• Schulstufe
  • Klassenstufe
  • Schulform
  • Fach
  • Materialtyp
  • Quelle 1
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Dodekaeder - Juwel der Symmetrie

Unterrichtseinheit

Das Dodekaeder ist einer der fünf platonischen Körper, der einzigen regelmäßigen "Vielflächner", deren Seitenflächen regelmäßige Vielecke gleicher Eckenzahl sind. Es hat seit Urzeiten die Aufmerksamkeit von Künstlern und Philosophen gefunden und ist bis heute im Fokus solcher Aufmerksamkeit geblieben. Immer noch gibt es Neues an diesem Körper zu entdecken.Symmetrien üben nicht nur einen großen ästhetischen Reiz aus, sie sind auch in der Natur - der belebten wie der unbelebten - von fundamentaler Bedeutung. Ordnung und Chaos, Symmetrie und Symmetriebrechung sind Grundkategorien in der Wahrnehmung unserer Welt. Das Periodensystem der Elemente, die Postulierung von Quarks als Grundbausteine der Materie, die Entstehung der Welt durch den Urknall - all dies sind wissenschaftliche Ergebnisse, an deren Zustandekommen Betrachtungen der Symmetrie entscheidenden Anteil hatten. So stellt Lisa Randall, theoretische Physikerin, fest: "Der Begriff Symmetrie hat für die Physiker einen heiligen Klang."In den heutigen, an den Bildungsstandards orientierten Lehrplänen, taucht "Symmetrie" als Leitidee auf. Hier wird gefordert, Symmetrien an Körpern und ebenen Figuren zu untersuchen. Dies kann in Bezug auf die platonischen Körper auf sehr unterschiedlichen Anforderungsniveaus erfolgen: Vom Herstellen eines Dodekaeders mit Papier und Schere im 5. Schuljahr über die Berechnung von Streckenlängen, Abständen und Winkeln mit Mitteln der Trigonometrie (Klasse 10) bis hin zu Untersuchungen seiner Symmetriegruppe in der Sekundarstufe II ergeben sich zahlreiche Möglichkeiten. Hinweise zum Unterrichtsverlauf Hier sind Materialien und Werkzeuge sowie Vorschläge zur Erarbeitung des Themas zusammengetragen. Die Schülerinnen und Schüler sollen erkennen, welche primären Symmetrien ein Dodekaeder besitzt und ausgehend davon elementare Größen des Dodekaeders bestimmen können. erkennen, dass aus einer Abbildung beziehungsweise aus Daten des Dodekaeders Abbilder oder Daten der restlichen vier platonischen Körper abgeleitet werden können. erkennen, dass es außer Tetraeder, Hexaeder, Oktaeder, Dodekaeder und Ikosaeder keine anderen regulären Polyeder geben kann. unter Einsatz eines Computeralgebrasystems (oder geometrischer 3D-Software) Untersuchungen zu den Symmetriegruppen der platonischen Körper durchführen können. Thema Symmetrien des Dodekaeders (und anderer platonischer Körper) Autor Rolf Monnerjahn Fach Mathematik, Bildende Kunst Zielgruppe Sekundarstufe I Zeitraum 7-9 Stunden Technische Voraussetzungen Computeralgebrasystem (MuPAD) oder dynamische 3D-Software Voraussetzungen Für den Unterricht in Mittel- und Oberstufe sollte entweder ein Computeralgebrasystem (hier verwendet: MuPAD) oder Dynamische Geometriesoftware für 3D-Konstruktionen zur Verfügung stehen, da so Symmetrien noch besser veranschaulicht werden können als durch reale Modelle - wobei auf letztere aber keinesfalls verzichtet werden soll. Das Dodekaeder sollte im Sinne eines Spiralcurriculums an mehreren Stellen Objekt des Mathematikunterrichts sein: In der Orientierungsstufe als interessanter Körper, mit dem Schülerinnen und Schüler sich konkret handelnd auseinandersetzen: Herstellen von Kantengerüst und Faltmodell. In