Tabellenkalkulation
Unterrichtseinheit
Mit der ersten Tabellenkalkulation VisiCalc für den Apple II begann 1979 der Siegeszug des Personalcomputers. Tabellenkalkulationen sind sehr mächtige Werkzeuge, die nicht nur mit Zahlen rechnen und Texte verarbeiten, sondern auch Daten verwalten und visualisieren können. Die Einsatzfelder für den Unterricht reichen von der Schulverwaltung über den kaufmännischen Unterricht bis hin zum naturwissenschaftlich-technischen Bereich.Mit Tabellenkalkulationen kann man Notenlisten aufstellen und berechnen, Stundenpläne erstellen, Rechnungen schreiben, Buchbestände verwalten, Daten präsentieren, einfache Formeln berechnen oder komplizierte Auswertungen vornehmen. Wenn das Tabellenblatt einmal vorbereitet ist, lässt sich dies alles sehr schnell und ohne mathematischen oder programmiertechnischen Ballast umsetzen. Für viele dieser Aufgaben gibt es Spezialprogramme, die leichter bedienbar und auf ihrem Gebiet leistungsfähiger sind, aber auch Geld und Einarbeitungszeit kosten. Dagegen sind Tabellenkalkulationen vielseitiger, leicht erlernbar und gleichzeitig in ihren Grundfunktionen ausgereift, ihre Kenntnis ist somit langfristig nützlich. Welche Tabellenkalkulation man verwendet, spielt für Schulen keine große Rolle, da sich die großen Programme in ihren Grundfunktionen kaum unterscheiden. Dabei stellen Tabellenkalkulationen kaum Ansprüche an die Hardware und sind für alle Betriebssysteme kostenlos verfügbar, zum Beispiel OpenCalc als Teil von OpenOffice. Zellen und Bezüge Eine Tabellenkalkulation besteht aus tabellenförmig angeordneten Zellen. Jede Zelle hat eine eindeutige Adresse, zum Beispiel C5 . Der Inhalt einer Zelle kann aus Zahlen, Text oder Funktionen (Formeln) bestehen. Eine Zahl ist pro Zelle einsetzbar, wobei diese sich vielfältig präsentieren, zum Beispiel als Datum oder Zeit. Die Texte können ähnlich wie in einer Textverarbeitung formatiert werden, wenn auch mit Einschränkungen. Funktionen verarbeiten die Inhalte (Texte oder Zahlen) aus anderen Zellen. Es werden zahlreiche mathematische, logische und textliche Funktionen angeboten, die beliebig kombiniert werden können und so jede Auswertung ermöglichen. Die Schreibweise der Funktionen lehnt sich an die manuell gewohnte Schreibweise an und wird durch Assistenten unterstützt. Sie ist leicht erlernbar. Rechnungen und Darstellung Die Berechnungen erfolgen automatisch. Sobald ein Eingangswert geändert wird, passen sich alle abhängigen Ergebnisse sofort an. Alle Zahlen und Rechenergebnisse können in verschiedenen Diagrammtypen visualisiert werden. Auch die Diagramme reagieren sofort auf Änderung der Daten. Allzweckprogramm Über die Zellen können weitere Elemente gelegt werden, zum Beispiel Diagramme, Bilder, Zeichnungen, Flussdiagramme, ClipArts, WordArts, Formeln aus dem Formeleditor, Java-Applets et cetera. Die Entwicklung der "großen" Tabellenkalkulationen tendiert zu Allzweckprogrammen. Aktuelle Versionen können schon Musik- und Filmdateien einbinden und abspielen. Auf den folgenden drei Unterseiten werden die verschiedenen Möglichkeiten des Einsatzes der Tabellenkalkulation im Unterricht dargestellt. Zu den einzelnen Bereichen und Funktionen werden Beispiele aus der Unterrichtspraxis benannt und verlinkt. Merkmale und Unterrichtseinsatz (1) Inhalt: Kombination von Zahlen, Texten und Daten; Tabellenstruktur; Funktionen Merkmale und Unterrichtseinsatz (2) Inhalt: Vorbereitete Tabellenblätter; Serienweise und iterative Berechnungen durch Kopieren von Funktionen Merkmale und Unterrichtseinsatz (3) Inhalt: Diagramme; Tabellenblätter als Standard; Plakate drucken; Weitere Funktionen Unterrichtseinheiten Hier finden Sie eine Übersicht der Unterrichtseinheiten aus den verschiedenen Portalen bei Lehrer-Online zum Einsatz von Tabellenkalkulationen. Das Wort Tabellenkalkulation deutet auf Rechnen mit Zahlen und Datenbanken hin. Tabellenkalkulationen können aber auch Texte verarbeiten und Daten visualisieren. Keine dieser Fähigkeiten