizient führt.Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler innerhalb eines Mathematik-Pluskurses der Oberstufe oder im Rahmen eines W-Seminars (Wissenschaftspropädeutischen Seminars) geeignet, die bereit sind, sich intensiver mit einem Thema zu befassen. Dabei werden das Urnenmodell beziehungsweise die hypergeometrische Verteilung und die Binomialverteilung als bekannt vorausgesetzt. Unterrichtsverlauf und Materialien Im ersten Teil sollen die Schülerinnen und Schüler eine zunächst intuitiv beantwortete Frage mathematisch begründen. Variation und Verallgemeinerung Der zweite Teil verallgemeinert die Fragestellung des ersten Teils und führt zu tiefer liegenden mathematischen Sachverhalten. Fachkompetenz Die Schülerinnen und Schüler können die Fragestellung mathematisch mithilfe der hypergeometrischen Verteilung und der Binomialverteilung modellieren. können die Regel von l'Hospital kennen lernen und zur Grenzwertberechnung anwenden. können einen Graphen zeichnen und interpretieren. können Aussagen über vorteilhaftes Verhalten beim Lottospielen machen. erkennen den Binomialkoeffizienten "k aus n" als Polynom k-ten Grades in n. lernen das "Pascalsche Dreieck" kennen und verstehen es. lernen eine rekursive Funktionsschreibweise kennen. können mithilfe der Gaußschen Summenformel die Äquivalenz der rekursiven Definition und der Polynomschreibweise einer Funktion zeigen. lernen "Dreieckszahlen" kennen. verstehen, dass eine Exponentialfunktion schneller wächst als jedes Polynom. Sozialkompetenz Die Schülerinnen und Schüler arbeiten weitgehend eigenverantwortlich und kooperativ. Basieux, P. Die Welt als Roulette - Denken in Erwartungen, Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, 1995 Barth, F. et. al. Stochastik, Oldenbourg Schulbuchverlag, München, 7. verb. Auflage, 2001 Krengel, U. Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg, Braunschweig, 3. erw. Auflage, 1991 Schätz, U. und Einsentraut, F. (Hrsg.) delta 11 - Mathematik für Gymnasien, C.C. Buchner Bamberg u. Duden Paetec Schulbuchverlag Berlin, 2009 Voraussetzungen und Einstieg Die Aufgabenstellung gliedert sich in zwei Teile, deren erster ("Konkrete Beantwortung der Fragestellung") die Schülerinnen und Schüler vom Lehrplan der 12. Jahrgangsstufe am Gymnasium abholt. Zum Einstieg und zur Motivation der Fragestellung können eventuell geeignete Zeitungsartikel genutzt werden (siehe Zusatzmaterialien, die einen Bezug zur Realität herstellen. Die schrittweise Modellierung des Problems in den Teilaufgaben 1.1 bis 1.6 gelingt unter der Voraussetzung, dass das "Ziehen mit Zurücklegen" und das "Ziehen ohne Zurücklegen", also die hypergeometrische und die Binomial-Verteilung, bereits bekannt sind. Variation und Verallgemeinerung Durch die Einführung der Regel von l'Hospital erschließt sich das mathematische Modell den bekannten Mechanismen einer Kurvendiskussion. Außerdem ermöglicht die "ungewohnte" Betrachtung des Binomialkoeffizienten als einer Funktion in n das Anknüpfen an vertraute Sachverhalte. Zu den Themen "Rekursion", "Pascalsches Dreieck" und "Dreieckszahlen" in den Teilaufgaben 2.6 bis 2.9 sollen die Schülerinnen und Schüler selbstständig im Internet oder in entsprechender Literatur nach Hintergründen und Bedeutung recherchieren. Zur Förderung des Verständnisses und zum Abschluss des Modellierungsprozesses wird zu den Ergebnissen der Teilaufgaben generell eine Interpretation beziehungsweise eine Versprachlichung eingefordert. Die Lernenden werden mit folgender Fragestellung konfrontiert: "Ist es wahrscheinlicher, dass es bei der ("6 aus 49"-) Lotterie mehr Jackpot-Gewinnerinnen und -gewinner gibt, wenn es mehr Teilnehmende gibt?" Diese Fragestellung soll diskutiert und zunächst intuitiv beantwortet werden. In der Regel wird sich schnell ein Konsens einstellen: Ja. Doch wie genau bleibt noch offen und zu untersuchen. Nach der Ermittlung der Trefferwahrscheinlichkeit für "r Richtige plus Zusatzzahl" sowie der Wahrscheinlichkeit dafür, dass k von insgesamt n Lotterie-Teilnehmerinnen und-teilnehmer r Richtige getippt haben, stellt sich das mathematische Gesamtmodell als eine Kombination aus hypergeometrischer und binomial-verteilter Formulierung dar. Nach einigen konkreten Berechnungen wird für Grenzwertbetrachtungen zum einen die (mittlerweile im Lehrplan oft nur noch optionale) Regel von l'Hospital und zum anderen die einfache, aber mächtige Identität für a > 0 eingeführt. Damit lassen sich alle Grenzwert- und Monotoniebetrachtungen durchführen. Anhand des Graphen für einen geeigneten Spezialfall werden die Schülerinnen und Schüler zur abschließenden Beantwortung der Ausgangsfrage geführt. Verallgemeinerung auf k erfolgreiche Teilnehmer Im zweiten Teil der Aufgabenstellung ("Variation und Verallgemeinerung") wird der Kontext mindestens zweier Jackpot-Gewinnerinnen oder -gewinner vom Ende des ersten Teils auf genau beziehungsweise mindestens k erfolgreiche Lotterie-Teilnehmende verallgemeinert. Nun wird für eine Diskussion des Funktionsterms allerdings ein tieferes Verständnis des Binomialkoeffizienten notwendig. Dazu wird dieser als Funktion in n betrachtet, auf den Bereich der reellen Zahlen verallgemeinert, exemplarisch graphisch dargestellt und berechnet. Hierbei stellen die Schülerinnen und Schüler fest, dass es sich im Grunde bei dem Symbol um nichts anderes als ein Polynom k-ten Grades in x handelt. Damit befinden sich die Lernenden wieder auf vertrautem Terrain aus Mittel- und Oberstufe. Pascalsches Dreieck Im Anschluss wird der Aufbau des Pascalschen Dreiecks bewiesen und gezeigt, dass sich die Werte der jeweiligen "Binomialkoeffizient-Polynome" für