Anzeige

Jetzt für innovative Schulprojekte bewerben!

Jetzt für innovative Schulprojekte bewerben! Deutsches Kinderhilfswerk
Anzeige

Jetzt für innovative Schulprojekte bewerben!

So macht Unterricht Spaß: 3D-drucken, plottern, Kurzvideos erstellen und mehr: "Zukunft Mitgemacht" fördert Schulprojekte mit 1 Million Euro.

Tipp der Redaktion

Der Elektromotor

E-Auto an Ladestation.
Tipp der Redaktion

Der Elektromotor

In dieser Einheit setzen sich die Lernenden mit dem Elektromotor und dessen Bedeutung für fortschrittlichen Automobilbau auseinander.

Tipp der Redaktion

Kraft und Reibung am Kraftfahrzeug

Person hinter dem Steuer im Auto
Tipp der Redaktion

Kraft und Reibung am Kraftfahrzeug

In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler den Reibungsbegriff am Beispiel des Kraftfahrzeugs kennen.

  • Lehrplanthema
  • Schulstufe 2
    zurücksetzen
  • Klassenstufe
  • Schulform
  • Materialtyp 11
    zurücksetzen
  • Quelle 4
    zurücksetzen
Sortierung nach Datum / Relevanz
Kacheln     Liste

Aggregatzustände und Aggregatzustandsänderungen

Unterrichtseinheit

In dieser Unterrichtseinheit für den Physikunterricht lernen die Schülerinnen und Schüler die Temperatur als physikalische Größe kennen. Sie führen Temperaturmessungen durch und untersuchen die Auswirkungen von Temperaturänderungen bei den drei Aggregatzuständen. Dabei werden Bezüge zum Sanitär-, Heizungs- und Klimahandwerk hergestellt. Die Unterrichtseinheit bearbeitet entsprechend des Hessischen Lehrplans für das Fach Physik das Thema “Aggregatzustände und Aggregatzustandsänderungen“. Konkret sind die behandelten Inhalte im Themenfeld “Wärmelehre“ verankert. Die Unterrichtseinheit bettet Beispiele und Anwendungen aus dem Sanitär-, Heizungs-, Klimahandwerk in das physikalische Themenfeld der Thermodynamik ein. In der ersten Doppelstunde wird zunächst anhand eines Experiments zum subjektiven Temperaturempfinden das Thermometer als Instrument zur Temperaturmessung eingeführt. Die Schülerinnen und Schüler lernen verschiedene Thermometer und Temperaturskalen kennen und üben den Umgang mit dem Thermometer im Experiment. Die Auswertung des Experimentes erfolgt angeleitet in Form eines Temperatur-Zeit-Diagramms. Anknüpfend an das Sanitär-, Heizungs-, Klimahandwerk wenden die Schülerinnen und Schüler ihr in der ersten Doppelstunde erworbenes Wissen an, indem sie Thermometer und Temperaturmessungen an der heimischen Heizungsanlage entdecken und beschreiben. In der zweiten Doppelstunde lernen die Schülerinnen und Schüler die drei Aggregatzustände anhand eines Videos kennen. Sie beschreiben diese mit Hilfe des Teilchenmodells und wiederholen dabei den Modellbegriff. In der letzten Doppelstunde wird anhand verschiedener Freihand-Experimente das Verhalten verschiedener Körper bei Wärmezufuhr zunächst experimentell untersucht und anhand dessen wesentliche Kenntnisse zur Volumenänderung von festen Körpern, Flüssigkeiten und Gasen bei Temperaturänderungen erworben und formuliert. Die im Experiment erworbenen Kenntnisse werden anschließend auf verschiedene Beispiele aus dem Heizungsbereich angewendet. Die in der Unterrichtseinheit enthaltenen Themenbereiche Wärme, Temperatur, Temperaturmessungen und Aggregatzustände begegnen den Schülerinnen und Schülern in ihrem Alltag. Physikalische Inhalte werden in einen für die Lernenden sinnvollen Kontext, in diesem Fall schwerpunktmäßig aus dem Sanitär-, Heizungs- und Klimabereich, eingebettet. Dadurch kann die Unterrichtseinheit das Interesse der Schülerinnen und Schüler wecken, da sie ihnen ermöglicht, physikalische Phänomene in ihrem täglichen Leben zu erkennen und besser zu verstehen. Vorkenntnisse zum Modellbegriff sind für die in der zweiten Doppelstunde vorgesehene Erarbeitung des Teilchenmodells von Vorteil. Wissenslücken in diesem Bereich können jedoch im Rahmen der Unterrichtseinheit optional wiederholt beziehungsweise nachgearbeitet werden. Dadurch können auch leistungsschwächere Lernende unterstützt werden. Leistungsstarke Schülerinnen und Schüler erhalten an verschiedenen Stellen hingegen die Möglichkeit, über zusätzliche Aufgaben und Denkanstöße Inhalte zu erarbeiten, die eine Transferleistung erfordern. Im Bereich der Temperaturmessung in der ersten Doppelstunde ist es außerdem denkbar, besonders interessierte oder leistungsstarke Schülerinnen und Schüler als Referat oder Zusatzleistung das Thema “Kalibrierung eines Flüssigkeitsthermometers“ selbstständig vorbereiten zu lassen. In der Unterrichtseinheit werden verschiedene Methoden der Wissensvermittlung wie beispielsweise Einzel- und Gruppenarbeit und die Arbeit im Plenum angewandt, um eine Aktivierung aller Lerntypen zu erreichen. Das experimentelle Arbeiten als besondere naturwissenschaftliche Methode wird in dieser Einheit verstärkt angewandt und geübt. Im Bereich der Kommunikation üben die Schülerinnen und Schüler das Erschließen und Aufbereiten von Informationen. Fachkompetenz Die Schülerinnen und Schüler unterscheiden zwischen Wärmeempfinden und Temperatur kennen das Thermometer als Instrument zur Temperaturmessung beschreiben die Aggregatzustände und Phasenumwandlungen mit Hilfe des Teilchenmodells beschreiben die Auswirkungen von Temperaturänderungen auf Festkörper, Flüssigkeiten und Gase Medienkompetenz Die Schülerinnen und Schüler entnehmen Informationen aus einem Video zu Aggregatzuständen und Phasenübergängen nutzen vorgegebene Internetquellen für die Recherche weiterführender Informationen können digitale Werkzeuge bedarfsgerecht einsetzen können Informationen aus einem Text aufgabengeleitet entnehmen und wiedergeben Sozialkompetenz Die Schülerinnen und Schüler verbessern ihre Fähigkeiten ihre Erkenntnisse adressatengerecht zu präsentieren verbessern durch verschiedene Formen der Gruppenarbeit ihre Teamkompetenzen

  • Physik / Astronomie
  • Sekundarstufe I

Wahrscheinlichkeiten in der Quantenphysik mit der Zeigerdarstellung berechnen

Unterrichtseinheit

Wahrscheinlichkeiten sind in der Quantenphysik für die Beschreibung und Berechnung vieler Abläufe von entscheidender Bedeutung. Dabei wird die sogenannte Zeigerdarstellung für Schülerinnen und Schüler zu einem sehr gut nachvollziehbaren Instrument, mit dem man auf relativ einfache Art und Weise Wahrscheinlichkeiten für das Auffinden eines Quantenobjektes an einem gegebenen Ort durch Konstruktion und Abmessen der jeweiligen Zeigerlänge bestimmen kann. Ausgehend von Kenntnissen zur Vektoraddition werden die Lernenden damit vertraut gemacht, wie man in Abhängigkeit der Phasendifferenzen von sich an einer bestimmten Stelle überlagernden Quantenobjekt durch Zeigerkonstruktion eine resultierende Wahrscheinlichkeitsamplitude erstellen kann. Durch das bereits bekannte Quadrieren dieser Größe lassen sich relative Wahrscheinlichkeiten für bestimmte Orte ermitteln, die aber, trotz der Einfachheit der Bestimmung, sehr aussagekräftig sind. Wahrscheinlichkeiten in der Quantenphysik mit der Zeigerdarstellung berechnen Mithilfe der Zeigerdarstellung wird die Berechnung von Wahrscheinlichkeiten in der Quantenphysik für die Lernenden anschaulicher und nachvollziehbarer. Der abstrakte Wellenbegriff, der bei Quantenobjekten (QO) beim Durchgang durch Mehrfachspalte zur Anwendung kommt, wird durch die wellenförmige Zeigerbewegung geometrisch so dargestellt, dass sie mit bereits aus anderen Teilbereichen der Physik bekannten Gesetzmäßigkeiten gut verstanden werden kann. Vorkenntnisse Physikalische Vorkenntnisse sind dahingehend gegeben, dass die vektorielle Addition – etwa von Kräften – hinreichend bekannt ist. Die Umsetzung auf QO in der Quantenphysik sollte deshalb keine zu großen Schwierigkeiten machen. Didaktische Analyse Mit dem Thema "Zeigerdarstellung in der Quantenphysik" kann ein nur schwer zu verstehender Bereich der Physik – zumindest bei der Vermittlung der wichtigsten Grundlagen – gut erläutert werden und damit sehr hilfreich sein. Methodische Analyse Die "Zeigerdarstellung in der Quantenphysik" stellt für die Lernenden eine sehr gute Möglichkeit dar, ein insgesamt sehr komplexes und schwieriges Thema mit einem einfachen und gleichzeitig aber sehr anschaulichen "Hilfsmittel" gut verstehen zu können. Fachkompetenz Die Schülerinnen und Schüler können das wellenförmige Verhalten von Quantenobjekten mit der Zeigerdarstellung beschreiben und einfache Berechnungen ausführen. wissen um die Bedeutung der Zeigerdarstellung für das Verständnis der grundlegenden Gesetzmäßigkeiten der Quantenphysik. bekommen mithilfe der Zeigerdarstellung eine konkrete Vorstellung für die Bedeutung der Wellenfunktion in der Quantenphysik. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewissen Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden etc. diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Hybridmotoren – das Beste aus beiden Welten