ist so ausgeprägt wie auf diese Funktionalitäten spezialisierte Programme, aber für viele Zwecke und Anwendungen ausreichend. Wenn eine Kombination der Fähigkeiten gefragt ist, die an Textverarbeitung oder Datenbank keine hohen Ansprüche stellt, oder Berechnungen im Spiel sind, ist in aller Regel eine Tabellenkalkulation zu bevorzugen. So entfallen auch der Einarbeitungsaufwand und die Kosten für mehrere spezielle Programme. Rechnungen: Mit einer Tabellenkalkulation können Sie Briefkopf und Rechnungstext schreiben, Preise aus einer Preisliste übernehmen und Bruttopreise, umsatzabhängige Rabatte oder Rechnungsbeträge errechnen und zuletzt alles ausdrucken. Klassenverwaltung: Legen Sie eine Klassenliste in einer Tabellenkalkulation an. Daraus können Sie automatisch Listen für Noten, Sammelbestellungen, Schülerzusatzversicherungen oder ähnliches erstellen. In die Notenliste müssen Sie nur noch Noten und die Gewichtungsfaktoren eingeben, die Durchschnitte ermittelt die Tabellenkalkulation. Sie können auch die zu den Verrechnungspunkten gehörigen Notenpunkte aus einer anderen Tabelle heraussuchen. Mit ihrer tabellarischen Struktur sind Tabellenkalkulationen wie geschaffen für alle Formen von Tabellen, Listen, Formularen oder ähnliches (siehe Abbildung 1). Dabei ist man nicht an das strenge rechteckige Raster gebunden, sondern kann es durch Zusammenfassen von Zellen verbergen. Gegenüber Tabellen in Textverarbeitungen sind Tabellenkalkulationen unproblematischer zu handhaben und in ihrer Größe kaum beschränkt. Sie können Daten aus anderen Tabellen übernehmen, nummerieren, sortieren, Zellen inhaltsabhängig automatisch einfärben oder aussortieren, Verrechnungspunkte in Notenpunkte ummünzen, Postleitzahlen mit dem Ortsnamen ergänzen und die Daten auswerten beziehungsweise weiter verarbeiten. Dabei sind die Ausdrucke von Tabellenkalkulationen nicht auf die Blattgröße des Druckers beschränkt. Stundenpläne, Raumbelegungspläne, Klassenlisten, Notenlisten Bestandslisten, Preislisten Kalender Formulare Mit Funktionen oder Formeln sind hier Anweisungen zur Verarbeitung von Zahlen und Texten gemeint, die eine Tabellenkalkulation verstehen kann. Sie sind nicht zu verwechseln mit Formeln, die mit einem Formeleditor für den Ausdruck gesetzt werden. Solche Formeln kann man zwar auch in eine Tabellenkalkulation einbinden, aber sie können von ihr nicht gelesen werden. Gängige Tabellenkalkulationen bieten ein umfangreiches Repertoire an Funktionen zur Verarbeitung von Zahlen, Texten und Daten zur Verfügung. Dazu gehören: Betriebswirtschaftliche und naturwissenschaftlich-mathematische Formeln (zum Beispiel Zins, Abschreibung, Winkelfunktionen, Matrizenrechnung, Statistik) Logische Entscheidungen (zum Beispiel wenn .. dann .. sonst ..): Viele Funktionen von Tabellenkalkulationen machen ihre Tätigkeit von Bedingungen abhängig, denn nur so können Auswertungen wirklich flexibel sein. Funktionen zur Manipulation von Texten: Während eine Textverarbeitung eigentlich nur das Aussehen eines Textes verändert, behandelt eine Tabellenkalkulation Texte als Zeichenketten, die zerstückelt und zusammengesetzt werden können. Für ein Sprachübersetzungsprogramm wird es nicht reichen, aber eine Anrede an das Geschlecht des Adressaten anzupassen, ist möglich. Funktionen von Datum und Zeit: Tabellenkalkulationen können auch mit Datum und Zeit rechnen. Dies kann für eine Lohnabrechnung genutzt werden. Funktionen zum Anlegen und Auslesen von Datenbanken. Wenn eine Funktion nicht vorhanden ist, kann sie aus den vorhandenen Funktionen kombiniert werden. Der Komplexität der Kombinationen sind kaum Grenzen gesetzt. Alle Funktionen können Eingabewerte aus anderen Zellen verarbeiten. Wird ein Eingabewert geändert, passen sich die Ergebnisse aller abhängigen Funktionen sofort an (Abbildung 2 bitte anklicken). Das gilt auch für die Diagramme, die Ein- und Ausgangswerte grafisch darstellen. Man kann also Tabellenblätter erstellen, in denen sehr komplexe Auswertungen