natürliche Argumente einfach in den Spalten beziehungsweise Diagonalen des Pascalschen Dreiecks ablesen lassen. Offensichtlich liefert das Pascalsche Dreieck aber auch jeweils eine Rekursionsformel für die einzelnen Polynome. Die Schülerinnen und Schüler lernen dieses andersartige Konzept zur Definition einer Funktion für den Spezialfall k=2 kennen und ermitteln mithilfe der Gaußschen Summenformel den Zusammenhang zwischen der rekursiven und der expliziten Darstellung. Dabei gibt es neben diesem algebraischen aber auch einen geometrischen Beweisweg über die so genannten Dreieckszahlen. Anwendung der Regel von l'Hospital Mithilfe der Regel von l'Hospital erhalten die Schülerinnen und Schüler nun Zugang zu einer mathematisch sehr gewichtigen Tatsache, nämlich dass eine Exponentialfunktion schneller wächst als jede Potenz beziehungsweise jedes Polynom. Damit lässt sich nun auch die Ausgangsfrage allgemein sehr schnell beantworten. Graphen zur Veranschaulichung Zum Abschluss sehen die Schülerinnen und Schüler anhand von exemplarischen Graphen mittels eines Funktionsplotters (hierzu eignet sich zum Beispiel auch GeoGebra), wie sich die gesuchte Wahrscheinlichkeit verhält und in welchem Bereich sich überhaupt erst Bezüge zur Realität anbieten (vergleiche Abb. 1, zur Vergrößerung bitte anlicken). Auf die Thematisierung der für den Kontext kleiner Erfolgswahrscheinlichkeiten bei großer Stichprobe als gute Näherung geeigneten Poisson-Verteilung ("Verteilung der seltenen Ereignisse") wird verzichtet, da in erster Linie nicht das rein statistische Problem, sondern die Vernetzung von stochastischen/statistischen mit analytischen und algebraischen Inhalten im Vordergrund stehen soll. Fazit Die Schülerinnen und Schüler erhalten durch diese Lerneinheit die Möglichkeit, eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik herzustellen. Zudem zeigt sich, dass neuartige Symbole (wie der Binomialkoeffizient) oder Schreibweisen (wie die rekursive Definition einer Funktion) durch geeignete Betrachtungsweise gar nicht mehr so neuartig sein müssen, sondern bereits bekannten Dingen entsprechen. Durch die zusätzliche Einführung einiger weniger Hilfsmittel (allgemeine Exponentialfunktion als e-Funktion, Regel von l'Hospital) erschließt sich so auch eine ungewohnte Funktion den oftmals schematisch verfolgten Argumenten der Kurvendiskussion.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe II

Materialsammlung Analysis

Unterrichtseinheit

Auf dieser Seite haben wir Unterrichtseinheiten und Anregungen für Ihren Mathematik-Unterricht im Bereich Analysis zusammengestellt: Differenzialrechnung, komplexere Probleme der Differenzialrechnung und Integralrechnung. Auch Unterrichtsmaterialien für die Begabtenförderung im Mathematik-Unterricht finden Sie hier. Die Schülerinnen und Schüler sollen den Eigenschaften ganzrationaler Funktionen einüben. Nullstellen, Extremwerte und Wendepunkte berechnen können. den Einfluss eines Parameters auf eine Kurvenschar erkennen können. die Herleitung von Ortskurven vertiefen. grundlegende Zusammenhänge kontinuierlich wiederholen. kooperieren und sozial interagieren können. Thema Kurvendiskussion ganzrationaler Funktionen Autor Dr. Markus Frischholz Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Person, Browser mit Java-Unterstützung, Java Runtime Environment (kostenloser Download) Software Mit GEONExT (kostenloser Download) können Sie eigene dynamische Materialien erstellen. Zur Nutzung der hier angebotenen Arbeitsblätter ist die Software jedoch nicht erforderlich. Die ganzrationalen Funktionen bilden häufig den Einstieg in die Kurvendiskussion. Diese Unterrichtseinheit behandelt typische Standardaufgaben. Ihre Umsetzung in Form dynamischer Übungsblätter ermöglicht einen individualisierten, experimentellen und eigenaktiven Lösungsprozess. Technische Hinweise und Didaktik Tipps und Screenshots zur Nutzung der Bedienfelder und Informationen zum didaktischen Konzept der dynamischen Übungsblätter Die Schülerinnen und Schüler sollen ganz- und gebrochen-rationale Funktionen sicher ableiten können. Funktionswerte berechnen können. Funktionsterme in einen Computer (hier: Mobiltelefon) eingeben. Geradengleichungen bestimmen können. zu einem Punkt des Graphen einer Funktion die Tangente und die Normale bestimmen können. ihr Ergebnis anhand einer grafischen Darstellung selbst überprüfen. Thema Kurvendiskussionen, hier: Tangenten und Normalen mit Mobiltelefon-Unterstützung Autor Mirko König Fach Mathematik Zielgruppe ab Jahrgangsstufe 11 Zeitraum 2-3 Stunden Technische Voraussetzungen möglichst ein Java-Mobiltelefon pro Person (MIDP 2.0, CLDC 1.1) Software Analysis mobil (JavaME-Programm), möglichst auf jedem Mobiltelefon der Lernenden zu installieren (Shareware, 10 € pro Einzellizenz); Lehrpersonen, die mit ihrem Kurs gemeinsam das Programm nutzen möchten, können sich für eine kostenlose Klassen-Lizenz an den Autor wenden: mail-at-analysismobil.com). Bei den Kurvendiskussionen müssen die Schülerinnen und Schüler das in der Analysis Gelernte anwenden und in komplexer Form umsetzen. Dabei geht einigen schon einmal der Überblick verloren, und es entstehen Fragen wie: "Muss ich jetzt f, f' oder f'' verwenden?". Dies lässt sich durch übersichtliche Schrittfolgen vermeiden. Kommen aber Anwendungsaufgaben wie die zu Tangenten und Normalen hinzu, kann die als erreicht geglaubte Sicherheit wieder schwinden. Hier können Visualisierungen helfen, die Ergebnisse zu kontrollieren. Von den Lernenden mit Bleistift und Millimeterpapier erstellte Graphen reichen hier oft noch nicht aus, da der Erfahrungsschatz an