Unterrichtseinheit

In dieser Unterrichtseinheit für die Sekundarstufe I für den Physikunterricht setzen sich Lernende mit den Besonderheiten des Hybridantriebs auseinander. Von unterschiedlichen Antriebsarten und deren Funktionsweise über verschiedene Arten der Energieumwandlung und Energieerhaltung lernen die Schülerinnen und Schüler physikalische Konzepte mit Sachbezug zum Kfz-Gewerbe kennen. Was bedeutet es, Vorteile aus zwei Motorenarten zu kombinieren, um Vorteile für technische Entwicklungen zu erzielen? Wie kann man verschiedene physikalische Prozesse gleichzeitig nutzen, um die Effizienz zu steigern? Mit diesen und verwandten Fragen beschäftigen sich die Schülerinnen und Schüler anhand von drei Arbeitsblättern in dieser Unterrichtseinheit. Es geht darum, sich mit dem Hybridantrieb auseinanderzusetzen und herauszufinden, warum er das Beste aus zwei Welten vereint. Ziel der Unterrichtseinheit ist es, diese Antriebsart kennenzulernen und mit anderen Antriebsarten zu vergleichen. Es ist sinnvoll, die Unterrichtseinheiten zum Verbrennungsmotor und zum Elektromotor vorzuschalten. In der ersten Stunde nähern sich die Schülerinnen und Schüler der Frage, welche beiden Antriebsarten im Hybridauto vereint sind. Sie erarbeiten, welche Technik welche Funktion erfüllt und lernen dabei, zwischen Energiespeicher und Energiewandler zu unterscheiden. Anschließend bestimmen sie anhand vorgegebener Kriterien Merkmale von Verbrenner-, Elektro-, und Hybridautos. Die Lernenden recherchieren selbstständig ein Hybridmodell, überprüfen die erarbeiteten Merkmale des Hybridfahrzeugs und nehmen eine Einordnung und Unterteilung vor. Darauf aufbauend lernen sie den Aufbau und die Funktionsweise eines Hybridantriebs kennen. Die Lernenden setzen sich mit den Antriebskomponenten auseinander, indem sie einen Lückentext ausfüllen. Anhand von zwei Abbildungen erarbeiten sie die Unterschiede zwischen Elektro- und Hybridantrieb. Mit diesem Wissen erarbeiten die Lernenden anhand einer Animation zum Energiefluss eines Hybridautos die Vorgänge in den verschiedenen Betriebsphasen. Sie erarbeiten, welcher Motor in welcher Betriebsphase zum Einsatz kommt und warum und wie die Energieumwandlung funktioniert. Optional wird eine Zusatzaufgabe angeboten. Die Lernenden werden aufgefordert, die Infrastruktur für Elektro- und Hybridfahrzeuge aktiv wahrzunehmen. Dazu recherchieren sie in ihrem schulischen Umfeld Tankstellen, Ladesäulen und Werkstätten, die auf Elektro- und Hybridfahrzeuge spezialisiert sind und lernen verschiedene Recherchemöglichkeiten kennen. Die Lernenden vertiefen zudem ihr erworbenes Wissen über Energieumwandlung und Energieerhaltung. Dazu lesen sie einen kurzen Informationstext über die physikalischen Grundlagen, die verschiedenen Energieformen und die Energieumwandlung in einem Hybridauto. Das erworbene Wissen fassen sie zusammen, indem sie Beispiele zur Energieumwandlung sammeln. Die Schülerinnen und Schüler lernen die Energierückgewinnung durch Rekuperation kennen und erarbeiten die Funktionsweise anhand eines Videos, das den Vorgang zielgruppengerecht veranschaulicht. Es folgt ein Quiz zum Hybridantrieb, das die wichtigsten Inhalte spielerisch abfragt. Das Quiz kann in Kahoot erstellt werden, um den Spaßfaktor, die Motivation und die Interaktivität zu erhöhen. Die Einheit endet mit einem Rollenspiel, in dem die Lernenden ein Beratungsgespräch simulieren. Indem die Lernenden einem fiktiven Kunden/einer fiktiven Kundin die Funktionsweise des Hybridfahrzeugs, den Unterschied zwischen den Antriebsarten und den Vergleich zum Elektroauto erklären und die Vor- und Nachteile des Hybrids erläutern, übertragen sie das erworbene Wissen auf eine konkrete Situation. Die Aufgabe verdeutlicht das vielfältige Wissen, das für ein solches Beratungsgespräch im Kfz-Gewerbe erforderlich ist. Die Reflexion des Gelernten, der Unsicherheiten und Herausforderungen während des Rollenspiels kann als Ausgangspunkt für die Wiederholung und Vertiefung der Inhalte mit der Lerngruppe dienen. Verschiedene Autos mit unterschiedlichen Antriebsarten sehen die Schülerinnen und Schüler jeden Tag, beispielsweise auf dem Weg zur Schule. Dabei nehmen sie von außen oft keine offensichtlichen Unterschiede wahr. Die Unterrichtseinheit zum Hybridantrieb ist darauf ausgelegt, dieses alltägliche Phänomen zu durchleuchten und den Lernenden ein tiefergehendes Verständnis für die Antriebsart (Hybrid) zu vermitteln. Vor dieser Unterrichtseinheit sollten die Grundlagen des Verbrennungsmotors und des Elektromotors sowie deren Funktionsweise und Aufbau behandelt worden sein. Sie richtet sich an Lernende, die ein grundlegendes Verständnis dieser Antriebsarten mitbringen. Von Vorteil ist ebenfalls Grundlagenwissen über Energiearten, Energieumwandlung und Energiespeicherung. Diese Vorkenntnisse bilden die Basis für das Verständnis der Vorteile eines Hybridantriebs, der als Synthese der besten Eigenschaften beider Welten gilt. Um die komplexen Vorgänge des Hybridantriebs verständlich zu machen, wurden die Inhalte didaktisch reduziert aufbereitet. Beispielsweise wurden lediglich die wesentlichen Energiewandlungsprozesse eingeführt. Hierbei spielen vor allem die Begriffe "mechanische", "elektrische" und "chemische" Energie eine zentrale Rolle. Unterkategorien wie "kinetische Energie" und "potenzielle Energie" werden zwar erwähnt, aber nur oberflächlich behandelt, insbesondere die Lageenergie (potenzielle Energie) wird nicht detailliert vertieft. Komplexe Vorgänge werden stets durch eine Abbildung, eine Animation oder ein Video veranschaulicht, um das Thema auf verschiedenen Wahrnehmungsebenen zugänglich zu machen und das Verständnis zu unterstützen. Differenzierte Aufgabenstellungen mit variierenden Schwierigkeitsgraden ermöglichen es allen Schülerinnen und Schülern, die Inhalte auf ihrem individuellen Niveau zu erschließen. Hilfestellungen wie Tipp-Boxen und veranschaulichende Grafiken unterstützen dabei das Lernen und Verstehen, während Wort-Kästen das Leseverständnis fördern und bei der Erschließung unbekannter Begriffe helfen. Die Unterrichtseinheit bedient sich einer Vielfalt an Medienformaten wie Videos, interaktiven Karten und Texten mit Vorlesefunktion, um unterschiedliche Lerntypen anzusprechen. Diese multimediale Herangehensweise ermöglicht es den Lernenden, die Informationen auf vielfältige Weise aufzunehmen und zu verarbeiten. Sie fördert individuelles Lernen und eine vertiefte Auseinandersetzung mit den Lehrinhalten. Ein Schwerpunkt der Unterrichtseinheit ist das forschend-entdeckende Lernen. Neben der Vermittlung theoretischer Grundlagen bieten Erkundungsaufgaben direkte Anknüpfungspunkte an die Lebenswelt der Schülerinnen und Schüler. Die Erforschung der Infrastruktur für Hybridfahrzeuge in ihrer eigenen Region schafft einen konkreten Realitätsbezug. Durch den konkreten Bezug zum Kfz-Gewerbe wird ein Bewusstsein für die eigene Umwelt geschaffen. Die praxisnahen Aufgaben stärken die Selbstständigkeit und das kritische Denken der Lernenden. Die Unterrichtseinheit bietet zahlreiche gesellschaftswissenschaftliche Bezüge. Die Analyse des Schadstoffausstoßes verschiedener Fahrzeugtypen ermöglicht Diskussionen über aktuelle Gesetzgebungen, den Ausbau der Infrastruktur und Bemühungen zur Schadstoffreduktion im Kfz-Gewerbe. Eine vertiefende Einheit zur Nachhaltigkeit im Verkehrssektor kann fachübergreifende Zusammenhänge verdeutlichen. Durch Gruppen- und Paararbeit wird die Zusammenarbeit unter den Schülerinnen und Schülern gefördert. Sie können ihr Wissen austauschen, sich gegenseitig unterstützen und gemeinsam Aufgaben erarbeiten. Diese kooperativen Lernformen stärken soziale Kompetenzen und fördern die Teamarbeit der Lerngruppe. Ein abschließendes Rollenspiel stellt einen praktischen Anwendungsbezug her, indem die Lernenden als Beraterinnen und Berater in einem fiktiven Beratungsgespräch die Funktionsweise und Vorteile eines Hybridfahrzeugs erläutern. Die Reflexion über ihre Erfahrungen während des Rollenspiels dient als Ausgangspunkt für eine vertiefte Wiederholung und Festigung der erlernten Inhalte. Fachkompetenz Die Schülerinnen und Schüler lernen Aufbau und Funktionsweise eines Hybridantriebs kennen. unterscheiden zwischen Energiespeichern und Energiewandlern. verstehen, warum Hybridmotoren effizient sind. lernen die verschiedenen Arten der Energieumwandlung mit Sachbezug zum Hybridauto kennen. beziehen die verschiedenen Energiearten (elektrische, chemische und thermische Energie) auf den Energiefluss und die Energieumwandlung im Hybridfahrzeug. lernen die Rekuperation im Zusammenhang mit dem Elektroantrieb kennen. vergleichen die verschiedenen Antriebsarten (Verbrennungsmotor, Elektroantrieb, Hybridantrieb) hinsichtlich der physikalischen Vorgänge. Medienkompetenz Die Schülerinnen und Schüler gewinnen Informationen aus verschiedenen Medien wie Text, Video, Webseiten und interaktiven Grafiken. recherchieren selbstständig im Internet nach genannten Kriterien und Informationen und lernen, die recherchierten Informationen zu selektieren. lernen, recherchierte Informationen zu präsentieren. Sozialkompetenz Die Schülerinnen und Schüler hören zu und erkennen relevante Informationen zu einer bestimmten Fragestellung. arbeiten kooperativ in Zweiergruppen und in Kleingruppen. führen eine Pro-und-Contra-Diskussion und lernen, eigene Standpunkte zu vertreten sowie fremde Standpunkte zu akzeptieren. übertragen die gesammelten Informationen in ein Rollenspiel und lernen, Informationen zielgruppengerecht zu vermitteln. setzen sich im Zusammenhang mit dem Thema aktiv mit ihrer Umgebung auseinander.