sofort nach Eintrag der Eingangsdaten erfolgen. Wenn diese Tabellenblätter vorbereitet sind, können die Schülerinnen und Schüler ohne umfangreiche Mathe- und Programmierkenntnisse sehr einfach und schnell viele Auswertungen vornehmen. Die Tabellenblätter lassen sich so schützen, dass Lernende keine Formeln löschen können. Notenlisten mit Berechnung der Durchschnittsnote: Dabei ist es auch möglich, die Noten zu gewichten, die schlechteste Note aus der Wertung zu nehmen oder ähnliches. Statistik: Auswertung normalverteilter Messreihen nach allen denkbaren Gesichtspunkten. Eine Stärke von Tabellenkalkulation sind gleich bleibende Berechnungen mit wechselnden Eingangsdaten. Neben der händischen Änderung der Eingangsdaten kann man Formeln auch leicht kopieren. Je nach Art der Adressierung können die Eingangsdaten aus feststehenden oder fortlaufenden Zellen entnommen werden. Die fortlaufenden Zellen können einer Tabelle entstammen, zum Beispiel einer Preisliste oder Zahlenreihe, die man automatisch erzeugt. Man kann auch iterative Verfahren durchführen, indem man die Ergebnisse der jeweils letzten Formel als Eingangswert für die neue Formel verwendet. (Abbildung 3 bitte anklicken, Animation zur Darstellung eines Funktionsverlaufs) Kopierte Formeln mit Eingangswerten aus Zahlenreihen kann man verwenden, um viele Punkte eines Funktionsverlaufes zu berechnen und anschließend grafisch darzustellen. Kopierte Formeln mit Eingangswerten aus Tabellen sind geeignet, um Bruttopreise zu einer langen Liste von Nettopreisen zu berechnen. Mit iterativen Formeln kann man Zinseszinsen berechnen, Nullstellen ermitteln, Populationsdynamiken simulieren, Differentialgleichungen näherungsweise lösen oder ähnliches. Die iterative Zinseszinsberechnung mit sehr einfachen Formeln öffnet dem Lernenden das Tor zur Welt der numerischen Mathematik und ermöglicht neue Ansätze im Unterricht. Mit Tabellenkalkulationen können Daten auch visualisiert werden. Geboten werden vor allem die in geschäftlichen Bereichen üblichen Darstellungen. Säulen (zum Beispiel für Histogramme oder Paretodiagramme) Balken (zum Beispiel für Gantt-Diagramme) Linien Kreise (zum Beispiel für Tortendiagramme) Punkte (zum Beispiel für Streudiagramme) Netze (zum Beispiel für Radarbilder) 6.2. Graphen und Funktionsverläufe XY-Wertepaare können als Punkte oder als Linienzüge dargestellt werden. Da die Wertepaare schnell durch Kopieren einer Funktion erzeugt werden können, eignen sich Tabellenkalkulationen gut, um Funktionsverläufe darzustellen. Mit XY-Wertepaaren und Linienzügen können mit etwas Aufwand viele weitere grafische Darstellungen erzeugt werden, zum Beispiel: Spannungs-Dehnungs-Diagramme Zustandsdiagramme von Zweistofflegierungen grafische Lösungen von Statikaufgaben T,s-Diagramm von Wasser Die Vorteile von Tabellen sind so offensichtlich, dass viele Programme Daten als Tabellenblätter im- und exportieren können oder sogar in Tabellenblättern verwalten. Hier wird meistens das Format von MS-Excel verwendet, weil es den größten Verbreitungsgrad hat. MS-Outlook kann seine Adressdaten als Tabellenblatt exportieren. Das CAD-Programm Inventor von Autodesk kann Konstruktionsdaten in Excel-Tabellen verwalten. So ist es möglich, eine Konstruktion, die einmal erstellt wurde, durch Änderung der Maße innerhalb der Excel-Tabelle in verschieden Baugrößen zu konstruieren. Wenn große Tabellen ausgedruckt werden, teilen Tabellenkalkulationen die Tabellen in für den Drucker handliche Größen. Das klappt nicht nur mit Tabellen, sondern unter anderem auch mit eingefügten Bildern. Man kann also mit gewöhnlichen Druckern große Plakate erzeugen, die man allerdings zusammenkleben muss. Wem dies alles noch nicht genügt, dem stellen die gängigen Tabellenkalkulationen noch zusätzliche Hilfen in Form von Zirkelbezügen, Szenarien, Mehrfachbezügen, Pivottabellen und nicht zuletzt vielseitige Makrosprachen zur Verfügung.
-
Informatik / Wirtschaftsinformatik / Computer, Internet & Co.
-
Sekundarstufe II