bereits gesehenen Funktionen und deren Graphen noch zu klein ist. Überdies hängt die Richtigkeit des Graphen direkt von den Rechenfertigkeiten ab. Ein Computerprogramm mit einer Funktionseingabe und einer grafischen Funktionsanzeige (Funktionsplotter) kann hier die Anschauung gut unterstützen und eine unabhängige Kontrolle bieten. Der Computer ist in dem hier vorgestellten Fall ein Mobiltelefon, ein Gerät, das die Schülerinnen und Schüler in der Regel ständig parat haben. Allgemeine Hinweise und Materialien Ausgangssituation, Motivation und Zielstellung, allgemeine Anmerkungen zum Softwareeinsatz und Hinweise zum Einsatz der Materialien Die Schülerinnen und Schüler sollen erkennen, dass die Steigung der Tangente an eine Funktion sowohl negativ als auch positiv sein kann. wissen, dass am "tiefsten" und "höchsten Punkt" des Grafen die Steigung gleich Null ist. erkennen, dass die Steigung der Tangenten einer Parabel, als Funktion abgetragen, eine Gerade ergibt. erkennen, dass die Steigung der Tangenten eines Polynoms dritten Grades, als Funktion abgetragen, eine Parabel ergibt. den Zusammenhang zwischen Tangentensteigung und Ableitung einer Funktion erkennen. Thema Steigung und Ableitung einer Funktion Autor Markus Hohenwarter Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 1-2 Stunden Technische Voraussetzungen idealerweise ein Rechner pro Schülerin/Schüler Software Java (Version 1.4 oder höher, kostenfrei); GeoGebra zum Erstellen eigener dynamischer Arbeitsblätter (kostenloser Download aus dem Internet) Die Schülerinnen und Schüler sollten bereits die erste Ableitung einfacher Polynome berechnen können. Die Lernumgebung dieser Unterrichtseinheit besteht aus HTML-Seiten, die mit jedem Internet Browser (zum Beispiel Internet Explorer, Netscape, Mozilla) betrachtet werden können. Damit auch die dynamischen Konstruktionen funktionieren, muss Java 1.4 (oder höher) installiert sein. Hinweise zum Einsatz der dynamischen Arbeitsblätter Falls Ihnen noch die erforderliche Java-Abspielumgebung fehlt, können Sie hier mithilfe von Screenshots einen ersten Eindruck von den Arbeitsblättern gewinnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Die Schülerinnen und Schüler sollen die Begriffe der mittleren Steigung und der mittleren Änderungsrate kennen lernen. die Begriffe der momentanen Änderungsrate beziehungsweise des Differenzenquotienten erlernen. erkennen, dass der Differenzenquotient beziehungsweise die Ableitung die Steigung in einem Punkt angibt. verschiedene Ableitungsregeln kennen und anwenden können. die Begriffe Monotonie, Hoch-, Tief- und Wendepunkte kennen lernen. aus vorgegebenen Eigenschaften eine Funktion bestimmen können (Kurvendiskussion rückwärts). Die Schülerinnen und Schüler lernen mathematische Sachverhalte meist rein theoretisch kennen. In dieser Unterrichtsreihe wird der Versuch unternommen, unmittelbare Anschauung mit mathematischer Theorie zu verknüpfen. Den SchülerInnen wird veranschaulicht, was es bedeutet, wenn die erste Ableitung gleich Null ist und was passiert, wenn die zweite Ableitung ungleich Null ist. Die Schülerinnen und Schüler sollen die Sekantensteigung berechnen können. den Grenzübergang von der Sekantensteigung zur Tangentensteigung grafisch begründen können. erläutern können, warum die Differenz aus dem x-Wert des Punktes Q und dem x-Wert des Punktes P unendlich klein, aber niemals null wird. die Tangentensteigung als erste Ableitung der Funktion im Punkt P (1 / 1) erkennen und rechnerisch bestimmen können. den Differenzialquotienten als Grenzwert des Differenzenquotienten kennen und bestimmen können. Thema Vom Differenzen- zum Differenzialquotient Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 2 bis 3 Unterrichtsstunden Technische Voraussetzungen Browser mit Java-Unterstützung, ein Rechner pro zwei Lernende, idealerweise Beamer; optional: grafikfähiger Taschenrechner TI-83, OHP-Projektion für Taschenrechner Die Schülerinnen und Schüler haben zu Beginn der Jahrgangsstufe 11 die Bestimmung der Steigung von Geraden geübt und damit die Sekantensteigung wiederholt. Parallel dazu haben sie den Differenzenquotienten als mittlere Änderungsrate kennen gelernt, um so den Weg für eine einfachere Behandlung der Differenzialrechnung in Anwendungszusammenhängen frei zu machen. Hinweise zum Einsatz der Arbeitsblätter und des Applets Das Verständnis der Thematik muss sukzessiv aufgebaut werden, um eine erfolgreiche Einführung in die Kurvendiskussion zu gewährleisten. Die Arbeitsblätter können Sie hier einzeln herunterladen. Die in dieser Unterrichtseinheit verwendete Lernumgebung nutzt diese Werkzeuge und bietet die Basis für einen aktiv-entdeckenden Zugang zur Ableitung der Sinus- und der Kosinusfunktion, bei dem die Schülerinnen und Schüler weitgehend eigenverantwortlich, selbstständig und kooperativ arbeiten. Die dynamischen Arbeitsblätter und ihre Einsatzmöglichkeiten im Unterricht zeigen dabei auf, wie Ziele von SINUS-Transfer mithilfe neuer Medien verfolgt und umgesetzt werden können (Modul 1: Weiterentwicklung der Aufgabenkultur; Modul 8: Aufgaben für kooperatives Arbeiten; Modul 9: Verantwortung für das eigene Lernen stärken). Die Grundlage dafür bildet das kostenlose Programm GEONExT. Es kann von der Grundschule bis zur Analysis der gymnasialen Oberstufe vielfältig und flexibel genutzt werden, als eigenständige Anwendung oder im Rahmen dynamischer Arbeitsblätter auf HTML-Basis. GEONExT wurde und wird an der Universität Bayreuth entwickelt. Die Schülerinnen und Schüler sollen die Ableitung der Sinus- und der Kosinusfunktion experimentell entdecken. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Ableitung der Sinus- und Kosinusfunktion Autor Prof. Dr. Volker Ulm Fach Mathematik Zielgruppe 11. bis 12. Jahrgangsstufe Zeitraum 2 Stunden Technische Voraussetzungen Browser mit Java2-Unterstützung, Java Runtime Environment Software GEONExT (kostenloser Download) Beim Aufbau der Differentialrechnung stehen in der Regel Potenz- und Polynomfunktionen am Anfang, die Schülerinnen und Schüler bestimmen Ableitungen, indem sie den Differenzialquotienten als Grenzwert explizit berechnen. Bei der Ableitung der trigonometrischen Funktionen ist dieser Weg relativ aufwändig. Er erfordert trigonometrische und algebraische Umformungen, die in der Regel von der Lehrkraft in wohl durchdachter Reihenfolge vorgeführt und von den Schülerinnen und Schülern bestenfalls nachvollzogen werden, die allerdings zum Verständnis für das Wesen der Ableitung wenig beitragen. Deshalb erscheint insbesondere bei den trigonometrischen Funktionen ein experimenteller und entdeckender Zugang zur Ableitung sinnvoll und für die Schülerinnen und Schüler besonders einprägsam. Unterrichtsverlauf und technische Hinweise Bei der Arbeit mit der Lernumgebung ist eigenständiges Arbeiten und Entdecken ebenso gefordert wie der Austausch mit den Mitschülern. Bezug der Unterrichtseinheit zu SINUS-Transfer Weiterentwicklung der Aufgabenkultur, Aufgaben für kooperatives Arbeiten, Verantwortung für das eigene Lernen stärken Die Schülerinnen und Schüler sollen gegebene Größen bestimmen. Zielfunktionen aus gegebenen Größen herleiten. Extremstellen der Zielfunktionen bestimmen und das Verfahren der Kurvendiskussion anwenden (notwendige Bedingung für Extremstellen). gewonnene Lösungen diskutieren und interpretieren. einfache Extremwertprobleme lösen. Titel Einfache Extremwertprobleme mit Derive 5.0 Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 11 Zeitraum 6 Stunden Technische Voraussetzungen 1 Rechner für zwei Lernende, Beamer Software Derive 5.0 Schullizenz, siehe Zusatzinformationen Bei der Behandlung der Extremwertprobleme stellen sich für die Schülerinnen und Schüler häufig zwei Probleme: die Isolierung gegebener und gesuchter Größen aus der vorhandenen Textaufgabe und das Aufstellen der entsprechenden Zielfunktion. Eine gemeinsam erarbeitete Strategie zur Lösung dieser Probleme ist notwendig, um den Lernenden die nötige Sicherheit im Umgang mit diesem Bereich der Mathematik zu geben. Ein Grundproblem, das im Mathematikunterricht immer wieder auftaucht - und nicht nur im Rahmen dieser Unterrichtsreihe -, ist die "Versorgung" der Rechenschritte und Lösungen mit verständlichen nachvollziehbaren Kommentaren und Erläuterungen für die Lernenden. Das CAS Derive bietet die dazu nötigen Möglichkeiten. Die Aufgaben dieser Unterrichtseinheit konnten von allen Lernenden gut nachvollzogen werden. Erarbeitete Lösungen ließen sich sofort am Graphen der Zielfunktion, insbesondere in den Extrempunkten, überprüfen. Unterrichtsverlauf Beschreibung der einzelnen Unterrichtsphasen Aufgaben und Musterlösungen Derive-Dateien und Screenshots Die Schülerinnen und Schüler sollen anhand gegebener Informationen und Eigenschaften eine Funktionsgleichung bestimmen können. aus den gegebenen (notwendigen) Bedingungen der Funktion das Gleichungssystem aufstellen können. das aufgestellte Gleichungssystem mithilfe des TI-83, mithilfe von Derive beziehungsweise durch Additions-, Subtraktions- und Einsetzungsverfahren lösen können. Thema Steckbriefaufgaben (Kurvendiskussion rückwärts) Fach Mathematik Autorin Sandra Schmidtpott Zielgruppe Jahrgangsstufe 12 (Grundkurs) Zeitraum 4-6 Unterrichtsstunden grafikfähiger Taschenrechner (optional) TI-83, OHP-Projektion Derive (optional) ein Rechner pro zwei Lernende, idealerweise Beamer virtueller Klassenraum Einrichtung eines virtuellen Klassenraums durch die Lehrkraft bei lo-net (siehe Internetadresse), Zugriff der Lernenden außerhalb des Unterrichts auf Rechner mit Internetanschluss Die Lernenden arbeiteten während der Unterrichtseinheit motiviert und konzentriert. Als großes Plus hat sich die Arbeit am heimischen Rechner mit dem virtuellen Klassenraum von lo-net erwiesen. Dies hat nicht nur das Klima im Kurs nachhaltig positiv beeinflusst, sondern auch eine neue, "coole" Art des Unterrichts mit sich gebracht. Denn wo trifft man schon mal eine Lehrkraft im Chat oder wird von der Lehrerin dazu aufgefordert, Ergebnisse vor dem Unterricht den anderen zugänglich zu machen? Erfahrungen mit dem virtuellen Klassenraum Der Austausch von Hilfestellungen, Materialien Ergebnissen und Meinungen im virtuellen Klassenraum fördert die Selbstständigkeit der Schülerinnen und Schüler. Rechen- und Datenverarbeitungswerkzeuge, Arbeitsblätter Zur Bearbeitung der Steckbriefaufgaben konnten das CAS Derive sowie grafikfähige Taschenrechner (TI-83) verwendet werden. Die Schülerinnen und Schüler sollen für Exponentialfunktionen der Form f(x) = ca x anhand der gegebenen Informationen Funktionsterme bestimmen können. den Unterschied zwischen a > 1 und a < 1 anhand des Grafen und der gegebenen Informationen erläutern können. analytisch und geometrisch begründen können, warum die Tangente an eine Exponentialfunktion an der Stelle x = 0 eine Steigung von 1 haben muss. eine geeignete Basis a bestimmen können, bei der die Ausgangsfunktion mit ihrer Ableitung übereinstimmt. die Eigenschaften der Eulerschen e-Funktion und die Ableitungsregeln für die e-Funktion kennen. Thema Einführung der Eulerschen Zahl Autorin Sandra Schmidtpott Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 2-3 Unterrichtsstunden Technische Voraussetzungen 1 Rechner mit Internetanschluss für