  • Physik / Astronomie
  • Sekundarstufe I

Statik an Stationen

Kopiervorlage

Die Unterrichtsmaterialien zum Thema Statik sind darauf ausgelegt, zentrale Fachinhalte wie Belastungen, Kräfte, stabile Dreiecke und den Schwerpunkt auf spannende und praxisnahe Weise zu vermitteln. Dabei steht der handlungsorientierte Ansatz im Vordergrund, um den Lernenden ein grundlegendes Verständnis für die Materie zu ermöglichen. Die Unterrichtsmaterialien umfassen fünf verschiedene Stationen, die jeweils technische Experimente zur Statik beinhalten. Diese Experimente verdeutlichen anschaulich die theoretischen Prinzipien und deren Anwendung in der realen Technik. Durch die praktische Auseinandersetzung mit den Modellen und Materialien wird ein direkter Bezug zur technischen Praxis hergestellt, was das Lernen interessanter und nachhaltiger macht. Der Aufbau der Stationsarbeit fördert zudem ein differenziertes Arbeiten, indem er den Schülerinnen und Schülern die Möglichkeit bietet, individuell oder in Kleingruppen zu arbeiten und sich mit den spezifischen Aspekten der Thematik auseinanderzusetzen. Die Ausarbeitung enthält fünf Stationen: 1. Kräfte an Bauwerken: Diese Station beleuchtet die verschiedenen Kräfte, die auf Bauwerke einwirken. Dabei wird thematisiert, wie äußere Einflüsse und innere Spannungen die Stabilität und Sicherheit von Bauwerken beeinflussen. 2. Belastungen eines Trägers: Hier wird konkretisiert, wie Druck- und Zugkräfte auf einen einzelnen Träger wirken. Die Lernenden untersuchen, wie diese Belastungen die Struktur und Belastbarkeit des Trägers beeinflussen. 3. Dreiecksverbund: In dieser Station wird die Bedeutung stabiler Dreiecke für Konstruktionen hervorgehoben. Die Lernenden erfahren, wie durch den Dreiecksverbund feste Verbindungen hergestellt werden können und vergleichen experimentell Dreieck und Viereck. Abschließend wird die Frage geklärt, warum Dreiecke stabil sind. 4. Profile: Die Station zeigt, wie Profile zur Stabilisierung von Strukturen beitragen und gleichzeitig Material einsparen können. Es wird untersucht, wie verschiedene Profilformen die Festigkeit und Effizienz von Bauteilen beeinflussen. Die Lernenden stellen mit den Materialien verschiedene Profile her und untersuchen deren Stabilität. Abschließend suchen sie nach Anwendungen von Profilen in der Umgebung. 5. Schwerpunkt: Hier wird die Bedeutung des Schwerpunkts für die Statik von Artefakten behandelt. Die Schülerinnen und Schüler lernen, den Schwerpunkt von Gegenständen zu bestimmen und erarbeiten, wie die Lage des Schwerpunkts die Stabilität und das Gleichgewicht von Bauwerken bestimmt. Die Bearbeitung dieser Stationen ist gut geeignet, um ein fachliches Fundament für ein anschließendes größeres technisches Projekt zu legen. Ein solches könnte beispielsweise der Bau einer Modellbrücke sein, bei dem die erworbenen Kenntnisse und Fähigkeiten praxisnah angewendet und vertieft werden. Durch diese strukturierte Vorgehensweise wird den Lernenden ein Verständnis der statischen Prinzipien vermittelt, welches sie in zukünftigen Aufgaben anwenden können. Eine Materialliste kann im Downloadbereich heruntergeladen werden. Fachkompetenz Die Schülerinnen und Schüler verstehen Grundprinzipien der Statik. finden hierzu Anwendungen in der realen Technik. verstehen technische Probleme und deren Lösungen. Medienkompetenz Die Schülerinnen und Schüler suchen relevante Informationen im Internet. experimentieren mit Modellen und Materialien. dokumentieren und bewerten die Experimente. Sozialkompetenz Die Schülerinnen und Schüler arbeiten gemeinsam in Kleingruppen. experimentieren weitestgehend selbstständig und eigenverantwortlich.

  • Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I

Die Wahrscheinlichkeit in der Quantenphysik

Unterrichtseinheit

In dieser Unterrichtseinheit erkunden die Lernenden die faszinierende Welt der Quantenphysik und erfahren, dass der Zufall eine zentrale Rolle spielt. Anhand des Doppelspaltexperiments mit Elektronen wird erläutert, wie sich das Verhalten von Quantenobjekten nur noch durch Wahrscheinlichkeiten vorhersagen lässt und wie dies die klassische Physik revolutioniert hat. Die Lernenden sollen die Gesetzmäßigkeiten der normierten Wellenfunktion für Quantenobjekte nachvollziehen und Berechnungen hierzu ausführen. Lösungen zu den Übungsaufgaben stehen hierzu bereit. Die Hinführung zu dem durchaus schwierigen, weil unanschaulichen Thema "Wahrscheinlichkeit in der Quantenphysik" führt einmal mehr über den Doppelspaltversuch mit Elektronen . Der Versuch zeigt in großer Eindeutigkeit, wie sich die Elektronen nach dem Durchgang durch den Doppelspalt auf einem Nachweisschirm verteilen. Das aufgrund des Welle-Teilchen-Dualismus entstehende Interferenzmuster legt eine Auslegung an die Wellentheorie nahe. Den Lernenden muss hier allerdings verdeutlicht werden, dass die Wellenartigkeit mit den physikalischen Gesetzmäßigkeiten beispielsweise von Wasserwellen nichts zu tun hat. Vielmehr ordnet man Quantenobjekten eine Wahrscheinlichkeitswelle zu, was aber nichts anderes heißt, als dass man ein Quantenobjekt mit einer berechenbaren Wahrscheinlichkeit an einem bestimmten Ort finden kann. Die Wahrscheinlichkeit in der Quantenphysik Lange Zeit war sich die "Klassische Physik" sicher, dass alle Ereignisse unausweichlichen Gesetzmäßigkeiten folgen müssen – der Zufall wurde ausgeschlossen! Umso größer war die schockierende Wirkung zu Beginn des 20. Jahrhunderts, als sich in Versuchen zur sich entwickelnden Quantenphysik – wie etwa dem Doppelspalt-Experiment mit Elektronen – der Zufall darin zeigte, dass sich der Ort des Auftreffens eines Elektrons auf einem Nachweisschirm nur mit Wahrscheinlichkeiten angeben ließ. Die daraufhin im Laufe der Jahre entwickelte mathematische Funktion, mit der sich die Welleneigenschaften von Teilchen wie dem Elektron beschreiben lassen, heißt Wellenfunktion . Die Wellenfunktion ist eine weitestgehend abstrakte Formel ohne anschauliche physikalische Bedeutung, weil sie sich nicht direkt beobachten lässt. Mit der Wellenfunktion lässt sich die Wahrscheinlichkeit berechnen, zum Beispiel ein Elektron an einer bestimmten Stelle zu finden. Quantenobjekte sind für die Schülerinnen und Schüler der Sek II physikalisches Neuland. Dies gilt insbesondere deshalb, weil sie versuchen müssen zu verstehen, dass Mikroobjekte wie Photonen oder Elektronen stets Teilchen als auch Wellenphänomene aufweisen – gleichzeitig aber weder das eine noch das andere sind! Alle Berechnungen und Einordnungen beruhen auf den Gesetzmäßigkeiten der Wahrscheinlichkeitsrechnung, die sich an bekannte Gleichungen der klassischen Wellenlehre anlehnen. Das Schwierige dabei ist, dass man den klassischen Wellenbegriff abstrakt sehen muss – die sogenannte Wahrscheinlichkeitswelle hat mit einer Welle nur insofern etwas zu tun, dass man die Verdichtungen und Verdünnungen beim Interferenzbild als Orte wahrnehmen kann, wo Quantenobjekte mit größerer oder kleinerer Wahrscheinlichkeit gefunden werden können. Vorkenntnisse Physikalische Vorkenntnisse von Lernenden sind in der Sek II in Form der Wellengleichungen aus der Mechanik und der Elektrodynamik bekannt. Die komplexe Thematik bei der Bestimmung von Wahrscheinlichkeiten bei Quantenobjekten werden zahlreiche Fragen an die Lehrkräfte zur Folge haben. Der schwierige Stoff wird vor allem in Kursen der Sek II zum Einsatz kommen, die von Schülerinnen und Schülern mit guten mathematischen Kenntnissen ausgewählt werden. Didaktische Analyse Das Thema "Wahrscheinlichkeit in der Quantenphysik" sollte die Lernenden dahingehend sensibilisieren, sich für schwierige Themen zu interessieren, die bereits jetzt, aber auch in Zukunft den technischen Fortschritt dominieren werden. Methodische Analyse Mit der Wahrscheinlichkeit in der Quantenphysik werden die Lernenden mit einem im Detail sehr schwierigen Stoff in der Sek II konfrontiert. Deshalb sollte man bei der Vermittlung des Stoffes darauf achten, dass die Fakten mithilfe von anschaulichen Abbildungen, Animationen, entsprechenden Videos und ergänzenden Übungsaufgaben so präsentiert werden, dass die grundlegenden Gesetzmäßigkeiten verstanden werden können. Fachkompetenz Die Schülerinnen und Schüler erkennen, dass das Verhalten von Quantenobjekten nicht mit den ihnen bisher bekannten Abläufen aus der klassischen Physik beschrieben werden kann. können die Gesetzmäßigkeiten der normierten Wellenfunktion für Quantenobjekte nachvollziehen und Berechnungen ausführen. wissen um die Bedeutung der Quantenphysik für die weitere Forschung und der sich daraus ergebenden technischen Anwendungen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erhalten eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden etc. diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Lärm und Hörschäden