der Mittelstufe als Gegenstand trigonometrischer Berechnungen (Winkel und Streckenlängen). In der Oberstufe als Objekt entdeckenden Untersuchens im Hinblick auf Symmetrien und Beziehungen zu den anderen platonischen Körpern und zu den archimedischen Körpern. Arbeit mit realen Modellen Grundlage jeglicher theoretischer Beschäftigung mit den platonischen Körpern sollte ein praktisches, handlungsorientiertes Herangehen durch Herstellung von Flächen- und Kantenmodellen sein. Auch die Symmetrien der platonischen Körper sollten auf der Grundlage der Arbeitsmaterialien zunächst praktisch erkundet werden: durch Rotation der Körpermodelle und Zerschneiden der Kartonmodelle, so dass durch Auflegen auf einen ebenen Spiegel die Vervollständigung des Körpers durch die Spiegelung erfahrbar wird. Die Darstellung der Körper und der Vollzug von Kongruenztransformationen sollten in Einzel- oder Partnerarbeit durch Handhabung eines CAS oder dynamischer 3D-Geometriesoftware erfolgen. Zusammengesetzte Kongruenzabbildungen wie etwa die Drehspiegelung sind praktisch nicht realisierbar, wohl aber mit derartiger Software deutlich zu veranschaulichen. Das hier beigegebene PDF-Dokument (dodekaeder_juwel_der_symmetrie.pdf) stellt eine Auswahl von Berechnungen und Abbildungen bereit, die mit MuPAD erarbeitet wurden. Es ist als Ideensammlung, zusammenfassende Darstellung und Anregung für den Umgang mit einem CAS gedacht. Einzel-, Partner- und Projektarbeit Die Unterrichtseinheit eignet sich vor allem zur Vertiefung von im Kernunterricht erworbenem faktischen und prozeduralen Wissen und sollte daher in Formen von Einzel-, Partner- und Projektarbeit organisiert werden. Dodekaeder und platonische Körper bieten als Unterrichtsobjekt den Vorteil, dass von einfachsten bis zu höchsten Ansprüchen gestufte Problemstellungen möglich sind. Nachfolgend werden Vorschläge für Arbeitsaufträge formuliert und thematischen Blöcken zugeordnet. 1. Die Darstellung der platonischen Körper Die Eckpunktdaten der platonischen Körper nach geeignetem Einzeichnen rechtwinkliger Dreiecke in Schrägbilddarstellungen (Arbeitsblatt 11) sind durch Anwendung der Trigonometrie zu berechnen, Kantenlängen, In- und Umkugelradius, Winkel zwischen Kanten und Winkel zwischen Flächen sind zu bestimmen. 2. Symmetrien der platonischen Körper Hier sind die Spiegelungen, Rotationen und aus Spiegelungen und Rotationen zusammengesetzten Kongruenzabbildungen zu bestimmen, die die platonischen Körper in sich selbst abbilden. Damit über diese Abbildungen Aussagen formuliert werden können, sind in den beigegebenen Arbeitsblättern 1 bis 5 auf die Netze der platonischen Körper die Durchstoßpunkte der Drehachsen aufgezeichnet, Mittellinien, Mittelsenkrechte und Diagonalen der Seitenflächen eingezeichnet, alle Eckpunkte und Flächen durchnummeriert und damit benennbar. Für das Tetraeder ist im Begleitmaterial die vollständige Symmetrietabelle beigegeben (dodekaeder_juwel_der_symmetrie.pdf). Für Ikosaeder und Dodekaeder ist es nicht sinnvoll, die vollständige Symmetrietabelle zu erarbeiten, wohl aber ausgewählte, vor allem zusammengesetzte Kongruenzabbildungen exemplarisch herauszugreifen. 