je 1-2 Lernende, Java Runtime Environment ; idealerweise Beamer, grafikfähiger Taschenrechner, OHP-Projektion für Taschenrechner, CAS Die Exponentialfunktion begegnet den Schülerinnen und Schülern in der Regel in der Sekundarstufe I, insbesondere in Klasse 10 im Zusammenhang mit der Behandlung von Wachstums- und Zerfallsvorgängen. In der Sekundarstufe II geht es nun darum, an dieses Vorwissen anzuknüpfen und im weiteren Verlauf des Unterrichts zur Analysis die Ableitung der Exponentialfunktion zu bestimmen. Die Schülerinnen und Schüler zeigten sich während dieser Unterrichtseinheit motiviert und engagiert, was unter anderem auf den anwendungsbezogenen Charakter der Aufgaben und den Einsatz des Java-Applets zurückzuführen ist. Das Applet machte anschaulich deutlich, was beim Bestimmen der Ableitung eigentlich genau rechnerisch bestimmt wird und was dem grafisch entspricht - eine echte Bereicherung der von den Lernenden als unverständlich empfundenen "üblichen rein theoretischen Rechnerei". ?Geh weg oder ich differenzier dich!? Der Mathematikerwitz diente als stummer Impuls, zu dem die Schülerinnen und Schüler Vermutungen sammelten und hinterfragten. Das anspruchsvolle Java-Applet unterstützte das experimentelle Finden der Zahl "e". Die Schülerinnen und Schüler sollen den Begriff der Ober- und Untersumme kennen und anwenden. erkennen, dass bei einer sehr feinen Unterteilung der Intervalle Ober- und Untersumme gegeneinander konvergieren. erkennen, dass der Unterschied zwischen beiden beliebig klein wird (Grenzwertbegriff) und dass der Grenzwert der Ober- und Untersumme der Fläche unter dem Graphen entspricht. den Unterschied zwischen Integral und Fläche erklären. Integrale und Flächen berechnen. Die dynamischen Arbeitsblätter der Unterrichtseinheit können Sie von der GeoGebra-Homepage als ZIP-Datei herunterladen. Markus Hohenwarter ist zurzeit Dissertant an der Abteilung für Didaktik der Mathematik , Universität Salzburg. Sein Dissertationsprojekt GeoGebra wird von der Österreichischen Akademie der Wissenschaften gefördert. Die Schülerinnen und Schüler sollen ihr Wissen über die Berechnung von Dreiecksflächen anwenden. Funktionen integrieren und die Stammfunktionen an bestimmten Stellen auswerten. den Zusammenhang zwischen Integral und Flächeninhalt entdecken. die Methode der Annäherung mithilfe von Rechtecken an einen Graphen erkennen. die Begriffe Unter- und Obersumme kennen lernen und verstehen, welche Bedeutung deren Differenz hat. sich in die TurboPlot-Software einarbeiten. mithilfe des Computers Werte für Unter- und Obersummen ermitteln und in Arbeitsblätter übertragen. abschließend gemeinsam in der Klasse ihre Beobachtungen zusammentragen. Thema Flächenberechnung mit TurboPlot Fach Mathematik Autorin Sonja Kisselmann Zielgruppe Jahrgangsstufe 12, Grundkurs Zeitraum 2 Unterrichtsstunden Technische Voraussetzungen Ein Rechner pro zwei Lernende, Software TurboPlot (kostenloser Download aus dem Internet) Planung Verlaufsplan Flächenberechnung mit TurboPlot Anhand verschiedener Abbildungen eines Funktionsgraphen werden die Begriffe Ober- und Untersumme eingeführt und das Verfahren der immer genaueren Annäherung an den Flächeninhalt unter einem Graphen verdeutlicht. Schließlich sollen sich die Lernenden von der Richtigkeit ihrer anfangs aufgestellten Vermutung (Zusammenhang zwischen Integral und Flächengröße) überzeugen, indem sie mithilfe der TurboPlot-Software die Annäherung von Ober- und Untersummen an die Fläche unter einer quadratischen Funktion beobachten und die vom Programm angezeigten Werte mit ihrem eigenen Ergebnis des bestimmten Integrals vergleichen. Hier können Sie sich Arbeitsblätter einzeln ansehen und herunterladen. Die jeweiligen Einsatzszenarien werden skizziert. Zusammenhang zwischen Flächengrößen und Integration In arbeitsteiliger Gruppenarbeit setzen sich die Lernenden mit Dreiecksflächen auseinander, berechnen das bestimmte Integral der zugehörigen linearen Funktion und formulieren eine erste Vermutung über den Zusammenhang zwischen Flächengrößen und Integration. Unter- und Obersummen Die Lernenden setzen sich mit einem Blumenbeet auseinander, das durch eine Parabel begrenzt wird. Fragend-entwickelnd werden Möglichkeiten der Flächenberechnung erarbeitet, bevor die Bildung von Unter- und Obersummen mithilfe von Folien verdeutlicht wird. TurboPlot als zeitsparender Zeichenknecht Die Lernenden nutzen die Software TurboPlot, um zu einer Funktionsgleichung verschiedene Unter- und Obersummen zu visualisieren. Nach einer Präsentationsphase führt die Vervollständigung von Lückentexten zur Konkretisierung der Beobachtungen und begründet den Zusammenhang zwischen Flächeninhalt und Integral. Diese und andere Fragen werden im Kurs "Ein(-)Blick ins Chaos" auf mathematischer Grundlage erforscht. Intention des Kurses ist es, die Schülerinnen und Schüler in das Forschungsgebiet nichtlinearer, dynamischer Systeme einzuführen und verschiedene Aspekte der "Chaos-Theorie" und der damit verbundenen fraktalen Geometrie aufzuzeigen. Dabei werden mithilfe des Computers (Tabellenkalkulationen, Basic- und Pascal-Programme) Populationsdynamiken analysiert und daraus resultierende fraktale Mengen visualisiert. Die Schülerinnen und Schüler untersuchen anhand repräsentativer Gleichungen Kerninhalte der Chaosforschung und erhalten somit eine Grundlage für weiterführende Studien und eigene Experimente. Besondere Bedeutung kommt dabei auch dem fächerübergreifenden Bildungs- und Erziehungsziel "Entwicklung von Weltbildern und Weltdeutung" zu. Der hier vorgestellte Kurs wurde schon mehrmals im Rahmen einer "Schülerakademie" (ein