Unterrichtseinheit

In dieser Unterrichtseinheit für den Physikunterricht der Sekundarstufe I lernen die Schülerinnen und Schüler die Gefahren von Lärm und seine Auswirkungen auf das menschliche Gehör kennen. Dazu wird Lärm physikalisch beschrieben, verschiedene Schallbeispiele analysiert und hinsichtlich ihrer Auswirkungen auf das menschliche Gehör bewertet. In dieser Unterrichtseinheit setzen sich die Schülerinnen und Schüler mit dem Thema "Lärm und Hörschäden" auseinander. Ausgehend von der Grundfrage "Was ist Lärm?" erforschen sie verschiedene Lärmarten und -quellen, setzen sich mit dem Begriff auseinander, lernen den Aufbau des menschlichen Ohres kennen und erarbeiten die gesundheitlichen Folgen von Lärm bis hin zur Beurteilung verschiedener Lärmquellen und der Auswertung eines Audiogramms. Das Thema ist in den Lehrplan der Sekundarstufe I für das Fach Physik, insbesondere im Bereich Akustik, integriert und bietet eine fakultative Ergänzung zum regulären Curriculum. Die Inhalte sind nicht nur für den Physikunterricht relevant, sondern bieten auch vielfältige Anknüpfungspunkte für einen fächerübergreifenden Ansatz. Sie lassen sich in den Biologieunterricht integrieren, insbesondere im Kontext des Themenfeldes "Sinne und Wahrnehmung", beispielsweise durch die Erarbeitung des Aufbaus und der Funktionsweise des menschlichen Ohres. Darüber hinaus bietet die Einheit Anknüpfungspunkte an das Fach Geografie, indem die Schülerinnen und Schüler die Auswirkungen von Schallereignissen in ihrer unmittelbaren Umgebung untersuchen. Diese Einheit ist ebenso für den Musikunterricht geeignet. Hier können akustische Experimente durchgeführt und Grundlagen zum Thema Schall praktisch vertieft werden. Insbesondere der "schöne" Lärm als ebenso gefährlicher Lärm kann in diesem Rahmen thematisiert werden. Die Unterrichtsmaterialien eignen sich sowohl für den Einsatz im regulären Unterricht als auch für Vertretungsstunden und können mit weiterführenden Materialien zu den Themenbereichen "Schall und Akustik" und "Lärmverschmutzung" sowie mit Material zum menschlichen Gehör kombiniert werden. Das Material ist vielseitig einsetzbar, da es die Schülerinnen und Schüler dazu anregt, sich mit verschiedenen wahrnehmbaren Alltagsphänomenen auseinanderzusetzen und so die eigene Umwelt und das eigene Verhalten zu reflektieren. Die Einheit beginnt, indem der Begriff "Lärm" konkretisiert und definiert wird. Anhand verschiedener Alltagsbeispiele werden die Schülerinnen und Schüler für Lärm in ihrer Umgebung sensibilisiert. Um die verschiedenen Lärmbeispiele einordnen und bewerten zu können, lernen sie die physikalische Definition der Lautstärke und ihre Einheit kennen. Die Schülerinnen und Schüler lernen anhand von Bild- und Videomaterial den Aufbau und die Vorgänge im menschlichen Ohr kennen sowie mögliche gesundheitliche Schäden, die durch Lärm verursacht werden können. Um Gehörschädigungen erfahrbar zu machen, werden verschiedene Audiodateien vorgespielt. Durch die Auswertung von Audiogrammen wird außerdem der Bezug zum Hörakustiker-Handwerk hergestellt, das unter anderem hörgeschädigte Menschen mit modernen Hörsystemen versorgt und ihnen somit ein besseres Hören ermöglicht. Zum Abschluss der Einheit reflektieren die Schülerinnen und Schüler über Lärmquellen im schulischen Umfeld und tauschen sich über die in der Einheit erarbeiteten Gefahren und Risiken aus. Die Lernenden erhalten in der Unterrichtseinheit die Möglichkeit, ihre Kenntnisse und Fähigkeiten im Zusammenhang mit dem Themenfeld allein und in Zusammenarbeit mit anderen zu entwickeln, anzuwenden und im Plenum zu diskutieren. Die Unterrichtseinheit thematisiert Inhalte aus dem fakultativen Thema Akustik unter anderem des hessischen Lehrplans der Sekundarstufe I für das Fach Physik im gymnasialen Bildungsgang G9 in der Jahrgangsstufe 8. Dabei werden entsprechend des Lehrplans gezielt Alltagssituationen der Schülerinnen und Schüler aufgegriffen und thematisiert, um eine Sensibilisierung für das Thema Lärm und Lärmschutz zu erreichen. Das Material lädt zur Differenzierung ein und bietet Möglichkeiten zur Anpassung an die eigene Lerngruppe. Durch Tipp-Boxen und Sprintaufgaben werden unterschiedliche Niveaus der Schülerinnen und Schüler angesprochen. Die gemeinsame Erarbeitung in Gruppen wird durch den kooperativen Ansatz gefördert und ermöglicht die Verteilung unterschiedlicher Aufgaben und die gemeinsame Erschließung fachlicher Inhalte. Der Unterrichtseinheit liegt ein induktiver Ansatz zugrunde, der darauf abzielt, mit Alltagsphänomenen und Wahrnehmbarem aus dem unmittelbaren Lebensumfeld der Schülerinnen und Schüler zu arbeiten, um daraus Fachwissen abzuleiten. Um das Thema fachlich fundiert einführen zu können, sind Vorkenntnisse zur Schallentstehung und Schallausbreitung notwendig. Grundlagen zu Schallquellen und Schallempfängern können im Rahmen der Unterrichtseinheit noch einmal aufgegriffen und vertieft werden. Des Weiteren bietet die Unterrichtseinheit die Möglichkeit des fächerübergreifenden Arbeitens mit den Fächern Biologie (Aufbau des menschlichen Ohrs) und Musik (Musiklautstärke, Musik als Lärm) sowie Geografie (Lärmquellen in der nahen Umgebung prüfen). In der Unterrichtseinheit werden verschiedene Methoden der Wissensvermittlung wie beispielsweise Einzel- und Gruppenarbeit und sowie die Arbeit im Plenum angewandt, sodass alle Lerntypen aktiviert werden. Zudem werden die Schülerinnen und Schüler animiert/aufgefordert, Arbeitsergebnisse untereinander zu besprechen und zu vergleichen. Das Unterrichtsgespräch dient der Sensibilisierung für die Gefahren einer hohen Lärmbelastung. Die Schülerinnen und Schüler setzen sich dabei aktiv mit der sie umgebenden Geräuschwelt auseinander und erkennen die Gefahren einer hohen Lärmbelastung. Darauf aufbauend kann eine Einheit zum Verhalten und Vermeiden von hoher Lärmbelastung und Gehörschutz angeschlossen werden. Ausgehend von einer konkreten Situation (z.B. Vorbeifahren an einer Baustelle, Konzertbesuch, Musik hören) können Verhaltensmöglichkeiten eröffnet und konkrete Handlungsmöglichkeiten aufgezeigt werden. Hier bietet sich ein interdisziplinärer Ansatz und die Einbeziehung von Fachinhalten aus anderen Fachbereichen an. Um zu verdeutlichen, wie wichtig Lärmschutz ist, wie Menschen vor Hörschäden geschützt werden können, welche Maßnahmen ergriffen werden können und wie Lärm richtig beurteilt werden kann, wird der Bezug zum Aufgabengebiet der Hörakustik hergestellt. Fachkompetenz Die Schülerinnen und Schüler beschreiben verschiedene Schallereignisse durch die Lautstärke und kennen deren Einheit (Dezibel). können verschiedene Lärmarten unterscheiden und bewerten. erläutern den Einfluss von Lärm auf den menschlichen Körper. kennen Möglichkeiten, sich vor Lärm zu schützen. Medienkompetenz Die Schülerinnen und Schüler können Informationen aus einem Text aufgabengeleitet entnehmen und wiedergeben. entnehmen Informationen aus einem Video und verschriftlichen diese. nutzen vorgegebene Internetquellen für die Recherche weiterführender Informationen. Sozialkompetenz Die Schülerinnen und Schüler kommunizieren adressatengerecht und verknüpfen dabei Alltags- und Fachsprache situationsgerecht. übertragen das Gelernte auf ihre Lebenswelt und reflektieren verschiedene Alltagssituationen, in denen sie mit Lärm konfrontiert sind. arbeiten in Gruppen oder in Paararbeit und lernen Ergebnisse und eigene Ideen zu kommunizieren.