3. Symmetrie als Grundlage von Emergenz Die fünf platonischen Körper sind durch Symmetrie und Dualität aufeinander bezogen. Dualität heißt, dass Hexa- und Oktaeder, Dodeka- und Ikosaeder jeweils durch Zuordnung von Ecken zu Flächenmitten aufeinander bezogen sind. Verbindet man die Flächenmitten eines Dodekaeders, so erhält man ein Ikosaeder, und verbindet man umgekehrt die Flächenmitten eines Ikosaeders, so erhält man ein Dodekaeder. Auch der Würfel ist durch Konstruktion (Aufbringen eines "Walmdachs" auf jede Fläche) zu einem Dodekaeder umzuwandeln (Arbeitsblätter 6,7, Video dodeca_cubus.wmv). Das Dodekaeder erlaubt durch seine umfassende Symmetrie die regulären Polygone Dreieck, Quadrat, Fünfeck, Sechseck und Zehneck mehrfach aus seiner räumlichen Darstellung "herauszulesen". Diese Polygone und die Polyeder sind in die Schrägbilder der platonischen Körper durch Verbinden von Ecken, Flächen- und Kantenmitten, Diagonalenmitten einzuzeichnen (Arbeitsblatt 11). Hier ist Staunen angebracht: Aus einer Konstruktion, die lediglich auf einer Figur mit Winkeln von 108° und fünf Seiten gleicher Länge beruht, gehen - sozusagen als Dreingabe - Dreiecke, Quadrate, andere Fünfecke, Sechsecke, Zehnecke und völlig unterschiedliche Körper hervor! 4. Gesetzmäßigkeiten an den platonischen Körpern Dass es nicht mehr als fünf platonische Körper geben kann (Euklid), dass für ihre Graphen der Euler'sche Polyedersatz (e + f - 2 = k) gilt, dass nur für das Oktaeder ein Euler'scher Rundweg ("Abschreiten" aller Kanten ohne Wiederholung) existiert, sind leicht zu beweisende Gesetzmäßigkeiten. Das Aufsuchen Hamilton'scher Rundwege ("Abschreiten" aller Ecken ohne Wiederholung) ist eine ohne Überforderung realisierbare Erkundungsaufgabe (Arbeitsblatt 12). 5. Archimedische Körper Verzichtet man auf die Forderung, dass der Körper nur von gleichartigen regulären Vielecken begrenzt sein soll, ergeben sich 13 weitere Körper, die archimedischen, bei denen aber auch alle Kanten die gleiche Länge haben. Sie gehen zum Teil durch Abstumpfung der Ecken aus den platonischen Körpern hervor (siehe Arbeitsblatt 11). 6. Polyedersterne Errichtet man auf den Begrenzungsflächen der platonischen Körper Pyramiden, so erhält man Polyedersterne. Es ist eine reizvolle Bastelarbeit, solche Sterne herzustellen, indem man beispielsweise die Pyramidennetze zu den in den Arbeitsblättern 1 bis 5 vorgegebenen Polyedernetzen konstruiert und die Pyramiden auf die Polyederflächen aufklebt. Arbeitsblätter Die Netze aller platonischen Körper sind hier als Schnittbogen herunterzuladen (1-5). Den Netzen sind die Nummerierungen der Ecken und Flächen sowie alle Symmetrieachsen und drehsymmetrischen Zentren der Flächen aufgedruckt. Zusätzlich ist ein Schnittbogen zur Herstellung eines Umstülpmodells Hexaeder - Dodekaeder beigegeben (6, 7). Zwei Arbeitsblätter zeigen die Zentralprojektion des Dodekaeders in verschiedenen Ansichten (10) und die zentralprojektiven Darstellungen aller platonischen Körper (11). Dabei wurden zu jeder Kante Drittelungs- und Halbierungspunkte eingezeichnet, so dass die dualen Körper und die Abstumpfungen eingezeichnet werden können. Ein Arbeitsblatt zeigt die Graphen der platonischen Körper (12), womit Hamilton'sche und Euler'sche Rundwege gesucht werden können. Monnerjahn, Rolf MuPAD im Mathematikunterricht, Verlag Cornelsen, ISBN 978-3-06-000089-0 Zum Einarbeiten in die Handhabung des CAS MuPAD Adam, Paul und Wyss, Arnold Platonische und Archimedische Körper, ihre Sternformen und polaren Gebilde, Verlag Freies Geistesleben, ISBN 3-7725-0965-7

  • Mathematik / Rechnen & Logik
  • Sekundarstufe I
ANZEIGE
Premium-Banner