lehrplanunabhängiges Enrichment-Programm zur Förderung hochbegabter Gymnasiasten) durchgeführt. Die Schülerinnen und Schüler sollen die Abgrenzung chaotischer Systeme vom schwachen beziehungsweise starken Kausalitätsprinzip erkennen. mit der Herleitung der logistischen Gleichung die Konzeption der Rückkopplung und Iteration verstehen. bereits in der Unter- und Mittelstufe erworbene mathematisch analytische Fertigkeiten auf die Diskussion der logistischen Gleichung anwenden können. verschiedene Darstellungsformen nichtlinearer Iterationen vergleichend interpretieren und selbst einfache Computerprogramme zur Analyse und Visualisierung erstellen können. Sensitivität, Transitivität und dicht liegende periodische Punkte als Kennzeichen chaotischer Systeme begreifen. Zusammenhänge nichtlinearer dynamischer Systeme und fraktaler Strukturen erkennen. über die philosophischen Aspekte des Determinismus beziehungsweise Indeterminismus und der Berechenbarkeit von Systemen nachdenken. Thema "Ein(-)Blick ins Chaos" - nichtlineare dynamische Systeme Autor Claus Wolfseher Fach Mathematik Zielgruppe ab Klasse 10, hochbegabte Schülergruppen (Mathematik-AG, Projektarbeit) Zeitraum abhängig von Behandlungstiefe 10 oder mehr Doppelstunden Technische Voraussetzungen Computer mit einfacher Programmierumgebung (zum Beispiel Basic, Pascal oder Java) und Tabellenkalkulationssystem (zum Beispiel "Calc" - siehe OpenOffice.org - oder Excel) Im ersten Teil der Unterrichtseinheit werden die Lernenden ausgehend von einer Reihe realer Papierkegel mit unterschiedlichen Öffnungswinkeln auf den nichtlinearen Zusammenhang zwischen dem Volumen eines Kegels und seinem Öffnungswinkel hingeführt. Nachdem dies rein intuitiv festgestellt wird, taucht dieser Aspekt in der algebraischen Herleitung der entsprechenden Formel wieder auf. Diese wird einer regulären Kurvendiskussion unterzogen, wobei sich bereits hier interessante Ergebnisse zeigen. Im zweiten Teil werden die Pfade des Lehrplans vorübergehend verlassen. Durch Spiegelung das Graphen der Volumenfunktion an den Koordinatenachsen entsteht eine Kurve, die im Weiteren vorbei an der Lemniskate von Jakob Bernoulli hin zur Tschirnhaus-Kubik führt. Die Kurven sollen dabei mit einem CAS erzeugt werden. Die Eigenschaft der Tschirnhaus-Kubik als Katakaustik der Parabel lässt sich dabei sehr einfach und schön mit einer dynamischen Geometriesoftware darstellen. Über die Kegelschnitte kommen die Lernenden von der Parabel zurück zum Ausgangskörper - dem Kegel. Dieser Zirkel zeigt einen großen Zusammenhang im Gebäude der Mathematik auf und soll dazu ermuntern, selbstständig auf weitere Entdeckungsreisen zu gehen. Die Schülerinnen und Schüler sollen Hypothesen über mathematische Zusammenhänge aus der Anschauung heraus formulieren können. einen nichtlinearen Zusammenhang erkennen und herleiten können. ein CAS zur grafischen Erzeugung von numerischen Näherungslösungen und höheren algebraischen Kurven bedienen können. selbstständig nach mathematik-historischen Zusammenhängen im Internet und einschlägiger Literatur recherchieren. in der Lemniskate von Bernoulli und der Tschirnhaus-Kubik exemplarische Vertreter höherer algebraischer Kurven kennen lernen. weitgehend eigenverantwortlich und kooperativ arbeiten. Die vorliegende Unterrichtseinheit ist für begabte Schülerinnen und Schüler der Jahrgangsstufe 11 konzipiert, die bereit sind, sich intensiver mit einem Thema zu befassen. Sie bietet sich daher beispielsweise im Rahmen eines "Pluskurses", einer Projektarbeit oder einer AG an. Die abschießende Aufgabe (siehe "arbeitsblatt_kegel_algebraische_kurven"), in der die Lernenden selbstständig recherchieren sollen, welche tiefgreifende Verbindung es zwischen einer Parabel und einem Kegel gibt, ist bewusst offen gehalten. Sie soll die Schülerinnen und Schüler anregen, weitere Aspekte des Themas zu erkunden und forschend tätig zu werden. Eine Präsentation der eigenen Ergebnisse kann schließlich die Beschäftigung mit diesem Thema abrunden und sich - je nach Zusammensetzung und Bedürfnissen der Lerngruppe - auf die gesamte Thematik, einzelne Aufgaben oder den Ausblick beziehen. Materialien und Literatur Hier können Sie die Materialien zum Beitrag einzeln herunterladen: Aufgaben, Geogebra-Applet, Beispiel-Code für das CAS Maple; außerdem finden Sie hier Literaturtipps. Ausgehend von einer elementaren Konstruktion einer Mittelsenkrechten erzeugen die Schülerinnen und Schüler mithilfe von GeoGebra Geradenscharen, deren Hüllkurve eine Parabel zu sein scheint. Die Lernenden erarbeiten Schritt für Schritt den Beweis dieser Vermutung. Ihr Ergebnis können sie wiederum an der GeoGebra-Konstruktion überprüfen. Indem sie anschließend die allgemeine Gleichung einer Parabeltangente aufstellen, erkennen sie, dass die anfangs konstruierten Mittelsenkrechten gerade die Parabeltangenten sind. Mithilfe dieser Erkenntnisse lässt sich nun ein einfaches Verfahren zur Konstruktion von Parabeltangenten finden. Die Schülerinnen und Schüler sollen Geradenscharen und deren Hüllkurve mithilfe eines dynamischen Arbeitsblattes erzeugen können. die Parabel als Ortskurve der konstruierten Mittelsenkrechten kennen lernen und die zugehörige Parabelgleichung aus den Konstruktionseigenschaften herleiten können. einen Zusammenhang mit den ihnen bekannten Parabeltangenten herstellen können. aus den gewonnen Erkenntnissen eine einfache Vorschrift zur Konstruktion einer Parabeltangente in einem vorgegebenen Punkt herleiten können. weitgehend eigenverantwortlich und kooperativ arbeiten. Thema Geradenscharen und Parabeln Autor Birgit Siebe Fach Mathematik Zielgruppe ab