  • Biologie / Ernährung und Gesundheit / Natur und Umwelt / Physik / Astronomie
  • Sekundarstufe I

Wärmedämmung und Wärmeleitfähigkeit

Unterrichtseinheit

In der Unterrichtseinheit "Wärmedämmung und Wärmeleitfähigkeit" für die siebte oder achte Klasse im Fach Physik lernen die Schülerinnen und Schüler die verschiedenen Arten der Wärmeübertragung im Kontext der Wärmedämmung an Gebäuden kennen. Dabei werden Bezüge zum Sanitär-, Heizungs- und Klima-Handwerk hergestellt. Die Unterrichtseinheit bearbeitet das Thema "Wärmedämmung und Wärmeleitfähigkeit" für das Fach Physik in der Sekundarstufe I. Konkret behandelt sie Inhalte im Themenfeld "Thermische Energie und Wärme". Die Unterrichtseinheit bindet die fachlichen Inhalte in den Kontext der Gebäudeheizung ein. So wird zunächst der Begriff der Wärmedämmung intuitiv anhand eines Thermogramms eingeführt und anschließend physikalisch erarbeitet ( Arbeitsblatt 1 ). Die Schülerinnen und Schüler lernen den Unterschied zwischen Wärmeleitung, Wärmestrahlung und Wärmeströmung kennen und trainieren dabei durch die Methode des Gruppenpuzzles das Kommunizieren und Argumentieren. Anknüpfend an den Rahmenlehrplan werden die Dämmeigenschaften verschiedener Materialien zunächst experimentell untersucht und anhand dessen wesentliche Fachkenntnisse zur Wärmeleitfähigkeit erworben und formuliert ( Arbeitsblatt 2 ). Mit Hilfe der im Experiment erworbenen Kenntnisse werden anschließend verschiedene Materialien bezüglich ihrer Eigenschaften und Eignung bei der Wärmedämmung im Gebäudekontext bewertet. Um den Schülerinnen und Schülern verschiedene Bezüge und Anknüpfungspunkte des Themas aufzuzeigen, wird die Unterrichtseinheit durch eine von den Lernenden durchgeführte Podiumsdiskussion abgeschlossen ( Arbeitsblatt 3 ). Hierbei erhalten die Schülerinnen und Schüler die Gelegenheit, das Themenfeld aus unterschiedlichen Perspektiven zu beleuchten und persönliche Handlungsoptionen im Bereich des energiesparenden Heizens kriteriengeleitet zu erarbeiten. Die Unterrichtseinheit thematisiert Inhalte aus dem Themenfeld "Thermische Energie und Wärme" für das Fach Physik in der Sekundarstufe. Dabei werden entsprechend des Lehrplans gezielt Bezüge zu der Erfahrungswelt der Schülerinnen und Schüler hergestellt. Der Kontext "Heizung im Gebäude" ist den Schülerinnen und Schülern aus persönlichen Alltagserfahrungen bekannt und kann auch im späteren beruflichen Kontext eine Rolle spielen, so beispielsweise im Bereich des Sanitär-Heizung-Klima-Handwerks. Um den Begriff der Wärmedämmung fachlich fundiert einführen zu können, sind Vorkenntnisse zu den Themen "thermische Energie und Wärme " nötig. Im Rahmen der Erarbeitung der drei Arten der Wärmeübertragung wird außerdem das Teilchenmodell verwendet, welches hierbei noch einmal aufgegriffen und vertieft werden kann. Des Weiteren bietet die Unterrichtseinheit viele Anknüpfungspunkte an den Bereich "Energie und Energieumwandlungen". In der Unterrichtseinheit werden verschiedene Methoden der Wissensvermittlung wie beispielsweise Einzel- und Gruppenarbeit und die Arbeit im Plenum angewandt, um eine Aktivierung aller Lerntypen zu erreichen. Auch werden die Schülerinnen und Schüler verstärkt ermuntert, Arbeitsergebnisse untereinander zu besprechen und zu vergleichen. Durch das Anwenden gelernter Inhalte auf den Gebäudekontext entwickeln die Lernenden Kompetenzen im Bereich des Bewertens. Die experimentelle Methode zur Erkenntnisgewinnung wird in dieser Unterrichtseinheit bewusst als besondere physikalische bzw. naturwissenschaftliche Strategie verwendet. Eine Podiumsdiskussion wird am Ende der Unterrichtseinheit eingesetzt, um den Schülerinnen und Schülern unterschiedliche Perspektiven und Hintergründe zu dem Themenfeld aufzuzeigen. Im Bereich der Kommunikationskompetenz üben die Schülerinnen und Schüler dabei die adressatengerechte Wiedergabe von Informationen und das Argumentieren. Durch das Erarbeiten konkreter persönlicher Handlungsoptionen im Rahmen der Diskussion sollen die Lernenden für das Thema "energiesparend Heizen" sensibilisiert werden. Fachkompetenz Die Schülerinnen und Schüler unterscheiden zwischen Wärmeleitung, Wärmeströmung und Wärmestrahlung. erklären mit Hilfe des Teilchenmodells verschiedene Arten der Wärmeübertragung. beschreiben Wärmeübertragung im Kontext der Wärmedämmung an und in Gebäuden. Sozialkompetenz Die Schülerinnen und Schüler verbessern ihre Fähigkeiten, ihre Erkenntnisse adressatengerecht zu präsentieren. verbessern durch verschiedene Formen der Gruppenarbeit ihre Teamkompetenz. üben das gezielte Einhalten von Gesprächs- und Diskussionsregeln. Erkenntnisgewinnungskompetenz Die Schülerinnen und Schüler entwickeln Fragestellungen zu physikalischen Sachverhalten. üben Sachverhalte mit geeigneten Kriterien zu vergleichen. führen zur Untersuchung einer physikalischen Fragestellung ein geeignetes Experiment durch und werten dieses aus.

  • Physik / Astronomie
  • Sekundarstufe I

Unbestimmtheit – ein Grundphänomen der Quantenphysik

Unterrichtseinheit

Einführung von "Unbestimmtheit" als einem Grundphänomen der Quantenphysik: Mithilfe von vergleichenden Betrachtungen von klassischer Physik und Quantenphysik wird die völlig andere Welt der Mikrophysik im Unterricht besprochen. Dabei wird deutlich, welche entscheidende Rolle bei atomaren Größenordnungen das vom Fotoeffekt her bereits bekannte Planck'sche Wirkungsquantum h spielt. Zunächst wird die sogenannte "Unbestimmtheit" als ein Grundphänomen der Quantenphysik in den historischen Kontext eingeordnet. Im Jahr 1927 fand der spätere Nobelpreisträger Werner Heisenberg Gesetzmäßigkeiten, die alle bis dahin als elementar geltenden Vorstellungen über die Physik des Mikrokosmos auf den Kopf stellen sollten. Mit seiner Unschärferelation konnte er die Grenzen dessen definieren, was sich über die Welt des Allerkleinsten aussagen lässt. Im Prinzip besagt seine Heisenberg'sche Unschärferelation, dass zwei bestimmte Eigenschaften eines Teilchens nicht beliebig genau gleichzeitig gemessen werden können . Mithilfe von vergleichenden Betrachtungen von klassischer Physik und Quantenphysik wird die völlig andere Welt der Mikrophysik im Unterricht besprochen; dabei wird deutlich, welche entscheidende Rolle bei atomaren Größenordnungen das vom Fotoeffekt her bereits bekannte Planck'sche Wirkungsquantum h spielt. Unbestimmtheit – ein Phänomen der Quantenphysik Die Eigenheiten der Quantenwelt zeigen sich einmal mehr, wenn man etwa bestimmte physikalische Größen – wie Ort und Geschwindigkeit – eines Teilchens gleichzeitig messen möchte: Egal wie genau die Messmethode auch sein mag – die beiden Eigenschaften lassen sich nicht gleichzeitig exakt bestimmen! Ist die Position eines Teilchens sehr genau bekannt, ist seine Geschwindigkeit weitestgehend unbestimmbar. Umgekehrt wissen wir kaum etwas über seinen Aufenthaltsort, wenn wir seine Geschwindigkeit und damit seinen Impuls sehr genau kennen. Der Physiker Werner Heisenberg erkannte dieses für Quantenobjekte charakteristische Naturgesetz und formulierte es mathematisch mit seiner berühmten – nach ihm benannten – Unschärferelation (HUR). Vorkenntnisse Physikalische Vorkenntnisse von Lernenden sind sicher nur – wenn überhaupt – sehr begrenzt vorhanden. Viele Gesetze der Quantenphysik widersprechen dem gesunden Menschenverstand, gehören aber neben der Relativitätstheorie zu den Säulen der modernen Physik mit ihren nicht mehr wegzudenkenden Anwendungen wie Navigationsgeräten oder – in absehbarer Zeit – Quantencomputern. Für viele Menschen scheinbar "unsinnige" Gesetze erklären, wie die Welt im Allerkleinsten funktioniert; deshalb sollten auch Lernende sich unbedingt mit diesen Themen halbwegs vertraut machen. Didaktische Analyse Die HUR bedeutet für die Lernenden, dass sie den aus der klassischen Physik gewohnten Begriff der Bahn eines Teilchens nicht mehr anwenden können. Vielmehr können bei Quantenobjekten wie etwa Elektronen oder Photonen niemals die Eigenschaften "Ort" und "Impuls" – wie in der klassischen Physik selbstverständlich – gleichzeitig exakt bestimmt werden. Dennoch scheinen in einer Röhre erzeugte Elektronen bei Schulversuchen durchaus auf einer wohldefinierten Bahn zu fliegen – diese nur scheinbare Diskrepanz findet aber bei Berechnungen ihre anschauliche Erklärung! Die Behandlung des schwierigen Themas "Unbestimmtheit" im Physikunterricht sollte für das Gros der Lernenden zu der Erkenntnis führen, dass die zugehörige Physik keine Hexerei, sondern ein von einem genialen Wissenschaftler gefundenes Naturgesetz ist, das einen nahezu unzugänglichen Mikrokosmos beschreibt, ohne den aber die Welt nicht so funktionieren würde wie sie es tut! Für den Unterricht sollten Lehrkräfte auf jeden Fall gut präpariert sein, um auf kritische Fragen sachkompetent eingehen und antworten zu können. Methodische Analyse Mit der HUR werden die Lernenden mit einem im Detail sehr schwierigen Stoff in der Sek II konfrontiert. Deshalb sollte man bei der Vermittlung des Stoffes darauf achten, dass die Fakten mithilfe von anschaulichen Abbildungen, Animationen, entsprechenden Videos und ergänzenden Übungsaufgaben so präsentiert werden, dass die grundlegenden Gesetzmäßigkeiten verstanden werden können. Fachkompetenz Die Schülerinnen und Schüler wissen, dass es sich bei der HUR trotz der schwer nachvollziehbaren Mikrophysik um ein sehr bedeutsames Naturgesetz handelt. können die Gesetzmäßigkeiten der HUR in seiner einfachen Form gut herleiten und Berechnungen ausführen. kennen die Bedeutung der HUR im Rahmen der Quantenphysik für die Mikrophysik und daraus resultierende praktische Anwendungen. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten und Hintergründe im Internet. können die Sachinhalte von Videos, Clips und Applets auf ihre Richtigkeit überprüfen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. müssen sich mit den Ergebnissen anderer Gruppen auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben eine gewisse Fachkompetenz, um mit anderen Lernenden, Eltern, Freunden etc. diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

DIY: ein Modellgerüst bauen

Unterrichtseinheit

In dieser Unterrichtseinheit zum Thema Baustatik und Technische Mechanik für das Fach Physik der Sekundarstufe I und II setzen sich die Schülerinnen und Schüler mit den Grundlagen des Gerüstbaus auseinander. Durch einen erlebnisorientierten Einstieg über die Suche nach Gerüsten im eigenen Wohn- und Schulumfeld wird der Aufbau eines Gerüstes vermittelt. Schritt für Schritt nähern sich die Schülerinnen und Schüler mithilfe der Arbeitsmaterialien dem Bau eines eigenen kleinen Gerüstes und erkennen dabei Bezüge zum Gerüstbau-Handwerk in ihrer Umgebung. So wird ausgehend von einem Foto eine Zeichnung angefertigt, eine Zeichnung in ein Modell umgesetzt und die Grundlagen der Stabilität erprobt und diskutiert. Kern der Unterrichtseinheit ist der Bau eines Gerüstmodells. Bevor die Schülerinnen und Schüler das Modell bauen, sollen technische und gerüstbauspezifische Konventionen erarbeitet werden. Im ersten Schritt ( Arbeitsblatt 1 ) sollen die Schülerinnen und Schüler als Hausaufgabe ein Gerüst in ihrer Umgebung ausfindig machen, fotografieren und das fotografierte Gerüst in eine Zeichnung umsetzen. Die Ergebnisse der Hausaufgabe bilden den Impuls zu Beginn der ersten Unterrichtsstunde. Die Schülerinnen und Schüler präsentieren ihre Ergebnisse und stellen sie in einem Museumsrundgang vor. Die Ergebnisse werden stichpunktartig zusammengetragen und bilden die Grundlage für die nächste Stunde ( Arbeitsblatt 2 ). Im zweiten Schritt werden die Grundlagen des Gerüstbaus erarbeitet. Das Gelernte soll auf das Gerüst (Foto und Zeichnung) aus der ersten Stunde angewendet werden. In den folgenden Stunden beschäftigen sich die Lernenden mit dem Aufbau eines Gerüstes und dessen Stabilität. Das Thema Stabilität wird von den Lernenden an einem zunächst einfachen Modell erprobt. Nachdem das Prinzip der Stabilität verinnerlicht wurde, bauen die Lernenden ein großes dreidimensionales Modell ( Arbeitsblatt 2 ). Die Modellbauanleitung ( Arbeitsblatt 3 ) und die Aufgabenstellung ermöglichen ein selbstständiges Arbeiten in Gruppen. Im Bereich der Statik wird von den Schülerinnen und Schülern ein hohes Abstraktionsvermögen verlangt. Daher sollen die Probleme und Aufgaben an einem eigenen Modell festgemacht werden. Ziel ist es, dass der Sinngehalt von strukturierten Lösungswegen deutlich wird. Die Einheit soll das Gerüstbau-Handwerk für die Schülerinnen und Schüler sichtbar und erfahrbar machen. Durch die breite Erarbeitung der Grundlagen eignet sich die Einheit gut für den Einstieg in die Technische Mechanik. Die Anwendungsaufgaben mit dem Gerüst als Basis können beliebig erweitert werden. Für leistungsstarke Klassen können die Zusatzaufgaben verbindlich festgelegt werden. Das Gerüst war und ist ein unersetzliches Hilfsmittel. Die Geschichte des Gerüsts geht in seiner primitivsten Form zurück bis in das 17. Jahrtausend vor Christus, dort wurde dieses gebraucht, um Malereien in hohen Höhen der Höhlenbehausungen anzubringen. Auch die Ägypter, circa 15.000 Jahre später um circa 1.450 vor Christus, nutzten diese praktischen Hilfskonstruktionen, um riesige Tempelanlagen zu errichten. Der Nutzen eines Gerüsts lässt sich heute wie vor 17.000 Jahren gleich beschreiben: Das Gerüst ist eine temporäre Hilfskonstruktion und dient zur sicheren Durchführung von Bauarbeiten. Zudem ist es als Lehrobjekt hervorragend geeignet. Durch die geringe Anzahl unterschiedlicher Bauteile und die statisch vereinfachten Systeme können sonst abstrakte physikalische Vorgänge erkannt werden. Die folgende Unterrichtseinheit soll genau diese physikalischen Vorgänge greifbar machen und mit technischen Grundlagen des Gerüstbaus verknüpfen. Die Unterrichtseinheit mit Sachbezug zum Gerüstbau-Handwerk verkörpert ein beispielhaftes Modell des situierten Lernens, bei dem die Lernenden durch die unmittelbare Auseinandersetzung mit ihrer Lebenswelt zu einem authentischen Zugang zum Lerngegenstand geführt werden. Dieser methodische Ansatz fördert den Lebensweltbezug und ermöglicht es den Schülerinnen und Schülern, den praktischen Nutzen und die Bedeutung des Gerüstbaus direkt in ihrem Alltag zu erkennen. Durch den Ansatz des induktiven Lernens, bei dem ausgehend von konkreten Beispielen zu abstrakten Begriffen übergegangen wird, wird eine effektive Verknüpfung von Theorie und Praxis erreicht. Durch den Eigenbau des Modells können die Schülerinnen und Schüler ihr Wissen aktiv anwenden und durch die Durchführung von Stabilitätserprobungen analytische Fähigkeiten entwickeln. Die in jeder Unterrichtsstunde stattfindende Gruppenarbeit berücksichtigt die Heterogenität der Lerngruppe und unterstützt die individuelle Förderung durch differenzierte Aufgabenstellungen. Sie ermöglicht eine adaptive Lernumgebung, in der die Schülerinnen und Schüler ihren Interessen und Fähigkeiten entsprechend gefordert und gefördert werden. Dieser kooperative Lernansatz stärkt soziale Kompetenzen wie Kommunikations- und Teamfähigkeit und trägt zu einem inklusiven Lernklima bei. Die Präsentation der Ergebnisse in einer Ausstellung am Ende der Einheit dient nicht nur der Wertschätzung der gemeinsamen Leistung, sondern fördert auch eine positive Feedbackkultur und schult die Reflexionsfähigkeit. Die Unterrichtseinheit kann auch im Rahmen einer Projektwoche durchgeführt werden. Der Einsatz dieser Unterrichtseinheit im Rahmen einer Projektwoche bietet den Vorteil einer intensiveren Auseinandersetzung mit dem Thema. Darüber hinaus kann die Unterrichtseinheit mit Anwendungsaufgaben zum Lehrplanthema "Technische Mechanik" erweitert werden – auch hier kann ein Sachbezug zum Gerüstbau sinnvoll sein, um eine umfassende Lernerfahrung zu schaffen. Zusammenfassend lässt sich sagen, dass diese Unterrichtseinheit methodisch-didaktische Prinzipien wie Lebensweltorientierung, konstruktivistisches Lernen, kooperatives Arbeiten und Lernreflexion nutzt, um ein ganzheitliches, kompetenzorientiertes Lernangebot zu schaffen, das fachliche und überfachliche Lernziele adressiert. Fachkompetenz Die Schülerinnen und Schüler schulen ihr räumliches Denkvermögen. schulen ihr Abstraktionsvermögen. beachten beim Bau des Modells die technischen und funktionellen Anforderungen (zum Beispiel Statik) und bauen unter Anleitung ein stabiles Modell. erkennen statische Systeme und überführen diese in eine Zeichnung. lernen, zu differenzieren und zu kategorisieren. lernen, bereits Erarbeitetes zu revidieren und Alternativen zu finden und zu bewerten. lernen Grundzüge von ingenieurspezifischen Methodiken. wenden mathematische Verfahren auf physikalische Sachverhalte an. beziehen theoretische Überlegungen und Modelle zurück auf Alltagssituationen und reflektieren ihre Generalisierbarkeit. Sozialkompetenzen Die Schülerinnen und Schüler arbeiten kriteriengeleitet im kooperativen Lernsetting. arbeiten in verschiedenen Sozialformen und bauen ihre Kommunikationsfähigkeit aus. lernen, sich arbeitsteilig zu organisieren. kommunizieren ihre eigenen Ideen mit der Gruppe und realisieren sie in der Gruppenarbeit. lernen, Kompromisse zu schließen und aus mehreren Ideen, eine Auswahl zu treffen. treffen begründete Entscheidungen in Bezug auf die Rollen in der Gruppe und die Ausrichtung des Gruppenergebnisses.