Jahrgangsstufe 11, begabte Schülerinnen und Schüler, Mathematik AG Zeitraum 3-8 Stunden Technische Voraussetzungen möglichst ein Computer pro Person Software Java-Plugin (Version 1.4 oder höher, kostenloser Download), GeoGebra (kostenloser Download) Ausgehend vom Beispiel des radioaktiven Zerfalls von Jod-131 werden die Eigenschaften der Funktionen vom Typ f(x) = Ca x untersucht. Hauptaspekte dabei sind die Modellierung von exponentiell ablaufenden Prozessen, die Proportionalität der lokalen Änderungsrate zum Bestand und die Abhängigkeit des Proportionalitätsfaktors von der Basis a. Erst zum Schluss wird die Zahl e als ausgezeichnete Basis zur Normierung des Proportionalitätsfaktors k = f '(x)/f(x) eingeführt. Die Schülerinnen und Schüler sollen Zerfalls- beziehungsweise Wachstumsprozesse mit geometrischer Progression numerisch beherrschen und durch eine auf dem Zahlenkontinuum definierte Funktion modellieren. die lokale Änderungsrate f '(x) grafisch bestimmen und ihre Proportionalität zum Bestand f(x) entdecken. diesen Sachverhalt vom Eingangsbeispiel auf die gesamte betrachtete Funktionenklasse verallgemeinern (und gegebenenfalls beweisen). die Abhängigkeit der Konstanten k = f '(x)/f(x) von der Basis a numerisch und analytisch beschreiben (gegebenenfalls mit Beweis). die Tangentensteigung als Grenzwert von Sekantensteigungen enaktiv (durch Handlung) erfahren und das Verständnis ihrer Bedeutung als lokale Änderungsrate vertiefen. die Zahl e als "normierte" Basis zu k = 1 numerisch bestimmen und die wichtigsten Eigenschaften von e kennen. Thema Exponentialfunktionen und die eulersche Zahl e Autor Dr. Hans-Joachim Feldhoff Fach Mathematik Zielgruppe Jahrgangsstufe 12 (Grund- oder Leistungskurs) Zeitraum 3-5 Stunden Technische Voraussetzungen je ein Computer für 1-2 Lernende Software Webbrowser mit aktiviertem Java, ergänzend (optional) das kostenlos erhältliche GeoGebra Selbstgesteuertes Lernen Die Sequenz besteht aus fünf HTML-Dokumenten, in die jeweils eine GeoGebra-Anwendung als Java Applet eingebettet ist. Zur Bearbeitung genügt ein Webbrowser mit aktiviertem Java. Die Schülerinnen und Schüler arbeiten allein oder zu zweit am Computer die Sequenz durch und bestimmen dabei das Lerntempo selbst. Ergänzend kann das Material auch auf eine Lernplattform wie lo-net² gestellt und zu Hause (weiter-)bearbeitet werden. Modifizierbare Arbeitsblätter Die Seiten sind untereinander verlinkt. Die vorangegangenen Ergebnisse werden jeweils zu Beginn einer Seite kurz zusammengefasst, was unter Umständen die Kontrolle des Lernfortschritts und der Selbstständigkeit der Arbeit erschwert. Es empfiehlt sich, zusätzliche Aufgaben mit weiteren Anwendungsbeispielen als Ergänzung einzuflechten. Dazu können bei Bedarf die im Download-Paket enthaltenen GeoGebra-Dateien modifiziert werden. Optionale Beweise Die beiden Beweisaufgaben enthalten in schülergerechten Häppchen die Rückführung der Ableitungsregeln für die Exponentialfunktionen auf die Grenzwertaussage (Die Existenz einer Zahl e mit dieser Eigenschaft wird nicht bewiesen.) Die Behandlung der Beweise muss von den Gegebenheiten des Kurses abhängig gemacht werden. Die Lösung erhält man jeweils durch Anklicken des Links "Hilfe" als PDF-Dokument. Wer Wert auf eine selbstständige Erarbeitung der Beweise legt, sollte diese Dateien zunächst sperren. Die Schülerinnen und Schüler sollen die Kurvendiskussion von Polynomen durchführen können. mit trigonometrischen Funktionen rechnen können. Linearkombinationen erstellen können. Interpolation durchführen können. algorithmisches Verständnis erwerben. Die Schülerinnen und Schüler sollen den Umgang mit GeoGebra lernen. den Umgang mit wxMaxima lernen. kleine Programmroutinen selbst erstellen können. Thema Tschebyscheff-Polynome Autor Georg Wengler Fach Mathematik Zielgruppe Jahrgangsstufe 12 Zeitraum 4 Stunden Technische Voraussetzungen ein Rechner pro Schülerin oder Schüler Software GeoGebra , wxMaxima (kostenloser Download) Voraussetzung für diese Unterrichtseinheit ist, dass die Schülerinnen und Schüler Polynome und die Grundlagen der Differenzial- und Integralrechnung kennen. Sie sollten über den Hauptsatz der Algebra und die Zerlegbarkeit von Polynomen laut Vieta Bescheid wissen. Grundlegendes Vorwissen über Matrizen und Determinanten wird benötigt und die Nutzung von GeoGebra und wxMaxima sollte keine Probleme bereiten. Hinweise zur Durchführung im Unterricht Hier finden Sie verschiedene Zugänge und Aufgabenstellungen zu Tschebyscheff-Polynomen. Anregung und Erweiterung Eine Anregung zur Erweiterung des Themas bietet die Gauss-Tschebyscheff-Quadratur.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I, Sekundarstufe II

Satzgruppe des Pythagoras

Unterrichtseinheit

Die hier vorgestellte Unterrichtseinheit basiert auf interaktiven Webseiten mit dynamischen GeoGebra-Applets. Sie schaffen Visualisierungsmöglichkeiten, die auf dem Papier und an der Tafel nicht realisierbar sind und das Verständnis erleichtern. Wie hoch darf ein Schrank höchstens sein, damit man ihn noch durch Kippen aufstellen kann, ohne dass er an der Decke kratzt? Wie weit kann man von einem 30 Meter hohen Ausguck eines Schiffs bei klarer Sicht auf das Meer sehen? Welchen Weg beschreibt ein in einem fahrenden Zug senkrecht nach oben steigender Lichtblitz, wenn man ihn vom Bahnhof aus betrachtet? Bei der Lösung dieser Probleme stößt man auf Dreiecke. Es sind nicht irgendwelche Dreiecke. Es sind Dreiecke mit einem 90°-Winkel: rechtwinklige Dreiecke. Das, was man wissen will, ist eine Seitenlänge dieser Dreiecke. Ausgerechnet die unbekannte Seitenlänge. Doch mit wenigen Tricks kann