  • Mathematik / Rechnen & Logik / Physik / Astronomie / Technik / Sache & Technik
  • Sekundarstufe I, Sekundarstufe II

Wie der Compton-Effekt und die Materiewelle neue Erkenntnisse für die Quantenphysik brachten

Unterrichtseinheit

Compton-Effekt, de-Broglie-Wellen und ihr Nachweis von Davisson und Germer zeigen, dass quantenphysikalische Vorgänge in entsprechenden Versuchen exakt abgeleitet werden können. Aufgrund der in dieser Unterrichtseinheit vermittelten Ergebnisse aus historischen Versuchen können die Schülerinnen und Schüler nachvollziehen, dass Welle-und Teilcheneigenschaften von Quantenobjekten mit Formeln beschrieben werden können, die einen realen Hintergrund haben. Die großen Entdeckungen zu Anfang des 20. Jahrhunderts wie Fotoeffekt (Albert Einstein), Compton-Effekt (Arthur Compton), Materiewellen (Louis de Broglie) und das Davisson-Germer-Experiment brachten Licht ins Dunkel rund um die Hypothesen zur noch jungen Quantenphysik . Mit den experimentell erbrachten Bestätigungen konnte gezeigt werden, dass die aufgestellten Theorien zum Welle-Teilchen-Dualismus die Realität beschreiben und somit ein Grundprinzip der Natur darstellen. Bei der (unterrichtlichten) Herleitung des Compton-Effektes zur Bestätigung des Wellen- und Teilchencharakters bei der Streuung von Lichtteilchen (Photonen) wird man sich genauso wie bei der Verallgemeinerung des Wellen- und Teilchencharakters auf alle Teilchen, die eine Ruhemasse haben, in erster Linie auf theoretische Ableitungen mithilfe von Animationen, Videos und entsprechenden Abbildungen beschränken müssen. Entsprechende Schulversuche (bis auf einfache Stoßversuche mit Kugeln) stehen in der Regel nicht zur Verfügung. Compton-Effekt und Materiewelle in der Quantenphysik Die Lernenden wissen bereits, dass es sich bei der Quantenphysik um einen Bereich der Physik handelt, der sich als ein Naturgesetz darstellt, das sich dem direkten Verständnis entzieht. Aufgrund der in dieser Unterrichtseinheit vermittelten Ergebnisse aus historischen Versuchen können die Schülerinnen und Schüler aber nun verstehen, dass Welle-und Teilcheneigenschaften von Quantenobjekten mit Formeln beschrieben werden können, die einen realen Hintergrund haben. Compton-Effekt, de-Broglie-Wellen und ihr Nachweis von Davisson und Germer zeigen, dass quantenphysikalische Vorgänge in der Mikrophysik kein Hokuspokus sind, sondern in entsprechenden Versuchen exakt abgeleitet werden können. Vorkenntnisse Vorkenntnisse sind mittlerweile vorhanden: Wellen- und Teilcheneigenschaften schließen sich nicht aus, sondern zeigen ihr naturgegebenes Verhalten je nach Versuchsanordnung und entsprechender Auswertung. Methodische Analyse Bei der Vermittlung des Stoffes sollte man sich auf anschauliche Darstellungen und/oder Animationen sowie auf gut nachvollziehbare Grundversuche beschränken – gegebenenfalls kann auch das Internet seinen Beitrag mit entsprechenden Beispielen und Erklärungen leisten. Bei der Fragen- und Aufgabenstellung sollte man darauf achten, dass man den Schwierigkeitsgrad zunächst einfach und anschaulich hält. Fachkompetenz Die Schülerinnen und Schüler können Compton-Effekt und Materiewellen beschreiben und mit entsprechenden Formeln Berechnungen anstellen. kennen die Unterschiede bei der Anwendung von Gesetzmäßigkeiten zwischen Quantenobjekten und makroskopischen Teilchen und Körpern. wissen, wie man die Quantenphysik in Relation zu unserem Alltagserleben einordnen muss. Medienkompetenz Die Schülerinnen und Schüler recherchieren selbständig Fakten, Hintergründe und Kommentare im Internet. können die Inhalte von Videos, Clips und Animationen auf ihre sachliche Richtigkeit hin überprüfen und einordnen. Sozialkompetenz Die Schülerinnen und Schüler lernen durch Paar- und Gruppenarbeit das Zusammenarbeiten als Team. setzen sich mit den Ergebnissen der Mitschülerinnen und Mitschüler auseinandersetzen und lernen so, deren Ergebnisse mit den eigenen Ergebnissen konstruktiv zu vergleichen. erwerben genügend fachliches Wissen, um mit anderen Lernenden, Eltern, Freunden etc. wertfrei diskutieren zu können.

  • Physik / Astronomie
  • Sekundarstufe II

Was ist Hydraulik?

Unterrichtseinheit

Diese Unterrichtseinheit zum Thema "Hydraulik und das Pascalsche Gesetz" ist für den Physik-Unterricht in den Klassen sieben bis neun. Es werden wichtige Definitionen zur Hydraulik, zum hydrostatischen Druck und dem Pascalschen Gesetz erarbeitet sowie Rechenbeispiele und Anwendungsaufgaben rund um hydraulischen Druck behandelt. Dabei wird zugleich auf das Berufsfeld Bau- und Landmaschinenmechatroniker/-in eingegangen, in dem mit hydraulischen Systemen täglich gearbeitet wird. Die Arbeitsblätter bieten im Rahmen des Physik-Unterrichts sowie von Vertretungsstunden eine spannende Einführung in die Welt der Hydraulik und des Pascalschen Gesetzes, deren Prinzipien im Alltag überall sichtbar und auch in Berufen wie Land- und Baumaschinenmechatroniker/-in täglich Anwendung finden. Die Schülerinnen und Schüler werden dazu ermutigt, die grundlegenden Konzepte der Hydraulik zu verstehen und deren Bedeutung für die täglichen Anwendungen sowie für die berufliche Praxis zu erkennen. Zunächst werden die Schülerinnen und Schüler in die Grundlagen der Hydraulik eingeführt. Es wird erklärt, wie das Pascalsche Gesetz in Hydrauliksystemen verwendet wird, um Kräfte zu übertragen und Bewegungen zu steuern. Rechenaufgaben rund um hydrostatischen Druck vertiefen dabei das physikalische Verständnis. Des Weiteren wird anhand von handlungsorientierten Aufgaben aufgezeigt, wie wichtig hydraulische Systeme in unserem Alltag sind. Dafür sollen die Lernenden das Berufsfeld der Land- und Baumaschinenmechatronik erkunden. Insgesamt bieten die Arbeitsblätter eine ganzheitliche und praxisnahe Einführung in das Thema Hydraulik, die das Interesse der Schülerinnen und Schüler weckt und ihr Verständnis für die Bedeutung dieses Fachgebiets im Bereich der Land- und Baumaschinenmechatronik vertieft. Ergänzendes Arbeitsblatt Zur weiteren Vertiefung mit der Unterrichtseinheit steht das Arbeitsblatt " Wie funktioniert ein Hydraulikmotor? " zum Download bereit. Die Themen "Hydraulik" und "Pascalsches Gesetz" sind nicht nur lehrplanrelevant für den Physik-Unterricht in der Sekundarstufe I. Sie sind für Schülerinnen und Schüler besonders deshalb von hoher Relevanz, da sie diesen wichtigen physikalischen Prinzipien in vielen Bereichen des täglichen Lebens begegnen: am Auto, in Aufzügen, am Müllabfuhrwagen oder an einem Traktor. Auch im späteren Berufsleben kann Hydraulik eine wichtige Rolle spielen, so zum Beispiel im Handwerksberuf Land- und Baumaschinenmechatroniker. Vorkenntnisse im Bereich der Physik sind von Vorteil, aber nicht zwingend erforderlich, da die Arbeitsblätter die Grundlagen der Hydraulik und des Pascalschen Gesetzes verständlich und anschaulich erklären. Durch praktische Beispiele aus dem Alltag sowie durch handlungsorientierte Aufgaben wird das Verständnis der Schülerinnen und Schüler gefördert und ihr Interesse an der Thematik geweckt. Die Unterrichtseinheit zielt darauf ab, das Verständnis der Schülerinnen und Schüler für die Grundlagen der Hydraulik zu vertiefen und ihre Fähigkeit zu fördern, dieses Wissen auf konkrete Situationen anzuwenden. Dabei werden verschiedene Lernmethoden wie Erklärungen, Beispiele, Diskussionen und praktische Aufgaben verwendet, um einen abwechslungsreichen und ansprechenden Lernprozess zu ermöglichen. Ziel ist es, die Schülerinnen und Schüler dazu zu ermutigen, aktiv am Lernprozess teilzunehmen und sie für den Beruf Land- und Baumaschinenmechatroniker/-in zu sensibilisieren. Fachkompetenz Die Schülerinnen und Schüler definieren "Hydraulik", "hydrostatischer Druck" und "Pascalsche Gesetz". berechnen Aufgaben zum hydrostatischen Druck und zum Pascalschen Gesetz. kennen Anwendungsmöglichkeiten von und Begegnungsfelder mit Hydraulik im Alltag und im Handwerksberuf Land- und Baumaschinenmechatroniker. Medienkompetenz Die Schülerinnen und Schüler recherchieren im Internet nach Sachinformationen. nutzen ein Lernvideo im Internet zur Definition von Hydraulik. Sozialkompetenz Die Schülerinnen und Schüler erarbeiten Lern- und Recherche-Inhalte in verschiedenen Sozialformen (Einzel- Paar- und Plenumsarbeit).

  • Physik / Astronomie
  • Sekundarstufe I

Einen eigenen Handtuchhalter bauen

Unterrichtseinheit

In der Unterrichtseinheit "Einen eigenen Handtuchhalter bauen" möchte die Hauptfigur Ayla aus einer nicht mehr benötigten Duschvorhangstange einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Eine SHK-Anlagenmechanikerin hilft ihr dabei. Für die passende Materialauswahl erkunden die Schülerinnen und Schüler die verschiedenen Eigenschaften von Edelstahl, Aluminium, Kunststoff und verchromtem Normalstahl. Sie berechnen die passende Rohrlänge, lernen die Montage-Schritte mit Fachvokabular kennen, wählen Bauteile mittels technischer Zeichnungen aus und wenden das Gelernte schließlich praktisch an. Die Einheit bietet sich aufgrund ihrer mathematischen, physikalischen und werktechnischen Eigenschaften für den fächerübergreifenden Werk-Unterricht und für Projektwochen an. Die Unterrichtseinheit schlägt den Bogen von der Theorie hin zur praktischen Arbeit im Unterricht. Sie startet mit einer Lebenssituation der Identifikationsfigur Ayla, die mit ihren Eltern und Geschwistern in einer Wohnung lebt. Da das Bad sehr alt ist, wird es von einer SHK-Fachfirma saniert. Eine alte Duschstange soll dabei entsorgt werden, doch Ayla hat eine bessere, kreative Idee: Sie möchte daraus einen Handtuchhalter bauen. Zusammen mit der SHK-Anlagenmechanikerin begibt sie sich an die Arbeit. Die Schülerinnen und Schüler stellen dabei zunächst eigene Überlegungen zu den Materialanforderungen für den Handtuchhalter in einem Feuchtraum an. Es folgt eine Recherche möglicher geeigneter Werkstoffe und deren Eigenschaften. Hierbei geht es unter anderem um Kriterien wie Aufbau der Metalle, Legierungen, Verformbarkeit, Zerspanbarkeit, Festigkeit, Korrosionsbeständigkeit usw. Im zweiten Schritt geht die Unterrichtseinheit auf die für das konkrete Beispiel notwendige Planungs- und Berechnungsarbeit ein. Hierbei werden auch die Montagetechnik sowie das Befestigungsmaterial und die Werkezuge thematisiert und die Arbeitsschritte aufgezeigt. Dazu gehören unter anderem Trennen (Sägen, Bohren) und Fügen (Schrauben). Die Schülerinnen und Schüler haben anschließend die Möglichkeit, die Arbeit praktisch auszuführen und einen eigenen Handtuchhalter zu bauen. Im letzten Schritt setzen sich die Schülerinnen und Schüler mit einer technischen Zeichnung auseinander, die bei der richtigen Bauteilbeschaffung von Flanschen unterstützt. Erarbeitet werden die in technischen Zeichnungen üblicherweise verwendeten Elemente sowie deren Fachbezeichnungen. Zudem vervollständigen die Schülerinnen und Schüler die Zeichnung durch Einsetzen selbst ermittelter Maßangaben. Die Unterrichtseinheit ermöglicht den Schülerinnen und Schülern einen indirekten Einblick in die vielfältigen Aufgaben des SHK-Handwerks, indem sie selbst einen eigenen Handtuchhalter für das heimische Badezimmer bauen. Sie zeigt, dass handwerkliches Können und Fachwissen dazu befähigen, auch aus alten Materialien kreativ etwas Neues zu erschaffen. Ein hohes Maß an Paar- beziehungsweise Kleingruppenarbeit ermöglicht selbstständiges Recherchieren, das immer wieder durch Präsentationen und/oder Hinleitungen eingefasst wird. Bei maximal möglicher Selbstständigkeit der Schülerinnen und Schüler hat die Lehrkraft somit immer die Möglichkeit, nachzusteuern. Darüber hinaus trägt die Unterrichtseinheit auch praktische Fertigkeiten aus dem handwerklichen Alltag in den Unterricht. Eine Zuordnungsaufgabe klärt vorab die Reihenfolge der anstehenden Schritte zur Montage eines Handtuchhalters. Schülerinnen und Schüler dürfen dann selbst praktisch tätig werden. Dies gibt eher praktisch veranlagten Schülerinnen und Schülern die Möglichkeit, ihre Fähigkeiten zu zeigen. Für die praktische Umsetzungsphase benötigen die Schülerinnen und Schüler mehrere Unterrichtsstunden, sodass sich dieses Unterrichtsmaterial hervorragend für eine Projektarbeit oder -woche anbietet. Vorkenntnisse zu technischen Zeichnungen sind dabei vorteilhaft, aber nicht zwingend notwendig. Je nach Vorwissen brauchen die Lerngruppen für diese Unterrichtseinheit mindestens sieben Unterrichtsstunden oder entsprechend mehr. Die Lehrkraft ist dafür verantwortlich, die Herstellung eines eigenen Handtuchhalters für zuhause, die Schule oder einen anderen Ort entsprechend zu organisieren. Fachkompetenz Die Schülerinnen und Schüler lernen unterschiedliche Metalle und ihre Eigenschaften kennen. erfahren Details zur Montage von Metallrohren. üben das Bearbeiten (= Trennen) von Metall sowie die zugehörigen Arbeitsschritte. arbeiten mit technischen Zeichnungen und erlernen deren Grundaufbau und -Systematik. Berechnen die passende Rohrlänge. Medienkompetenz Die Schülerinnen und Schüler recherchieren Sachinformationen im Netz. Sozialkompetenz Die Schülerinnen und Schüler üben das Arbeiten in Zweierteams und Kleingruppen. behalten bei praktischen Arbeiten die eigene Sicherheit und die der Mitschülerinnen und Mitschüler im Auge. wertschätzen die handwerkliche Arbeit.

  • Technik / Sache & Technik / Physik / Astronomie / Mathematik / Rechnen & Logik
  • Sekundarstufe I

Unterrichtsmaterial und News für das Fach Physik

Hier finden Lehrkräfte der Sekundarstufen I und II kostenlose und kostenpflichtige Arbeitsblätter, Kopiervorlagen, Unterrichtsmaterialien und interaktive Übungen mit Lösungsvorschlägen zum Download und für den direkten Einsatz im Physik-Unterricht oder in Vertretungsstunden. Ob Materialien zu Mechanik, Kinematik, Kernphysik, Optik, Elektrizität, Quantenphysik oder experimentelle Physik: Dieses Fachportal bietet Lehrerinnen und Lehrern jede Menge lehrplanorientierte Unterrichtsideen, Bildungsnachrichten sowie Tipps zu Apps und Tools für ihren Physikunterricht an Gymnasien, Gesamt-, Real-, Haupt- und Mittelschulen. 

Nutzen Sie unsere Suche mit ihren zahlreichen Filterfunktionen, um einfach und schnell lehrplanrelevante Arbeitsmaterialien für Ihren Unterricht zu finden.

ANZEIGE

Aktuelle News für das Fach Physik

Premium-Banner