man aus den bekannten Stücken des Dreiecks die unbekannten berechnen. Damit beschäftigten sich schon die Pythagoräer etwa 500 vor Christus, ja schon über 1.000 Jahre zuvor kannten die Babylonier diese Tricks. Und wer sie kennt, kann auch obige Fragen beantworten... Bei den dynamischen GeoGebra-Applets können die Nutzerinnen und Nutzer mithilfe der Maus oder der Tastatur am Computer die Zeichnungen und Konstruktionen kontinuierlich verändern und so bestimmte Fragestellungen dynamisch verfolgen und überprüfen. Dies ermöglicht einen aktiv-entdeckenden Zugang zu den mathematischen Sachverhalten. Kurze Kontrollaufgaben mit einblendbaren Lösungen dienen der Lernzielkontrolle. Einsatz im Unterricht Fachliche Voraussetzungen sowie Hinweise zu den Einsatzmöglichkeiten des Online-Kurses und zur Gestaltung der Arbeitsmaterialien. Unterrichten mit Beamer - Praxiserfahrungen Sowohl der Unterricht an der Tafel als auch mit dem Beamer bietet jeweils Vorteile, die nicht in jedem Fall kombinierbar sind. Die Schülerinnen und Schüler sollen die Bezeichnungen am rechtwinkligen Dreieck sicher beherrschen. den "Kathetensatz" (mithilfe der Ähnlichkeit) beweisen, formulieren und anwenden können aus einem Rechteck ein flächengleiches Quadrat konstruieren können. den "Satz des Pythagoras" (mithilfe des Kathetensatzes) beweisen, formulieren und (insbesondere an Körpern) anwenden können. andere Beweise und die "verallgemeinerte Form" des "Satzes von Pythagoras" kennen lernen. den Umkehrsatz des "Satzes von Pythagoras" formulieren und anwenden können. den "Höhensatz" aus den vorausgehenden Sätzen herleiten, formulieren und anwenden können. Thaleskreis und Ähnlichkeitssätze Erforderliche mathematische Voraussetzungen für den Kurs sind Kenntnis des Thaleskreis und der Ähnlichkeitssätze, die zum Beweis des Kathetensatzes herangezogen werden. Diese Vorkenntnisse werden in der Unterrichtseinheit kurz wiederholt. Deduktive Herleitung Mit dem Kathetensatz kann dann leicht algebraisch oder anschaulich geometrisch der Satz des Pythagoras bewiesen werden. Aus diesen beiden Sätzen resultiert dann wiederum (aus einem einfachen linearen Gleichungssystem) der Höhensatz. Bei dieser Vorgehensweise lernen die Schülerinnen und Schüler unter Anwendung bekannter algebraischer und geometrischer Fertigkeiten das Prinzip der deduktiven Herleitung neuer Sätze kennen. Die Umkehrung des Satzes von Pythagoras bietet eine gute Gelegenheit, die Problematik von Satz und Umkehrsatz zu vertiefen. Mit einfachen Berechnungen an Körpern soll auch das räumliche Vorstellungsvermögen geschult werden. Für diese Unterrichtseinheit bieten sich verschiedene Einsatzmöglichkeiten an: begleitende dynamische Visualisierung der mathematischen Sachverhalte während der Neudurchnahme im Unterricht inklusive Hefteintrag selbstständige Vertiefung und Festigung des bereits im Unterricht behandelten Stoffes, eventuell in Übungsstunden oder als Hausaufgabe Wiederholung und Zusammenfassung zurückliegender Lerninhalte (beispielsweise vor Prüfungen) Selbstständiges Erarbeiten Der Text der Webseiten wurde bewusst prägnant gehalten, um einen selbstständigen Hefteintrag zu erleichtern. (Merk-)Sätze sind (wie im Tafel-Unterricht) rot eingerahmt. Wichtige Formeln oder weiterführende Begriffe sind farblich hervorgehoben. Zeigt man mit der Maus auf sie, werden eine kurze Definition oder Zusatzinformationen eingeblendet (siehe Abb. 1, zur Vergrößerung bitte anklicken). Zur Gewährleistung eines möglichst linearen Lernablaufs wurden Hyperlinks nur sehr sparsam eingesetzt. Die Kontrollaufgaben sind kurz und einfach zu bearbeiten, um die Lernenden durch ein schnelles und erfolgreiches Fortkommen zu motivieren. Die Antworten der Kontrollfragen können durch Anklicken der blauen Satz- oder Rechenzeichen angezeigt werden. In nachfolgenden oder begleitenden Übungen sollte der Schwierigkeitsgrad mit reorganisatorischen und Transferaufgaben erhöht werden. Erarbeitung Schritt-für-Schritt Ein großer Vorteil des Unterrichtens an der Tafel, nämlich ein aus dem fragend-entwickelnden Unterricht flexibles, sukzessiv entstehendes Tafelbild, geht bei Präsentationen mit dem Computer verloren. Mit Hilfe von auf Java-Script-Code basierenden Einblendungen wird dieses Defizit zum Teil ausgeglichen. Ergebnisse und Lösungen werden so nicht vorweg projiziert, sondern können nach gemeinsamer Erarbeitung präsentiert werden. Diese Möglichkeit der animierten Wiedergabe ist mit gängiger Präsentationssoftware wie Impress oder Powerpoint leichter realisierbar. Leider gestaltet sich hier jedoch die Einbindung von Java-Applets in Folien als problematisch. Außerdem können Webseiten - unabhängig von Präsentationssoftware und Betriebssystem - online und damit von Schülerinnen und Schülern auch zu Hause verwendet werden. (Tipp: Taste F11 zur Vollbild-Darstellung der Webseiten). Beamereinsatz und Tafelunterricht Die dynamischen Arbeitsblätter könnten parallel zum Tafelunterricht eingesetzt werden, was sich jedoch in der Praxis in engen Klassenzimmern mit mehr als 30 Schülerinnen und Schülern leider oft als sehr umständlich erweist. Die für den Beamer erforderliche Projektionsfläche liegt meist hinter der Tafel. Die Computerräume wiederum sind meist nicht für den Tafelunterricht ausgelegt. Ein in der Praxis nicht immer leicht zu realisierender Kompromiss ist das Abwechseln von Unterrichtsstunden mit Beamer zur Einführung und Fixierung der Inhalte und Übungsstunden mit Tafel zur Einübung und Festigung des Gelernten anhand von Aufgaben zum Beispiel aus dem begleitenden Lehrbuch.

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I
ANZEIGE
Premium-Banner